A tutorial on randomized algorithms in numerical linear algebra

Mark Tygert Program in Applied Mathematics Yale University

> IPAM (at UCLA) September, 2007

Three problems

- 1. Verifying that the spectral norm of a matrix is not meaningfully larger than desired
- 2. Linear least-squares regression (solving overdetermined systems of linear-algebraic equations in the least-squares sense)
- 3. Low-rank approximation of a matrix (including computing several of the greatest singular values and corresponding singular vectors)

We will survey points 1 and 2 during the present tutorial talk, start discussing point 3 with the next (self-contained) tutorial talk, and finish with a (self-contained) talk during Workshop II.

Recent work on randomized solutions

- J. D. Dixon (1983)
- J. Kuczyński and H. Woźniakowski (1992)
- C. H. Papadimitriou, P. Raghavan, H. Tamaki, and S. Vempala (2000)
- A. Frieze, R. Kannan, and S. Vempala (1999, 2004)
- D. Achlioptas and F. McSherry (2001)
- P. Drineas, R. Kannan, M. W. Mahoney, and S. Muthukrishnan (2006a, 2006b, 2006c, 2006d)
- S. Har-Peled (2006)
- A. Deshpande and S. Vempala (2006)
- S. Friedland, M. Kaveh, A. Niknejad, and H. Zare (2006)
- T. Sarlós (2006a, 2006b, 2006c)
- E. Liberty, P.-G. Martinsson, V. Rokhlin, F. Woolfe, and the speaker (2006, 2007)

Estimating the spectral norm, 1

Suppose we construct an approximation A to a given matrix B.

How can we determine efficiently if the approximation is good, particularly if we cannot afford to access all of the individual entries of D = A - B, but can only afford to apply D and D^* to a few vectors?

We need an algorithm for ensuring that the spectral norm of D = A - B is not too large.

We will see that applying $(D^*D)^k$ to a normalized random vector, and taking the Euclidean norm of the result, yields a decent estimate to $||D||^{2k}$, with probability approaching 1 exponentially fast as k increases.

Estimating the spectral norm, 2

Via remarkably simple calculations concerning the surface area of a band around the equator of a hypersphere, Dixon (1983) showed the following:

Define $\tilde{\omega} = \omega/||\omega||$, where ω is an $n \times 1$ vector whose entries are i.i.d. centered Gaussian random variables.

Given any $n \times n$ matrix C, we have $\mathbf{P} \{ \|C\tilde{\omega}\| < \mu \|C\| \} < 0.8 \mu \sqrt{n}$ for any positive real number $\mu < 1$.

Given any $m \times n$ matrix D and any positive integer k, substituting $C = (D^* D)^k$ yields $\mathbf{P}\left\{ \left\| (D^* D)^k \tilde{\omega} \right\|^{1/(2k)} < \mu \|D\| \right\} < 0.8 \mu^{2k} \sqrt{n}$ for any positive real number $\mu < 1$.

Estimating the spectral norm, 3

Therefore, $\|(D^*D)^k \tilde{\omega}\|^{1/(2k)}$ is not much less than $\|D\|$, with probability approaching 1 exponentially fast as k increases.

Of course, $\|(D^*D)^k \tilde{\omega}\|^{1/(2k)}$ is always less than or equal to $\|D\|$.

Thus, $\|(D^*D)^k \tilde{\omega}\|^{1/(2k)}$ gives a decent estimate of $\|D\|$ with very high probability, if k is large enough. The probability depends only on k, not on gaps between the singular values of D.

In other words, the (modified) power method with a random start provides a decent estimate of ||D|| with very high probability.

Kuczyński & Woźniakowski (1992) derived somewhat stronger estimates for the classical power and Lanczos methods; their derivations are beyond the scope of this talk.

Properties of certain random matrices, 1

Suppose that k, l, and m are integers such that 0 < k < l < m.

Suppose further that R is an $l \times m$ random matrix, either [1] consisting of i.i.d. $N(0, \frac{1}{l})$ entries, or [2] consisting of uniformly randomly selected rows of the product of an appropriately normalized discrete Fourier transform and a diagonal matrix whose diagonal entries are i.i.d., drawn uniformly from the unit circle.

Then,

$$\|R\| \lesssim \sqrt{m}.\tag{1}$$

7

Properties of certain random matrices, 2

Moreover, for any $m \times k$ matrix U whose columns are orthonormal, and real number ε such that $0 < \varepsilon < 1$,

$$\sigma_1(RU) \lesssim \sqrt{1+\varepsilon} \tag{2}$$

$$1/\sigma_k(RU) \lesssim \sqrt{1+\varepsilon}$$
 (3)

with high probability, given that l is sufficiently greater than k (meaning that, for example, $l = 10(k/\varepsilon)^2$ for a random matrix R of type [2]).

Randomized regression utilizes (2) and (3).

Randomized reduced-rank approximation utilizes (1) and (3). Also, (2) is helpful for certain theoretically interesting bounds.

Suppose that A is an $m \times n$ matrix and b is an $m \times 1$ vector, with $m \gg n$. We would like to find an $n \times 1$ vector x such that ||Ax - b|| is close to its minimal value.

Standard methods for computing such an x cost $\mathcal{O}(n^2 m)$.

Sarlós (2006) pointed out that x minimizing ||RAx - Rb|| works, where R is the random matrix of type [2] discussed previously. Because R consists of l rows of the product of an $m \times m$ discrete Fourier transform and a diagonal $m \times m$ matrix, computing RAand Rb costs $\mathcal{O}(nm \ln(l))$. In all, then, constructing RA and Rb, and computing x minimizing ||RAx - Rb|| costs $\mathcal{O}(nm \ln(l) + n^2 l)$.

 $\mathcal{O}(nm \ln(l) + n^2 l)$ can be less than $\mathcal{O}(n^2 m)$ when $m \gg n$; current theory requires $l > n^2$, while l = n + 8 works well empirically.

To show that x minimizing ||RAx - Rb|| nearly minimizes ||Ax - b||, we define U to be a matrix whose columns are an orthonormal basis of the subspace spanned by b and the columns of A, and

$$T = U((RU)^* (RU))^{-1} (RU)^*.$$
 (4)

Combining (4) and the definition of U yields that

$$TRU = U; \quad TRA = A, \quad TRb = b.$$
(5)

Recall that, if the number l of rows in R is sufficiently large, then

$$1/\sigma_k(RU) \lesssim \sqrt{1+\varepsilon},$$
 (6)

where ε is a real number such that $0 < \varepsilon < 1$. Combining (4), (6), and the fact that the columns of U are orthonormal yields

$$||T|| \lesssim \sqrt{1+\varepsilon}.$$
 (7)

We define x to be the $n \times 1$ vector minimizing ||RAx - Rb||, and y to be the $n \times 1$ vector minimizing ||Ay - b||. (5) and (7) yield

$$||Ax - b|| = ||TRAx - TRb||$$
(8)

$$\leq ||T|| ||RAx - Rb|| \tag{9}$$

$$\leq ||T|| ||R A y - R b|| \tag{10}$$

$$\lesssim \sqrt{1+\varepsilon} \| R A y - R b \|.$$
 (11)

Find vectors z and c such that

$$A y = U z, \quad b = U c. \tag{12}$$

(12) and the fact that the columns of U are orthonormal yield

$$||RAy - Rb|| = ||RUz - RUc||$$
(13)
$$\leq ||RU|| ||z - c||$$
(14)

$$= \|RU\| \|Uz - Uc\|$$
(14)
= (14)

$$= ||RU|| ||Ay - b||.$$
 (16)

Recall that, if the number l of rows in R is sufficiently large, then

$$\|RU\| \lesssim \sqrt{1+\varepsilon},\tag{17}$$

where ε is a real number such that $0 < \varepsilon < 1$. Combining (11), (16), and (17) yields that

$$\|Ax - b\| \lesssim (1 + \varepsilon) \|Ay - b\|.$$
(18)

Thus, ||Ax-b|| is nearly as small as possible with high probability, provided that the number l of rows in R is sufficiently large (where x minimizes ||RAx - Rb||).

Again, constructing RA and Rb, and computing x minimizing ||RAx - Rb|| costs $\mathcal{O}(nm \ln(l) + n^2 l)$, less than the $\mathcal{O}(n^2 m)$ needed to compute y minimizing ||Ay - b||, when $m \gg n$; current theory requires $l > n^2$, while l = n + 8 works well empirically.

We define the $m \times n$ matrix A via the formula

$$A = \sum_{k=1}^{n} 10^{-12(k-1)/(n-1)} \cdot u^{(k)} \cdot (v^{(k)})^*, \qquad (19)$$

and the $m \times 1$ vector b via the formula

$$b_{m \times 1} = 10^{-9} \cdot u^{(n+1)} + \sum_{k=1}^{n} 10^{-12(k-1)/(n-1)} \cdot u^{(k)}, \qquad (20)$$

with $u^{(1)}$, $u^{(2)}$, ..., $u^{(n)}$, $u^{(n+1)}$ being a set of orthonormal $m \times 1$ vectors, and $v^{(1)}$, $v^{(2)}$, ..., $v^{(n-1)}$, $v^{(n)}$ being an independent set of orthonormal $n \times 1$ vectors, both obtained by applying the Gram-Schmidt process to vectors whose entries are drawn i.i.d. from a pseudorandom number generator with a complex Gaussian distribution of zero mean and unit variance.

The vector x minimizing ||Ax - b|| is $x = \sum_{k=1}^{n} v^{(k)}$; for this x, $Ax - b = -10^{-9} \cdot u^{(n+1)}$, and so $||Ax - b|| = 10^{-9}$.

We note that ||A|| = 1.

We will compare the randomized algorithm with the classical pivoted "Q R" decomposition algorithm based on plane (Householder) reflections.

We define x_{fast} to be the vector minimizing $||RAx_{fast} - Rb||$.

We report the maximum value δ_{fast} of $||A x_{\text{fast}} - b||$ encountered during 300 randomized trials, and the average value t_{fast} over 300 randomized trials of the time in seconds taken to compute x_{fast} from A and b.

m	n	l	$\delta_{ ext{direct}}$	δ_{fast}
1024	8	16	.100E-08	.218E-08
2048	16	24	.100E-08	.295E-08
4096	32	40	.100E-08	.389E-08
8192	64	72	.100E-08	.476E-08
16384	128	136	.100E-08	.759E-08
32768	256	264	.100E-08	.107E-07

m	n	l	$t_{\sf direct}$	$t_{\sf fast}$	$t_{ m direct}/t_{ m fast}$
1024	8	16	.83E-03	.63E-03	1.3
2048	16	24	.52E-02	.24E-02	2.2
4096	32	40	.40E-01	.13E-01	3.1
8192	64	72	.34E-00	.56E-01	6.1
16384	128	136	.27E+01	.26E-00	10
32768	256	264	.22E+02	.15E+01	15

We performed all calculations in IEEE standard double-precision variables, whose mantissas have about one bit of precision less than 16 digits (so that the relative precision of the variables is approximately .2E-15).

We compiled the Fortran 77 code using the Lahey/Fujitsu Express v6.2 compiler, with the optimization flag --02 enabled.

We ran all computations on one core of a 1.86 GHz Intel Centrino Core Duo processor with 2 MB of L2 cache and 1 GB of RAM.

We employed a double-precision version of P. N. Swarztrauber's FFTPACK library for the fast Fourier transforms required to apply the matrix R.

Proof of the properties for type [2], 1

For a random matrix R of type [2], we have the following

Lemma. Suppose that $\delta, \varepsilon \in \mathbf{R}$, and $k, l, m \in \mathbf{Z}$, such that $\delta, \varepsilon < 1$, $\delta, \varepsilon, k, l, m > 0$, and $m > l > (1 + 1/\varepsilon)^2 k^2/\delta$. Suppose also that U is an $m \times k$ matrix whose columns are orthonormal.

Then,

$$\sigma_1(RU) \le \sqrt{1+\varepsilon} \tag{21}$$

$$1/\sigma_k(RU) \le \sqrt{1+\varepsilon} \tag{22}$$

with probability at least $1 - \delta$.

Hence, when acting from the left on the column space of $U_{m \times k}$, $R_{l \times m}$ preserves norms up to a distortion factor of $\sqrt{1 + \varepsilon}$.

Proof of the properties for type [2], 2

The lemma follows from the straightforward computation that

$$(RU)^*(RU) = \mathbf{1} + E, \qquad (23)$$

where the expectation of the sum of the squares of the entries

of the $k \times k$ matrix E is at most $k^2/l < \delta \varepsilon^2/(1 + \varepsilon)^2$; therefore,

$$\|E\| < \varepsilon/(1+\varepsilon) \tag{24}$$

with probability at least $1 - \delta$. Combining (23) and (24) yields

$$||RU||^{2} = ||\mathbf{1} + E|| \le 1 + ||E|| \le 1 + \varepsilon$$
(25)

$$\left\| \left((RU)^* (RU) \right)^{-1} \right\| = \left\| (\mathbf{1} + E)^{-1} \right\| \le \sum_{j=0}^{\infty} \|E\|^j \le 1 + \varepsilon$$
 (26)

with probability at least $1 - \delta$.

Three problems

- 1. Verifying that the spectral norm of a matrix is not meaningfully larger than desired
- 2. Linear least-squares regression (solving overdetermined systems of linear-algebraic equations in the least-squares sense)
- 3. Low-rank approximation of a matrix (including computing several of the greatest singular values and corresponding singular vectors)

We surveyed points 1 and 2 during the present tutorial talk, will start discussing point 3 with the next (self-contained) tutorial talk, and finish with a (self-contained) talk during Workshop II.