Towards fast and stable inversion algorithms for the FMM

IPAM Tutorial

S. Chandrasekaran¹ P. Dewilde² M. Gu³

¹University of California, Santa Barbara shiv@ece.ucsb.edu

²University of California, Berkeley mgu@math.berkeley.edu

³TU Delft, Netherlands p.dewilde@ewi.tudelft.nl

September 11, 2007

Overview

- Matrix representation of FMM matrices
- Recursions of FMM
- Signal flow-graph representation of FMM
- Sparse-matrix representation of FMM matrices
- ► Fast, stable solvers for FMM matrices
- Towards super-fast solvers for FMM matrices
 - Analysis of micro-structure of inverses of FMM matrices
 - ► A fast algebra approach: open problems

Greengard & Rokhlin's Fast Multi-pole Method

- Many matrices that arise in applications can be covered by sub-matrices of low numerical rank.
- ► This structure can be captured rapidly (without explicitly forming all the matrix entries) in many cases.
- ► The structure can be exploited to speed up matrix × vector multiplication.
- ► The structure can be exploited to speed up matrix⁻¹ × vector multiplication.
- (with Starr) they showed that d-dimensional discrete integral operator equations can be solved in $\mathcal{O}\left(n^{\frac{1+d}{2}}\right)$ flops.