A tutorial on randomized algorithms in numerical linear algebra

Mark Tygert
Program in Applied Mathematics
Yale University

IPAM (at UCLA)
September, 2007

Three problems

1. Verifying that the spectral norm of a matrix is not meaningfully larger than desired
2. Linear least-squares regression (solving overdetermined systems of linear-algebraic equations in the least-squares sense)
3. Low-rank approximation of a matrix (including computing several of the greatest singular values and corresponding singular vectors)

We will survey points 1 and 2 during the present tutorial talk, start discussing point 3 with the next (self-contained) tutorial talk, and finish with a (self-contained) talk during Workshop II.

Recent work on randomized solutions

- J. D. Dixon (1983)
- J. Kuczyński and H. Woźniakowski (1992)
- C. H. Papadimitriou, P. Raghavan, H. Tamaki, and S. Vempala (2000)
- A. Frieze, R. Kannan, and S. Vempala $(1999,2004)$
- D. Achlioptas and F. McSherry (2001)
- P. Drineas, R. Kannan, M. W. Mahoney, and S. Muthukrishnan (2006a, 2006b, 2006c, 2006d)
- S. Har-Peled (2006)
- A. Deshpande and S. Vempala (2006)
- S. Friedland, M. Kaveh, A. Niknejad, and H. Zare (2006)
- T. Sarlós (2006a, 2006b, 2006c)
- E. Liberty, P.-G. Martinsson, V. Rokhlin, F. Woolfe, and the speaker $(2006,2007)$

Estimating the spectral norm, 1

Suppose we construct an approximation A to a given matrix B.
How can we determine efficiently if the approximation is good, particularly if we cannot afford to access all of the individual entries of $D=A-B$, but can only afford to apply D and D^{*} to a few vectors?

We need an algorithm for ensuring that the spectral norm of $D=A-B$ is not too large.

We will see that applying $\left(D^{*} D\right)^{k}$ to a normalized random vector, and taking the Euclidean norm of the result, yields a decent estimate to $\|D\|^{2 k}$, with probability approaching 1 exponentially fast as k increases.

Estimating the spectral norm, 2

Via remarkably simple calculations concerning the surface area of a band around the equator of a hypersphere, Dixon (1983) showed the following:

Define $\tilde{\omega}=\omega /\|\omega\|$, where ω is an $n \times 1$ vector whose entries are i.i.d. centered Gaussian random variables.

Given any $n \times n$ matrix C, we have $\mathbf{P}\{\|C \tilde{\omega}\|<\mu\|C\|\}<0.8 \mu \sqrt{n}$ for any positive real number $\mu<1$.

Given any $m \times n$ matrix D and any positive integer k, substituting $C=\left(D^{*} D\right)^{k}$ yields $\mathbf{P}\left\{\left\|\left(D^{*} D\right)^{k} \tilde{\omega}\right\|^{1 /(2 k)}<\mu\|D\|\right\}<0.8 \mu^{2 k} \sqrt{n}$ for any positive real number $\mu<1$.

Estimating the spectral norm, 3

Therefore, $\left\|\left(D^{*} D\right)^{k} \tilde{\omega}\right\|^{1 /(2 k)}$ is not much less than $\|D\|$, with probability approaching 1 exponentially fast as k increases.
Of course, $\left\|\left(D^{*} D\right)^{k} \tilde{\omega}\right\|^{1 /(2 k)}$ is always less than or equal to $\|D\|$. Thus, $\left\|\left(D^{*} D\right)^{k} \tilde{\omega}\right\|^{1 /(2 k)}$ gives a decent estimate of $\|D\|$ with very high probability, if k is large enough. The probability depends only on k, not on gaps between the singular values of D.

In other words, the (modified) power method with a random start provides a decent estimate of $\|D\|$ with very high probability.

Kuczyński \& Woźniakowski (1992) derived somewhat stronger estimates for the classical power and Lanczos methods; their derivations are beyond the scope of this talk.

Properties of certain random matrices, 1

Suppose that k, l, and m are integers such that $0<k<l<m$.

Suppose further that R is an $l \times m$ random matrix, either [1] consisting of i.i.d. $N\left(0, \frac{1}{l}\right)$ entries, or [2] consisting of uniformly randomly selected rows of the product of an appropriately normalized discrete Fourier transform and a diagonal matrix whose diagonal entries are i.i.d., drawn uniformly from the unit circle.

Then,

$$
\begin{equation*}
\|R\| \lesssim \sqrt{m} . \tag{1}
\end{equation*}
$$

Properties of certain random matrices, 2

Moreover, for any $m \times k$ matrix U whose columns are orthonormal, and real number ε such that $0<\varepsilon<1$,

$$
\begin{align*}
\sigma_{1}(R U) & \lesssim \sqrt{1+\varepsilon} \tag{2}\\
1 / \sigma_{k}(R U) & \lesssim \sqrt{1+\varepsilon} \tag{3}
\end{align*}
$$

with high probability, given that l is sufficiently greater than k (meaning that, for example, $l=10(k / \varepsilon)^{2}$ for a random matrix R of type [2]).

Randomized regression utilizes (2) and (3).
Randomized reduced-rank approximation utilizes (1) and (3). Also, (2) is helpful for certain theoretically interesting bounds.

Linear least-squares regression, 1

Suppose that A is an $m \times n$ matrix and b is an $m \times 1$ vector, with $m \gg n$. We would like to find an $n \times 1$ vector x such that $\|A x-b\|$ is close to its minimal value.

Standard methods for computing such an $x \operatorname{cost} \mathcal{O}\left(n^{2} m\right)$.
Sarlós (2006) pointed out that x minimizing $\|R A x-R b\|$ works, where R is the random matrix of type [2] discussed previously. Because R consists of l rows of the product of an $m \times m$ discrete Fourier transform and a diagonal $m \times m$ matrix, computing $R A$ and $R b$ costs $\mathcal{O}(n m \ln (l))$. In all, then, constructing $R A$ and $R b$, and computing x minimizing $\|R A x-R b\| \operatorname{costs} \mathcal{O}\left(n m \ln (l)+n^{2} l\right)$.
$\mathcal{O}\left(n m \ln (l)+n^{2} l\right)$ can be less than $\mathcal{O}\left(n^{2} m\right)$ when $m \gg n$; current theory requires $l>n^{2}$, while $l=n+8$ works well empirically.

Linear least-squares regression, 2

To show that x minimizing $\|R A x-R b\|$ nearly minimizes $\|A x-b\|$, we define U to be a matrix whose columns are an orthonormal basis of the subspace spanned by b and the columns of A, and

$$
\begin{equation*}
T=U\left((R U)^{*}(R U)\right)^{-1}(R U)^{*} \tag{4}
\end{equation*}
$$

Combining (4) and the definition of U yields that

$$
\begin{equation*}
T R U=U ; \quad T R A=A, \quad T R b=b . \tag{5}
\end{equation*}
$$

Recall that, if the number l of rows in R is sufficiently large, then

$$
\begin{equation*}
1 / \sigma_{k}(R U) \lesssim \sqrt{1+\varepsilon}, \tag{6}
\end{equation*}
$$

where ε is a real number such that $0<\varepsilon<1$. Combining (4), (6), and the fact that the columns of U are orthonormal yields

$$
\begin{equation*}
\|T\| \lesssim \sqrt{1+\varepsilon} \tag{7}
\end{equation*}
$$

Linear least-squares regression, 3

We define x to be the $n \times 1$ vector minimizing $\|R A x-R b\|$, and y to be the $n \times 1$ vector minimizing $\|A y-b\|$. (5) and (7) yield

$$
\begin{align*}
\|A x-b\| & =\|T R A x-T R b\| \tag{8}\\
& \leq\|T\|\|R A x-R b\| \tag{9}\\
& \leq\|T\|\|R A y-R b\| \tag{10}\\
& \lesssim \sqrt{1+\varepsilon}\|R A y-R b\| .
\end{align*}
$$

Find vectors z and c such that

$$
\begin{equation*}
A y=U z, \quad b=U c . \tag{12}
\end{equation*}
$$

(12) and the fact that the columns of U are orthonormal yield

$$
\begin{align*}
\|R A y-R b\| & =\|R U z-R U c\| \tag{13}\\
& \leq\|R U\|\|z-c\| \tag{14}\\
& =\|R U\|\|U z-U c\| \tag{15}\\
& =\|R U\| A y-b \| . \tag{16}
\end{align*}
$$

Linear least-squares regression, 4

Recall that, if the number l of rows in R is sufficiently large, then

$$
\begin{equation*}
\|R U\| \lesssim \sqrt{1+\varepsilon}, \tag{17}
\end{equation*}
$$

where ε is a real number such that $0<\varepsilon<1$. Combining (11), (16), and (17) yields that

$$
\begin{equation*}
\|A x-b\| \lesssim(1+\varepsilon)\|A y-b\| . \tag{18}
\end{equation*}
$$

Thus, $\|A x-b\|$ is nearly as small as possible with high probability, provided that the number l of rows in R is sufficiently large (where x minimizes $\|R A x-R b\|)$.

Again, constructing $R A$ and $R b$, and computing x minimizing $\|R A x-R b\|$ costs $\mathcal{O}\left(n m \ln (l)+n^{2} l\right)$, less than the $\mathcal{O}\left(n^{2} m\right)$ needed to compute y minimizing $\|A y-b\|$, when $m \gg n$; current theory requires $l>n^{2}$, while $l=n+8$ works well empirically.

Empirical performance, 1

We define the $m \times n$ matrix A via the formula

$$
\begin{equation*}
A=\sum_{k=1}^{n} 10^{-12(k-1) /(n-1)} \cdot u^{(k)} \cdot\left(v^{(k)}\right)^{*} \tag{19}
\end{equation*}
$$

and the $m \times 1$ vector b via the formula

$$
\begin{equation*}
b_{m \times 1}=10^{-9} \cdot u^{(n+1)}+\sum_{k=1}^{n} 10^{-12(k-1) /(n-1)} \cdot u^{(k)} \tag{20}
\end{equation*}
$$

with $u^{(1)}, u^{(2)}, \ldots, u^{(n)}, u^{(n+1)}$ being a set of orthonormal $m \times 1$ vectors, and $v^{(1)}, v^{(2)}, \ldots, v^{(n-1)}, v^{(n)}$ being an independent set of orthonormal $n \times 1$ vectors, both obtained by applying the Gram-Schmidt process to vectors whose entries are drawn i.i.d. from a pseudorandom number generator with a complex Gaussian distribution of zero mean and unit variance.

Empirical performance, 2

The vector x minimizing $\|A x-b\|$ is $x=\sum_{k=1}^{n} v^{(k)}$; for this x, $A x-b=-10^{-9} \cdot u^{(n+1)}$, and so $\|A x-b\|=10^{-9}$.

We note that $\|A\|=1$.
We will compare the randomized algorithm with the classical pivoted " $Q R$ " decomposition algorithm based on plane (Householder) reflections.

We define $x_{\text {fast }}$ to be the vector minimizing $\left\|R A x_{\text {fast }}-R b\right\|$.
We report the maximum value $\delta_{\text {fast }}$ of $\left\|A x_{\text {fast }}-b\right\|$ encountered during 300 randomized trials, and the average value $t_{\text {fast }}$ over 300 randomized trials of the time in seconds taken to compute $x_{\text {fast }}$ from A and b.

Empirical performance, 3

m	n	l	$\delta_{\text {direct }}$	$\delta_{\text {fast }}$
1024	8	16	$.100 \mathrm{E}-08$	$.218 \mathrm{E}-08$
2048	16	24	$.100 \mathrm{E}-08$	$.295 \mathrm{E}-08$
4096	32	40	$.100 \mathrm{E}-08$	$.389 \mathrm{E}-08$
8192	64	72	$.100 \mathrm{E}-08$	$.476 \mathrm{E}-08$
16384	128	136	$.100 \mathrm{E}-08$	$.759 \mathrm{E}-08$
32768	256	264	$.100 \mathrm{E}-08$	$.107 \mathrm{E}-07$

m	n	l	$t_{\text {direct }}$	$t_{\text {fast }}$	$t_{\text {direct }} / t_{\text {fast }}$
1024	8	16	$.83 \mathrm{E}-03$	$.63 \mathrm{E}-03$	1.3
2048	16	24	$.52 \mathrm{E}-02$	$.24 \mathrm{E}-02$	2.2
4096	32	40	$.40 \mathrm{E}-01$	$.13 \mathrm{E}-01$	3.1
8192	64	72	$.34 \mathrm{E}-00$	$.56 \mathrm{E}-01$	6.1
16384	128	136	$.27 \mathrm{E}+01$	$.26 \mathrm{E}-00$	10
32768	256	264	$.22 \mathrm{E}+02$	$.15 \mathrm{E}+01$	15

Empirical performance, 4

We performed all calculations in IEEE standard double-precision variables, whose mantissas have about one bit of precision less than 16 digits (so that the relative precision of the variables is approximately .2E-15).

We compiled the Fortran 77 code using the Lahey/Fujitsu Express v6.2 compiler, with the optimization flag --o2 enabled.

We ran all computations on one core of a 1.86 GHz Intel Centrino Core Duo processor with 2 MB of L2 cache and 1 GB of RAM.

We employed a double-precision version of P. N. Swarztrauber's FFTPACK library for the fast Fourier transforms required to apply the matrix R.

Proof of the properties for type [2], 1

For a random matrix R of type [2], we have the following
Lemma. Suppose that $\delta, \varepsilon \in \mathbf{R}$, and $k, l, m \in \mathbf{Z}$, such that $\delta, \varepsilon<1, \delta, \varepsilon, k, l, m>0$, and $m>l>(1+1 / \varepsilon)^{2} k^{2} / \delta$. Suppose also that U is an $m \times k$ matrix whose columns are orthonormal.

Then,

$$
\begin{gather*}
\sigma_{1}(R U) \leq \sqrt{1+\varepsilon} \tag{21}\\
1 / \sigma_{k}(R U) \leq \sqrt{1+\varepsilon} \tag{22}
\end{gather*}
$$

with probability at least $1-\delta$.
Hence, when acting from the left on the column space of $U_{m \times k}$, $R_{l \times m}$ preserves norms up to a distortion factor of $\sqrt{1+\varepsilon}$.

Proof of the properties for type [2], 2

The lemma follows from the straightforward computation that

$$
\begin{equation*}
(R U)^{*}(R U)=\mathbf{1}+E, \tag{23}
\end{equation*}
$$

where the expectation of the sum of the squares of the entries of the $k \times k$ matrix E is at most $k^{2} / l<\delta \varepsilon^{2} /(1+\varepsilon)^{2}$; therefore,

$$
\begin{equation*}
\|E\|<\varepsilon /(1+\varepsilon) \tag{24}
\end{equation*}
$$

with probability at least $1-\delta$. Combining (23) and (24) yields

$$
\begin{gather*}
\|R U\|^{2}=\|\mathbf{1}+E\| \leq 1+\|E\| \leq 1+\varepsilon \tag{25}\\
\left\|\left((R U)^{*}(R U)\right)^{-1}\right\|=\left\|(\mathbf{1}+E)^{-1}\right\| \leq \sum_{j=0}^{\infty}\|E\|^{j} \leq 1+\varepsilon \tag{26}
\end{gather*}
$$

with probability at least $1-\delta$.

Three problems

1. Verifying that the spectral norm of a matrix is not meaningfully larger than desired
2. Linear least-squares regression (solving overdetermined systems of linear-algebraic equations in the least-squares sense)
3. Low-rank approximation of a matrix (including computing several of the greatest singular values and corresponding singular vectors)

We surveyed points 1 and 2 during the present tutorial talk, will start discussing point 3 with the next (self-contained) tutorial talk, and finish with a (self-contained) talk during Workshop II.

