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What is Data Mining?

�Search for Valuable Information in Large 
Volumes of Data.

�Draws ideas from machine learning/AI, pattern 
recognition, statistics, database systems, and 
data visualization.

�Traditional Techniques may be unsuitable
�Enormity of data
�High Dimensionality of data
�Heterogeneous, Distributed nature of data
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Why Mine Data? 
Commercial Viewpoints...

�Lots of data is being collected and 
warehoused.

�Computing has become affordable.
�Competitive Pressure is Strong 

�Provide better, customized services for an 
edge.

�Information is becoming product in its own 
right.
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Why Mine Data?
Scientific Viewpoint...

� Data collected and stored at enormous speeds 
(Gbyte/hour)
�remote sensor on a satellite
�telescope scanning the skies
�microarrays generating gene expression data
�scientific simulations generating terabytes of data

� Traditional techniques are infeasible for raw data
� Data mining for data reduction..

�cataloging, classifying, segmenting data
�Helps scientists in Hypothesis Formation
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Data Mining Tasks

�Prediction Methods
�Use some variables to predict unknown or future 

values of other variables.
Examples: Classification, Regression, Deviation detection.

�Description Methods
�Find human-interpretable patterns that describe the 

data.
Examples: Clustering, Associations, Classification.

From [Fayyad, et.al.] Advances in Knowledge Discovery and Data Mining, 1996



IPAM Tutorial-January 2002-Vipin Kumar 6

Association Rule 
Discovery: Definition

�Given a set of records each of which contain 
some number of items from a given collection;
�Produce dependency rules which will predict 

occurrence of an item based on occurrences of other 
items.

TID Items

1 Bread, Coke, Milk
2 Beer, Bread
3 Beer, Coke, Diaper, Milk
4 Beer, Bread, Diaper, Milk
5 Coke, Diaper, Milk

Rules Discovered:
{Milk} --> {Coke}
{Diaper, Milk} --> {Beer}

Rules Discovered:
{Milk} --> {Coke}
{Diaper, Milk} --> {Beer}
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Association Rules:
Support and Confidence

TID Items

1 Bread, Milk
2 Beer, Diaper, Bread, Eggs
3 Beer, Coke, Diaper, Milk
4 Beer, Bread, Diaper, Milk
5 Coke, Bread, Diaper, Milk
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Handling Exponential Complexity

�Given n transactions and m different items:
�number of possible association rules: 
�computation complexity:

�Systematic search for all patterns, based on 
support constraint [Agarwal & Srikant]:
�If {A,B} has support at least �, then both A and B have 

support at least ��
�If either A or B has support less than �, then {A,B} has 

support less than �.
�Use patterns of n-1 items to find patterns of n items.

)2( 1�mmO
)2( mnmO
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Apriori Principle

�Collect single item counts. Find frequent items.
�Find candidate pairs, count them => frequent 

pairs of items.
�Find candidate triplets, count them => frequent 

triplets of items, And so on...
�Guiding Principle: Every subset of a frequent 

itemset has to be frequent.
�Used for pruning many  candidates.
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Illustrating Apriori Principle

Item Count
Bread 4
Coke 2
Milk 4
Beer 3
Diaper 4
Eggs 1

Itemset Count
{Bread,Milk} 3
{Bread,Beer} 2
{Bread,Diaper} 3
{Milk,Beer} 2
{Milk,Diaper} 3
{Beer,Diaper} 3

Items (1-itemsets)

Pairs (2-itemsets)

Triplets (3-itemsets)
Minimum Support = 3

Itemset Count 
{Bread,Milk,Diaper} 3 
 

If every subset is considered, 
6C1 + 6C2 + 6C3 = 41

With support-based pruning,
6 + 6 + 1 = 13 
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Apriori Algorithm

F1 = {frequent 1-item sets};
k = 2;
while( Fk-1 is not empty ) {

Ck = Apriori_generate( Fk-1 );
for all transactions t in T {

Subset( Ck, t );
}
Fk = { c in Ck s.t. c.count >= minimum_support};

}
Answer = union of all sets Fk;
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Association Rule Discovery: 
Apriori_generate

Apriori_generate( F(k-1) ) {
join Fk-1 with Fk-1  such that,
    c1 = (i1 , i2 , .. , ik-1) and c2 = (j1 , j2 , .. , jk-1) join together if
             ip = jp for 1 <= p <= k-1,
and then new candidate, c, has a form
    c = (i1,i2,..,ik-1, jk-1).
c is then added to a hash-tree structure.

}
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Counting Candidates

�Frequent Itemsets are found by counting 
candidates.

�Simple way: 
�Search for each candidate in each transaction.

Expensive!!!

Transactions
Candidates

MN
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Association Rule Discovery: 
Hash tree for fast access.

Candidate Hash TreeHash Function

1,4,7

2,5,8

3,6,9

1 5 9

1 4 5 1 3 6
3 4 5 3 6 7

3 6 8
3 5 6
3 5 7
6 8 9

2 3 4
5 6 7

1 2 4
4 5 7

1 2 5
4 5 8
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Association Rule Discovery: 
Subset Operation

1,4,7

2,5,8

3,6,9

Hash Function1 2 3 5 6 transaction

1 5 9

1 4 5 1 3 6
3 4 5 3 6 7

3 6 8
3 5 6
3 5 7
6 8 9

2 3 4
5 6 7

1 2 4
4 5 7

1 2 5
4 5 8

1 + 2 3 5 6 3 5 62 +

5 63 +
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Association Rule Discovery: 
Subset Operation (contd.)

1,4,7

2,5,8

3,6,9

Hash Function1 2 3 5 6 transaction

1 5 9

1 4 5 1 3 6
3 4 5 3 6 7

3 6 8
3 5 6
3 5 7
6 8 9

2 3 4
5 6 7

1 2 4
4 5 7

1 2 5
4 5 8

3 5 61 2 +

5 61 3 +

61 5 +

3 5 62 +

5 63 +

1 + 2 3 5 6
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Discovering Sequential 
Associations

Given:
A set of objects with associated event occurrences.

O b je c t E ve n t S e q u en c e s  

1  (A , B ) �  (C ) 

2  (B )  �    (C ) �  (D ) 

3  (A ) �  (C D ) 

4  (A ) �  (A ) �  (C ) 
10 
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Sequential Pattern 
Discovery: Examples

� In telecommunications alarm logs,
�(Inverter_Problem  Excessive_Line_Current) 

(Rectifier_Alarm) --> (Fire_Alarm)

� In point-of-sale transaction sequences,
�Computer Bookstore:  

(Intro_To_Visual_C)  (C++_Primer) --> 
(Perl_for_dummies,Tcl_Tk)

�Athletic Apparel Store: 
(Shoes) (Racket, Racketball) --> (Sports_Jacket)
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Discovery of Sequential 
Patterns : Complexity

� Much higher computational complexity than 
association rule discovery.
�O(mk 2k-1) number of possible sequential patterns having k

events, where m is the total number of possible events.

� Time constraints offer some pruning. Further use of 
support based pruning contains complexity.
�A subsequence of a sequence occurs at least as many times as the

sequence.
�A sequence has no more occurrences than any of its 

subsequences.
�Build sequences in increasing number of events. [GSP algorithm by 

Agarwal & Srikant]
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Classification: Definition

�Given a collection of records (training set )
�Each record contains a set of attributes, one of the attributes 

is the class.

�Find a model for class attribute as a function 
of the values of other attributes.

�Goal: previously unseen records should be 
assigned a class as accurately as possible.
�A test set is used to determine the accuracy of the model. 

Usually, the given data set is divided into training and test 
sets, with training set used to build the model and test set 
used to validate it.
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Classification Example

Tid Refund Marital
Status

Taxable
Income Cheat

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

Refund Marital
Status

Taxable
Income Cheat

No Single 75K ?

Yes Married 50K ?

No Married 150K ?

Yes Divorced 90K ?

No Single 40K ?

No Married 80K ?
10

Test
Set

Training 
Set

Model
Learn 

Classifier

categori

categori

contin
uo

class
cal

cal us
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Classifying Galaxies Courtsey: http://aps.umn.edu

Early

Intermediate

Late

Class: 
• Stages of Formation

Attributes:
• Image features, 
• Characteristics of light 

waves received, etc.

Data Size: 
• 72 million stars, 20 million galaxies
• Object Catalog: 9 GB
• Image Database: 150 GB
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Classification Approaches

� Decision Tree based Methods
� Rule-based Methods
� Memory based reasoning
� Neural Networks
� Genetic Algorithms
� Bayesian Networks
� Support Vector Machines
� Meta Algorithms

• Boosting
• Bagging
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Decision Tree Based 
Classification

�Decision tree models are better suited for data 
mining:
�Inexpensive to construct
�Easy to Interpret
�Easy to integrate with database systems
�Comparable or better accuracy in many applications
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Example Decision Tree

Tid Refund Marital
Status

Taxable
Income Cheat

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

categori

categori

contin
uo

class
cal

cal us

No

Splitting Attributes

YES

> 80K

NO

< 80K

Married
NO

Yes
Refund

MarSt
Single, Divorced

TaxInc NO
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Decision Tree Algorithms

�Many Algorithms:
�Hunt’s Algorithm (one of the earliest).
�CART
�ID3, C4.5
�SLIQ,SPRINT

�General Structure:
�Tree Induction
�Tree Pruning



IPAM Tutorial-January 2002-Vipin Kumar 27

Hunt’s Method
�An Example:

�Attributes: Refund (Yes, No), Marital Status (Single, Married, 
Divorced), Taxable Income (Continuous)

�Class: Cheat, Don’t Cheat

Refund

Don’t 
Cheat

Don’t 
Cheat

Yes No
Refund

Don’t 
Cheat

Yes No

Marital
Status

Don’t 
Cheat

Cheat

Single,
Divorced Married

Refund

Don’t 
Cheat

Yes No

Marital
Status

Don’t 
Cheat

Cheat

Single,
Divorced Married

Taxable
Income

Don’t 
Cheat

< 80K >= 80KDon’t 
Cheat
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Tree Induction

�Greedy strategy.
�Choose to split records based on an attribute 

that optimizes the splitting criterion.

�Two phases at each node:
�Split Determining Phase:

�How to Split a Given Attribute? 
�Which attribute to split on? Use Splitting Criterion.

�Splitting Phase: 
�Split the records into children.
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Splitting Based on 
Categorical Attributes
� Each partition has a subset of values signifying it.
� Simple method: Use as many partitions as distinct 

values. 

� Complex method: Two partitions. Each partitioning 
divides values into two subsets. Need to find optimal 
partitioning.

CarType
Family

Sports
Luxury

CarType
{Sports,Luxury} {Family}

CarType
{Family,Luxury} {Sports}OR



IPAM Tutorial-January 2002-Vipin Kumar 30

Splitting Based on 
Continuous Attributes

�Different ways of handling
�Static: Apriori Discretization to form a categorical 

attribute
�may not be desirable in many situations

�Dynamic: Make decisions as algorithm proceeds
�complex but more powerful and flexible in approximating 

true dependency
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Splitting Criterion: GINI

�Gini Index:

(NOTE: p( j | t) is the relative frequency of class j at node t).

�Measures impurity of a node. 
�Maximum (1 - 1/nc) when records are equally distributed 

among all classes, implying least interesting information
�Minimum (0.0) when all records belong to one class, 

implying most interesting information

���

j
tjptGINI 2)]|([1)(

C1 0
C2 6

Gini=0.000

C1 1
C2 5

Gini=0.278

C1 2
C2 4

Gini=0.444

C1 3
C2 3

Gini=0.500
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Splitting Based on GINI

� Used in CART, SLIQ, SPRINT.
� Splitting Criterion: Minimize Gini Index of the Split.
� When a node p is split into k partitions (children), the 

quality of split is computed as,

where, ni = number of records at child i,
n = number of records at node p.

�
�

�

k

i

i
split iGINI

n
nGINI

1
)(
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Binary Attributes: 
Computing GINI Index

�Splits into two partitions
�Effect of Weighing partitions: 

�Larger and Purer Partitions are sought for.

True?

Yes No

Node N1 Node N2

N1 N2
C1 0 4
C2 6 0
Gini=0.000

N1 N2
C1 3 4
C2 3 0
Gini=0.300

N1 N2
C1 4 2
C2 4 0
Gini=0.400

N1 N2
C1 6 2
C2 2 0
Gini=0.300
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Categorical Attributes: 
Computing Gini Index

�For each distinct value, gather counts for each 
class in the dataset

�Use the count matrix to make decisions

CarType
{Sports,
Luxury} {Family}

C1 3 1
C2 2 4

Gini 0.400

CarType

{Sports} {Family,
Luxury}

C1 2 2
C2 1 5

Gini 0.419

CarType
Family Sports Luxury

C1 1 2 1
C2 4 1 1

Gini 0.393

Multi-way split Two-way split 
(find best partition of values)
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Continuous Attributes: 
Computing Gini Index

� Use Binary Decisions based on one value
� Several Choices for the splitting value

�Number of possible splitting values = Number of distinct values

� Each splitting value has a count matrix associated with it
�Class counts in each of the partitions, A < v and A >= v

� Simple method to choose best v
�For each v, scan the database to gather count matrix and 

compute its Gini index
�Computationally Inefficient! Repetition of work.
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Continuous Attributes: 
Computing Gini Index...
� For efficient computation: for each attribute,

�Sort the attribute on values
�Linearly scan these values, each time updating the count matrix 

and computing gini index
�Choose the split position that has the least gini index

Cheat No No No Yes Yes Yes No No No No

Taxable Income

60 70 75 85 90 95 100 120 125 220

55 65 72 80 87 92 97 110 122 172 230
<= > <= > <= > <= > <= > <= > <= > <= > <= > <= > <= >

Yes 0 3 0 3 0 3 0 3 1 2 2 1 3 0 3 0 3 0 3 0 3 0

No 0 7 1 6 2 5 3 4 3 4 3 4 3 4 4 3 5 2 6 1 7 0

Gini 0.420 0.400 0.375 0.343 0.417 0.400 0.300 0.343 0.375 0.400 0.420

Sorted Values
Split Positions
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C4.5

�Simple depth-first construction.
�Sorts Continuous Attributes at each node.
�Needs entire data to fit in memory.
�Unsuitable for Large Datasets.

�Needs out-of-core sorting.

�Classification Accuracy shown to improve 
when entire datasets are used!
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Classification: 
Memory Based Reasoning

� Needs three things.
� The set of stored cases
� Distance Metric is used to 

compute distance between 
cases.

� The value of k, the number 
of nearest neighbors to 
retrieve

� For classification :
� k nearest neighbors are 

retrieved.
� The class label assigned to 

the largest number of the k 
cases is selected.

Atr1 ……... AtrN

Atr1 ……... AtrN Class
A

B

B

C

A

C

B

Set of Stored Cases

New Case

K-Nearest NeighborK-Nearest Neighbor
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Classification:
Neural Networks

Input1

Input2

Input3

Input4

Input5

Output
(Class)

Hidden
Layer

�

w1
w2

w3

Nonlinear Optimization techniques (back propagation) 
used for learning the weights

Nonlinear Optimization techniques (back propagation) 
used for learning the weights
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Bayesian Classifiers

� Each attribute and class label are random variables.
� Objective is to classify a given record of attributes (A1, A2,…,An) to 

class C s.t. P(C | A1, A2, …, An) is maximal.
� Naïve Bayesian Approach:

� Assume independence among attributes Ai.
� Estimate P(Ai | Cj) for all Ai and Cj.
�New point is classified to Cj if  P(Cj) �i P(Ai| Cj)  is maximal.

� Generic Approach based on Bayesian Networks:
� Represent dependencies using a direct acyclic graph (child conditioned 

on all its parents). Class variable is a child of all the attributes.
�Goal is to get compact and accurate representation of the joint 

probability distribution of all variables. Learning Bayesian Networks is 
an active research area.



IPAM Tutorial-January 2002-Vipin Kumar 41

Evaluation Criteria

dcC2

baC1

C2C1

Actual

Predicted
Accuracy (A) =      a+d

a+b+c+d

Precision (P) =   a
a+c

Recall (R) =   a
a+b

F = 2PR
P+R
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Accuracy Unsuitable for Skewed Class 
Distributions

900C2

100C1

C2C1Actual

Predicted

8010C2

73C1

C2C1Actual

Predicted

4842C2

28C1

C2C1Actual

Predicted

A = 56/100A = 90/100 A = 83/100

P = / P = 3/13 P = 8/50

R = 0 R = 3/10 R= 8/10

F = 0 F = 6/23 F = 4/15
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Clustering Definition
�Given a set of data points, each having a set of 

attributes, and a similarity measure among 
them, find clusters such that
– Data points in one cluster are more similar to one 

another.
– Data points in separate clusters are less similar to 

one another.
�Similarity Measures:

– Euclidean Distance
– Jaccard Coefficient
– Cosine Similarity
– Other Problem-specific Measures.
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Input Data for Clustering

�A set of N points in an M dimensional space

OR

�A proximity matrix that gives the pairwise 
distance or similarity between points.
�Can be viewed as a weighted graph.

I1 I2 I3 I4 I5 I6
I1 1.00 0.70 0.80 0.00 0.00 0.00
I2 0.70 1.00 0.65 0.25 0.00 0.00
I3 0.80 0.65 1.00 0.00 0.00 0.00
I4 0.00 0.25 0.00 1.00 0.90 0.85
I5 0.00 0.00 0.00 0.90 1.00 0.95
I6 0.00 0.00 0.00 0.85 0.95 1.00
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Types of Clustering: 
Partitional and Hierarchical

�Partitional Clustering ( K-means and K-medoid) 
finds a one-level partitioning of the data into K 
disjoint groups. 

�Hierarchical Clustering finds a hierarchy of nested 
clusters (dendogram).
�May proceed either 

bottom-up (agglomerative) or 
top-down (divisive).

�Uses a proximity matrix.
�Can be viewed as operating on a proximity graph.
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K-means Clustering
�Find a single partition of the data into K clusters 

such that the within cluster error, e.g.,                 
, is minimized.

�Basic K-means Algorithm:
1. Select K points as the initial centroids.
2. Assign all points to the closest centroid.
3. Recompute the centroids.
4. Repeat steps 2 and 3 until the centroids don’t change.

�K-means is a gradient-descent algorithm that 
always converges - perhaps to a local minimum. 
(Clustering for Applications, Anderberg)

� �
� �

�

K

1i Cx
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i

i
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�
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Example:  Kmeans

Initial Data and Seeds                        Final Clustering
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Example: K-means

Initial Data and Seeds                         Final Clustering
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K-means:  Initial Point Selection

�Bad set of initial points gives a poor solution.

�Random selection 
�Simple and efficient.
�Initial points don’t cover clusters with high probability. 
�Many runs may be needed for optimal solution.

�Choose initial points from 
�Dense regions so that the points are “well-separated.”

�Many more variations on initial point selection.
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K-means:  How to Update 
Centroids

�Depends on the exact error criterion used.
�If trying to minimize the squared error,

, then the new centroid is the
mean of the points in a cluster.

�If trying to minimize the sum of distances,

, then the new centroid is the 
median of the points in a cluster.

��
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K-means:  Pre and Post 
Processing

�Outliers can dominate the clustering and, in some 
cases, are eliminated by preprocessing.

�Post-processing attempts to “fix-up” the clustering 
produced by the K-means algorithm.
�Merge clusters that are “close” to each other.
�Split “loose” clusters that contribute most to the error.
�Permanently eliminate “small” clusters since they may represent 

groups of outliers.

�Approaches are based on heuristics and require 
the user to choose parameter values.
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K-means:  Time and Space 
requirements

�O(MN) space since it uses just the vectors, not the 
proximity matrix.
�M is the number of attributes.
�N is the number of points.
�Also keep track of which cluster each point belongs to 

and the K cluster centers.

�Time for basic K-means is O(T*K*M*N),
�T is the number of iterations.  (T is often small, 5-10, and 

can easily be bounded, as few changes occur after the 
first few iterations).
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K-means:  Determining the 
Number of Clusters

�Mostly heuristic and domain dependant 
approaches.

�Plot the error for 2, 3, … clusters and find the 
knee in the curve.

�Use domain specific knowledge and inspect the 
clusters for desired characteristics.
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K-means:  Problems and 
Limitations

� Based on minimizing within cluster error - a criterion that 
is not appropriate for many situations.
�Unsuitable when clusters have widely different sizes or 

have convex shapes.

� Restricted to data in Euclidean spaces, but variants of K-
means can be used for other types of data.

� Sensitive to outliers
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Hierarchical Clustering 
Algorithms

�Hierarchical Agglomerative Clustering
1. Initially each item belongs to a single cluster.
2. Combine the two most similar clusters.
3. Repeat step 2 until there is only a single cluster.
�Most popular approach.

�Hierarchical Divisive Clustering
�Starting with a single cluster, divide clusters until 

only single item clusters remain.
�Less popular, but equivalent in functionality.
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Cluster Similarity: MIN or 
Single Link 
�Similarity of two clusters is based on the two 

most similar (closest) points in the different 
clusters.
�Determined by one pair of points, i.e., by one link 

in the proximity graph.

�Can handle non-elliptical shapes.
�Sensitive to noise and outliers. 

1 2 3 4 5

I1 I2 I3 I4 I5
I1 1.00 0.90 0.10 0.65 0.20
I2 0.90 1.00 0.70 0.60 0.50
I3 0.10 0.70 1.00 0.40 0.30
I4 0.65 0.60 0.40 1.00 0.80
I5 0.20 0.50 0.30 0.80 1.00
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Cluster Similarity: MAX or 
Complete Linkage

� Similarity of two clusters is based on the two least 
similar (most distant) points in the different clusters.
�Determined by all pairs of points in the two clusters.
�Tends to break large clusters.
�Less susceptible to noise and outliers.

1 2 3 4 5

I1 I2 I3 I4 I5
I1 1.00 0.90 0.10 0.65 0.20
I2 0.90 1.00 0.70 0.60 0.50
I3 0.10 0.70 1.00 0.40 0.30
I4 0.65 0.60 0.40 1.00 0.80
I5 0.20 0.50 0.30 0.80 1.00
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Cluster Similarity: Group 
Average
� Similarity of two clusters is the average of pairwise 

similarities between points in the two clusters.

� Compromise between Single and Complete Link.
� Need to use average connectivity for scalability since 

total connectivity favors large clusters.

||Cluster||Cluster

)p,(pSimilarity

)Cluster,(ClusterSimilarity
ji

Clusterp
Clusterp

ji

ji
jj
ii

�

�

�
�

�

I1 I2 I3 I4 I5
I1 1.00 0.90 0.10 0.65 0.20
I2 0.90 1.00 0.70 0.60 0.50
I3 0.10 0.70 1.00 0.40 0.30
I4 0.65 0.60 0.40 1.00 0.80
I5 0.20 0.50 0.30 0.80 1.00 1 2 3 4 5
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Cluster Similarity: Centroid 
Methods
� Similarity of two clusters is based on the distance of 

the centroids of the two clusters.

� Similar to K-means 
�Euclidean distance requirement
�Problems with different sized clusters and convex shapes.

� Variations include “median” based methods.
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Hierarchical Clustering:  Time 
and Space requirements

�O(N2) space since it uses the proximity matrix.  
�N is the number of points.

�O(N3) time in many cases.
�There are N steps and at each step the size, N2,

proximity matrix must be updated and searched.
�By being careful, the complexity can be reduced to 

O(N2 log(N) ) time for some approaches.
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Hierarchical Clustering:  
Problems and Limitations

�Once a decision is made to combine two clusters, 
it cannot be undone.

�No objective function is directly minimized.
�Different schemes have problems with one or 

more of the following:
�Sensitivity to noise and outliers.  
�Difficulty handling different sized clusters and convex 

shapes.
�Breaking large clusters.
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Recent Approaches: CURE

� Uses a number of points to represent a cluster.
� Representative points are found by selecting a constant 

number of points from a cluster and then “shrinking” them 
toward the center of the cluster.

� Cluster similarity is the similarity of the closest pair of 
representative points from different clusters.  

� Shrinking representative points toward the center helps 
avoid problems with noise and outliers.

� CURE is better able to handle clusters of arbitrary shapes 
and sizes.

(CURE, Guha, Rastogi, Shim)
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Experimental Results
CURE

(centroid)            (single link)

Picture from CURE, Guha, Rastogi, Shim.
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Limitations of Current 
Merging Schemes

�Existing merging schemes are static in 
nature.
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Chameleon: Clustering 
Using Dynamic Modeling
� Adapt to the characteristics of the data set to find the 

natural clusters.
� Use a dynamic model to measure the similarity between 

clusters.
�Main property is the relative closeness and relative inter-

connectivity of the cluster.
�Two clusters are combined if the resulting cluster shares certain 

properties with the constituent clusters.
�The merging scheme preserves self-similarity. 

� One of the areas of application is spatial data.
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Experimental Results
CHAMELEON
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Experimental Results
CURE (10 clusters)
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Experimental Results
CHAMELEON
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Experimental Results
CURE (9 clusters)
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Hypergraph-Based Clustering

Construct a hypergraph in which related data are 
connected via hyperedges.
Construct a hypergraph in which related data are 
connected via hyperedges.

Partition this hypergraph in a way such that each partition 
contains highly connected data.
Partition this hypergraph in a way such that each partition 
contains highly connected data.

How do we find related sets of data items? Use Association Rules!How do we find related sets of data items? Use Association Rules!
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S&P 500 Stock Data

�S&P 500 stock price movement from Jan. 1994 
to Oct. 1996.

�Frequent item sets from the stock data.

Day 1: Intel-UP          Microsoft-UP          Morgan-Stanley-DOWN  …
D
D

Day 1: Intel-UP          Microsoft-UP          Morgan-Stanley-DOWN  …
Day 2: Intel-DOWN   Microsoft-DOWN   Morgan-Stanley-UP         …
Day 3: Intel-UP          Microsoft-DOWN   Morgan-Stanley-DOWN  …

tanleay 2: Intel-DOWN   Microsoft-DOWN   Morgan-S y-UP         …
ay 3: Intel-UP          Microsoft-DOWN   Morgan-Stanley-DOWN  …

�

{Intel-up, Microsoft-UP}
{Intel-down, Microsoft-DOWN, Morgan-Stanley-UP}
{Morgan-Stanley-UP, MBNA-Corp-UP, Fed-Home-Loan-UP}

{Intel-up, Microsoft-UP}
{Intel-down, Microsoft-DOWN, Morgan-Stanley-UP}
{Morgan-Stanley-UP, MBNA-Corp-UP, Fed-Home-Loan-UP}

�
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Clustering of S&P 500 Stock Data

Discovered Clusters Industry Group

1
Applied-Matl-DOWN,Bay-Network-Down,3-COM-DOWN,

Cabletron-Sys-DOWN,CISCO-DOWN,HP-DOWN,
DSC-Comm-DOWN,INTEL-DOWN,LSI-Logic-DOWN,

Micron-Tech-DOWN,Texas-Inst-Down,Tellabs-Inc-Down,
Natl-Semiconduct-DOWN,Oracl-DOWN,SGI-DOWN,

Sun-DOWN

Technology1-DOWN

2
Apple-Comp-DOWN,Autodesk-DOWN,DEC-DOWN,

ADV-Micro-Device-DOWN,Andrew-Corp-DOWN,
Computer-Assoc-DOWN,Circuit-City-DOWN,

Compaq-DOWN, EMC-Corp-DOWN, Gen-Inst-DOWN,
Motorola-DOWN,Microsoft-DOWN,Scientific-Atl-DOWN

Technology2-DOWN

3
Fannie-Mae-DOWN,Fed-Home-Loan-DOWN,
MBNA-Corp-DOWN,Morgan-Stanley-DOWN Financial-DOWN

4
Baker-Hughes-UP,Dresser-Inds-UP,Halliburton-HLD-UP,

Louisiana-Land-UP,Phillips-Petro-UP,Unocal-UP,
Schlumberger-UP

Oil-UP

5
Barrick-Gold-UP,Echo-Bay-Mines-UP

Homestake-Mining-UP,Newmont-Mining-UP,
Placer-Dome-Inc-UP

Gold-UP

6
Alcan-Aluminum-DOWN,Asarco-Inc-DOWN,

Cyprus-Amax-Min-DOWN,Inland-Steel-Inc-Down,
Inco-LTD-DOWN,Nucor-Corp-DOWN,Praxair-Inc-DOWN,

Reynolds-Metals-DOWN,Stone-Container-DOWN,
USX-US-Steel-DOWN

Metal-DOWN

Other clusters found: Bank, Paper/Lumber, Motor/Machinery,
Retail, Telecommunication, Tech/Electronics

Other clusters found: Bank, Paper/Lumber, Motor/Machinery,
Retail, Telecommunication, Tech/Electronics
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Word Clusters Using 
Hypergraph-Based Method

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5
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Other Clustering 
Approaches
�Modeling clusters as a “mixture” of Multivariate 

Normal Distributions. (Raftery and Fraley)

�Bayesian Approaches (AutoClass, Cheeseman) 
�Density-Based Clustering (DB-SCAN, Kriegel)

�Neural Network Approaches (SOM, Kohonen)

�Subspace Clustering (CLIQUE, Agrawal)

�Many, many other variations and combinations of 
approaches.
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Other Important Topics

�Dimensionality Reduction
�Latent Semantic Indexing (LSI)
�Principal Component Analysis (PCA)

�Feature transformation.
�Normalizing features to the same scale by subtracting 

the mean and dividing by the standard deviation.

�Feature Selection
�As in classification, not all features are equally 

important.
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