
Dictionary Models for Haplotype

Analysis

Kenneth Lange
Kristin Ayers

Chiara Sabatti

UCLA Departments of Biomathematics,
Human Genetics, and Statistics

January, 2006



Dictionary Models for DNA Sequence Data

1. Proposed by Bussemaker et al (2000) PNAS 97:11096-10100

2. A DNA sequence is constructed by concatenating words cho-

sen randomly from a predefined dictionary.

3. The sequence includes no spaces or punctuation marks.

4. The DNA dictionary consists of words and their probabilities.

5. The 4 bases A, T, C, and G are viewed as words of length

1. These trivial words supply background variation.
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Our Extensions to the Dictionary Model

1. We extended the model to permit alternative spellings and

Bayesian priors.

2. Showed how to correctly compute likelihoods under the model.

3. Derived algorithms for maximum likelihood and maximum a

posteriori estimation of parameters.

4. Provided an algorithm for computing posterior probabilities

of motif occurrence.

5. Implemented the algorithms in code and applied them to E.

Coli sequence and microarray data.
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Successes of the Motif Model

1. In collaboration with Lars Rohlin and James Liao of UCLA,

we were able to find many known binding sites in E. Coli and

predict new ones.

2. We were able to model spelling variations in a systematic

way.

3. Our worst results occur when motifs overlap.

4. Nonetheless, we do better than Robinson et al. (1998), who

rely on similarity scores.

5. The next slide gives some statistics for known motifs using

a posterior probablity cutoff of 0.5 for motif calling.
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Binding recovered missed imputed
Domain sites sites sites
araC 6 0 6
arcA 8 5 28
argR 15 2 24
cpxR 11 1 29
creB 8 0 9
crp 36 13 131
cspA 4 0 4
cytR 2 3 7
dnaA 7 1 41
fadR 7 0 8
fis 8 7 36
fliA 12 0 14
fnr 12 0 14
fruR 12 0 18
fur 8 1 18
galR 7 0 10
gcvA 4 0 4
glpR 7 6 20
hipB 2 2 2
lexA 19 0 24
malT 4 6 6

Binding recovered missed imputed
Domain sites sites sites
metJ 6 3 8
metR 5 3 10
nagC 6 0 9
narL 7 3 9
narP 8 0 4
ntrC 4 1 4
ompR 5 4 28
oxyR 4 0 4
phoB 10 2 12
purR 21 1 25
rpoH2 6 1 6
rpoH3 8 0 8
rpoN 6 1 11
rpoS17 5 10 9
rpoS18 4 3 8
soxS 11 6 22
torR 3 1 5
trpR 4 0 4
tus 5 0 5
tyrR 13 4 19
Total 340 90 663
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Application to Microarray Data

1. We used the motif model to explain the gene expression data

of Courcelle (2002), who exposed E. Coli to UV light. This

is known to affect the genes regulated by LexA.

2. We regressed the log change in gene expression against the

expected number of binding sites in the upstream region of

each gene, for all regulatory proteins in our dictionary.

3. The explanatory variable that gives the most significant result

is LexA.

4. Similar work appears in (Bussemaker et al, Nat Gen 2001;

Conlon et al, PNAS 2003; Keles et al, Bioinformatics 2002).
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Some Predictors for the UV Experiment

Estimate Std. Err t value Pr(>|t|)
Intercept -2.021e-02 7.223e-03 -2.798 0.00518 **
malT 2.201e-01 3.320e-01 0.663 0.50737
:

cspA 5.521e-02 1.176e-01 0.469 0.63889
lexA 3.841e-01 4.572e-02 8.401 < 2e-16 ***
fnr 3.284e-02 7.832e-02 0.419 0.67501
:
hipB 4.159e-01 2.494e-01 1.668 0.09552 .
fis 1.428e-01 3.312e-02 4.313 1.67e-05 ***
oxyR 4.259e-02 2.878e-01 0.148 0.88236
:
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Dictionary Models for Haplotypes

1. There is limited haplotype diversity over short chromosome

segments in humans.

2. Extreme linkage disequilibrium (LD) prevails in many cases.

3. Just a few tagging markers are often sufficient to identify a

haplotype.

4. Daly et al (Science, 2001) argue that haplotypes break along

block boundaries.

5. In fact, haplotypes often straddle block boundaries.

6. We need phenomenological models as well as mechanistic

models to interpret results. Dictionary models fall in the

former category.
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Haplotype Blocks

1. Some combinations of marker alleles almost always occur

together. This kind of variation is best described by a limited

collection of haplotypes.

2. Block boundaries may correspond to recombination hotspots.

3. Even without recourse to recombination hotspots, genetic

drift and population bottlenecks can partially explain haplo-

type uniformity.

4. Consecutive blocks are a parsimonious way of describing the

genome even if they do not reliably reflect human evolution-

ary history.

5. Many algorithms for identifying blocks of markers have been

suggested, implemented, and refined.
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Reasons for Modeling Haplotype Blocks

1. To understand the forces behind the formation of blocks.

2. To predict the extent of LD in different regions of the genome.

3. To compare different populations and understand their de-

mographic histories.

4. To take advantage of limited haplotype diversity in gene map-

ping and in the selection of tagging SNPs.

5. To inform genotype calling and permit construction of hap-

lotypes in the absence of family data.
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Dictionary Models for Haplotypes

1. Haplotyping is similar to parsing DNA sequence data.

2. The alphabets from which letters are drawn vary from marker

to marker.

3. Sharp block boundaries are unnecessary.

4. The observed data usually consist of multimarker genotypes;

the implied phase ambiguities complicate haplotyping.

5. Phase can be deduced from relatives or by typing single iso-

lated chromosomes.
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Haplotype Segment Dictionary

1. Each haplotype sequence is constructed by random concate-

nation of haplotypes segments.

2. Genetically, a haplotype segment represents an ancestral com-

bination of alleles that are almost always co-transmitted.

3. In contrast to a word in a DNA motif dictionary, a haplotype

segment always spans the same marker segment.

4. The haplotype segments spanning a given marker segment

constitute a haplotype block. The marker segments corre-

sponding to different blocks can overlap.

5. Haplotypes may have misspellings due to mutation and geno-

typing errors. If a marker within a conserved haplotype seg-

ment is polymorphic, then it is probably best to replace the

segment by two different segments.
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Notation

1. A marker segment consists of a set of consecutive indices

[i : j] = (i, i + 1, . . . , j − 1, j).

2. The sequence of alleles of a haplotype h on the marker seg-

ment [i : j] is denoted h[i:j].

3. A haplotype block B[i:j] is assigned probability q[i:j], with the

implied constraint
∑

j≥i q[i:j] = 1.

4. A haplotype segment s ∈ B[i:j] is assigned conditional proba-

bility rs, with the implied constraint
∑

s∈B[i:j]
rs = 1.

5. A partition π divides m markers into consecutive marker seg-

ments π1 through π|π|. Segment π1 begins with marker 1,

and segment π|π| ends with marker m. If segment πi ends

with marker j, then segment πi+1 starts with marker j + 1.
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Forward Likelihood Algorithm for a Haploytpe

1. Let Ei be the event that a random haplotype H of length m

is constructed with a haplotype segment ending at marker i.

2. The forward algorithm computes fi = Pr(H[1:i] = h[1:i], Ei).

3. Starting with f0 = 1, we update these joint probabilities by

fi =
min{d,i}∑

k=1

fi−kq[i−k+1:i]rh[i−k+1:i]
,

where d is the maximum length of a haplotype segment.

4. fm is then the probability that H = h.
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Backward Likelihood Algorithm for a Haploytpe

1. Let Ei be the event that a random haplotype H of length m

is constructed with a haplotype segment ending at marker i.

2. We compute bi = Pr(H[i:m] = h[i:m] | Ei−1) in the backward

algorithm.

3. Starting with bm+1 = 1, we update these conditional proba-

bilities by

bi =
min{d,m−i+1}∑

k=1

q[i:i+k−1]rh[i:i+k−1]
bi+k,

where d is the maximum length of a haplotype segment.

4. b1 is then the probability that H = h.
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Incorporation of Genotyping Error

1. The forward and backward algorithms just given do not in-

corporate genotyping error.

2. To handle such errors, we introduce a penetrance function

φ(hk | sk), which is the probability of the observed allele hk

given the true allele sk at marker k.

3. Under the uniform error model, φ(hk | sk) equals 1 − εk (a

match) or εk (a mismatch).

4. In the forward and backward algorithms, the factor rh[i:j]
is

replaced by

p(h[i:j]) =
∑

s∈B[i:j]

rs

j∏

k=i

φ(hk | sk)

assuming independent genotyping errors.
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Multimarker Genotypes rather than Haplotypes

1. Let Sg denote the set of observed haplotype pairs (hm, hp)

consistent with the observed multimarker genotype g. Here

hm is a maternal haplotype and hp a paternal haplotype.

2. The likelihood of g is

Pr(G = g) =
∑

(hm,hp)∈Sg

Pr(Hm = hm)Pr(Hp = hp).

3. The set Sg contains 2n elements if Sg has n heterozygous

genotypes.

4. When parents are typed, some heterozygous genotypes can

be resolved. With codominant alleles, no genotyping error,

and both parents typed, a marker has a probability of at

most 1
8 of presenting a phase ambiguity. If only one parent

is typed, this increases to at most 1
4.

21



EM Algorithms for Parameter Estimation

1. Each entry of the parameter vector θ = (q, r, ε) is a success

probability for a hidden multinomial trial.

2. If N equals the random number of trials for component i and

Ni the number of successes over these trials, then the EM

update for θi is

θn+1
i =

E(Ni | obs, θn)

E(N | obs, θn)
.

3. The outcome vectors fi and bi of the forward and backward

algorithms furnish the raw material for computing these con-

ditional expectations. Sandwich formulas apply.

4. Maximum a posteriori estimation can be implemented by triv-

ial modification of the EM updates if we impose independent

Dirichlet priors on the hidden multinomial trials.
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Dictionary Construction

1. The inverse problem of constructing a dictionary from ob-

served haplotype data is much harder than parameter esti-

mation.

2. The minimum description length (MDL) approach strikes a

balance between completeness and parsimony.

3. The MDL approach chooses the dictionary that minimizes

the sum of the negative loglikelihood and penalty terms re-

flecting the complexity of the dictionary.

4. MDL penalizes (a) the number of parameters, (b) the size

of each haplotype block, and (c) the complexity of the hap-

lotype segments in each haplotype block.
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Heuristics of Growing and Pruning

1. We start with a fairly large dictionary assembled from short to

medium-length haplotype segments that are over represented

in the data. Any method of defining rigid block boundaries

will give such a dictionary.

2. In a growing phase, we check whether the concatenation of

two adjacent haplotype segments is over represented in the

data. If so, the concatenated segment is added.

3. In a pruning stage, we rank blocks by their apparent usage

probabilities in the data. Seldom used blocks are eliminated

by a bisection strategy based on MDL.

4. Pruning can also drop redundant haplotype segments such

as those used in adding concatenated segments.

5. Growing and pruning are alternated until no further progress

is made.
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Toy Example of Dictionary Construction

1. Using 400 fully-phased chromosomes generated randomly with-

out typing error, we were able to perfectly reconstruct the

toy dictionary shown earlier involving 22 SNPs and 10 non-

trivial haplotype segments. Part (a) of the next figure shows

the numerical details of the original dictionary. Haplotype

segments of length 1 are omitted for clarity.

2. When we introduce a 5% error rate and include 5% miss-

ing data in generating the 400 chromosomes, we get the

reconstruction show in part (b) of the next figure.

3. Now reconstruction is imperfect because of confusing block

overlap at SNPs 11 and 12.

4. Nonetheless, the reconstruction preserves major details.
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Dictionary Construction of Daly et al. Data

1. The Daly et al. data set involves 103 SNPs. Based on 129

fully-phased multimarker genotypes, we reconstructed two

dictionaries, one with sharp block boundaries and one with

overlapping boundaries.

2. In the next figure, the two SNP alleles are colored red and

blue. The color intensity of a haplotype segment is pro-

portional to the probability of its appearance on a random

chromosome.

3. The MDL criterion overwhelmingly favors the overlapping

dictionary.

4. This dictionary suggests a phylogeny for some of the haplo-

type segments. For example, the haplotype segment labeled

(c) can be interpreted as ancestral to the segments indicated

with an asterisk (*).
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Non overlapping haplotypes

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78 81 84 87 90 93 96 99 103

(1)
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Reconstructed haplotypes

(a)

(b)
(b1)

(c)

*
*

*
1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78 81 84 87 90 93 96 99 103
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Application to Haplotyping and Genotype Calling

1. The dictionary model can be used to haplotype isolated in-

dividuals.

2. Haplotyping works best when block boundaries are not sharp.

With sharp boundaries, the two haplotype segments within

each block may be well determined, but it is impossible to

decide which is maternal and which is paternal. The overall

phase uncertainty increases geometrically with the number

of blocks. Boundary straddling alleviates this problem.

3. Because of the number of possible haplotype pairs, it is

preferable to explore haplotype-pair space by MCMC meth-

ods.

4. In an MCMC run, the state is a pair of true haplotypes,

not a complete decomposition of two true haplotypes into

haplotype segments. This makes for a smaller state space.
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Typing Error at the Genotype Level

1. A multimarker genotype g is generated by a maternal haplo-

type hm plus a paternal haplotype hp.

2. Genotyping error can be incorporated at the level of the con-

ditional probability Pr (G = g | Hm

Hp = hm

hp ).

3. Under a product multinomial model,

Pr

(
G = g |

Hm

Hp
=

hm

hp

)
=

m∏

k=1

Pr

(
Gk = g1

k/g2
k |

Hm
k

H
p
k

=
hm

k

h
p
k

)

=
m∏

k=1

[φ(g1
k | hm

k )φ(g2
k | h

p
k)

+1{g1
k 6=g2

k}
φ(g2

k | hm
k )φ(g1

k | h
p
k)],

where φ(gj
k | hi

k) is the probability of calling allele g
j
k given

the true allele hi
k. Under the uniform error model, φ(gj

k | hi
k)

equals 1 − εk (a match) or εk (a mismatch).
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MCMC Steps

1. In executing an MCMC run, we alternative two kinds of steps.

2. In a Gibbs step, we choose a random marker k and replace

an ordered genotype
hm

k
h

p
k

at this marker by a random ordered

genotype in proportion to its posterior probability.

3. In a Metropolis swap, we choose a random marker k and

swap the terminal portions of the haplotype pair hm

hp from

this marker onward. This kind of move is accepted with the

usual Metropolis probability.

4. The two kinds of moves provide for local and global rear-

rangements of the existing state.

5. Both moves are quick to execute because it is easy to com-

pute the three probabilities Pr(Hm = hm), Pr(Hp = hp), and

Pr (G = g | Hm

Hp = hm

hp ).
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Running the Chain

1. After a burnin, we run the chain for 106 steps and sample

every 100 steps.

2. We record the ordered and unordered genotypes at each

marker. The proportion of time each unordered genotype

occurs provides the posterior probability of that genotype.

These posterior probabilities help in spotting poor genotype

calls, particularly when SNPs redundantly define haplotype

segments.

3. We record the proportion of time that each unordered pair of

haplotypes occur. This is the raw material for haplotyping.

4. If the ordered genotype for a marker is taken as given, say on

the basis of evidence from parents, then this marker is not

visited or revised in either the Gibbs resampling or Metropolis

swaps.
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LOCUS TRUE HAPLO- OBSERVED
# TYPE PAIR GENOTYPE

————————————————————————-
1 2 1 1 - 2
2 2 1 2 - 1
3 2 1 2 - 1
4 2 1 1 - 2
5 2 1 1 - 2
6 1 2 2 - 1
7 1 2 2 - 1
8 1 2 1 - 2
9 1 2 1 - 2

10 1 2 2 - 1
11 2 1 2 - 1
12 2 1 2 - 1
13 1 2 2 - 1
14 1 2 1 - 2
15 1 2 1 - 2
16 1 2 2 - 1
17 1 2 2 - 1
18 1 2 2 - 1
19 1 2 0 - 0
20 1 2 1 - 2
21 1 2 2 - 2
22 1 2 2 - 1
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Pair 1 Pair 2 Pair 3 Pair 4
(.1883) (.1571) (.1791) (.1564) Posterior Probabilities

————————————————————————-
1 2 1 2 1 2 1 2
1 2 1 2 1 2 1 2
1 2 1 2 1 2 1 2
1 2 1 2 1 2 1 2
1 2 1 2 1 2 1 2
2 1 2 1 2 1 2 1
2 1 2 1 2 1 2 1
2 1 2 1 2 1 2 1
2 1 2 1 2 1 2 1
2 1 2 1 2 1 2 1
1 2 1 2 1 2 1 2
1 2 1 2 1 2 1 2
1 2 1 2 2 1 2 1
1 2 1 2 2 1 2 1
1 2 1 2 2 1 2 1
1 2 1 2 2 1 2 1
1 2 1 2 2 1 2 1
1 2 1 2 2 1 2 1
1 2 1 2 2 1 2 1
1 2 1 2 2 1 2 1
1 2 2 2 2 1 2 2
1 2 1 2 2 1 2 1
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Expected Copies Employed for a Haplotype Segment

1. Partial haplotype information is better than none.

2. We compute the expected number of copies of each nontriv-

ial haplotype segment s in an observed multimarker genotype

g. This done by taking the MCMC time average of the sum

E(Nm
s | Hm = hm) + E(Np

s | Hp = hp), where Nm
s and N

p
s are

random indicators of whether s occurs in the maternal and

paternal haplotypes hm and hp.

3. At a recorded epoch of the chain, either hm is inconsistent

with s ∈ B[i:j] or

E(Nm
s | Hm = hm) =

fi−1q[i:j]rsbj+1

Pr(Hm = hm)
.

is readily computed as a byproduct of the forward and back-

ward recurrences.
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