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ML FOR SCIENTIFIC INFERENCE

Machine learning methods always give:

Automation: Mechanized process reduces labor and time needed
Cope with increasing data volume (instruments, simulations)
Important for data centers: operations often underfunded

Repeatability: Well-defined algorithm produces results
Uniformity over time key for long-term studies
Allows uniformity among distributed investigators
Crucial for highly charged subjects like climate change

Sometimes one obtains these as well:

Objectivity: Problem-sensitive decision among many conclusions
E.g., model order, number of clusters, which features to use
Often only possible in a limited context or domain

Consensus: Ubiquitous algorithms factor out disagreements
Go beyond ad hoc gadgets to general, cross-domain solutions
Exchange models and algorithms as well as data

Composability: Can analyze machine-generated interpretations
Building a data pipeline, meta-analysis, federated databases

Performance gains are important:

Quality: Quantitative, optimal inference gives better results
Many schemes (implicitly) optimize over interpretations
Gauss obtained the orbit of Ceres by least squares in 1801

Comprehensiveness: Ability to examine more information
Integrate more data within a given interpretation
Achieve total spatial/temporal coverage

✬ ✩
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APPROACHES TO INFERENCE

Generative methods model the data generation process and thus
capture the full statistics of the data. Invert models statistically
(e.g., by ML or Bayes) to find parameters of interest.

Linear regression by least squares
Remote sensing models

Discriminative methods use a complex-enough system to mimic
expert behavior, often as captured in training data.

Linear discriminant analysis (LDA)
Neural network digit recognition

Algorithmic methods follow a reasonable procedure to deduce
information from data.

Nearest neighbors
Boosting

Theoretical support for discriminative methods might come by
ensuring the system has enough representational capacity for its
task: Barron’s results on neural network approximation error.

Theoretical support for algorithmic methods sometimes develops
after the method meets with success: Cover and Hart’s 1967
results for nearest neighbors, and recent work on the relation of
boosting to classifier margin.

✬ ✩
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GROUND TRUTH — MODEL VALIDITY

Questions brought to fore by scientific problems
Physical questions that seem decidable in principle...
...but whose very intractability motivates inference techniques!

Models for observables

Observables are directly sensed, allowing direct model checks
Can falsify (Popper 1958), but never fully verify

Computing P (data |model) falsifies some models or model classes
E.g., image modeled as three classes, each of which is normal,
is falsified if pooled pixels are not a normal three-mixture

Information on hidden variables

This ‘ground truth’ is difficult to come by
• Scientists typically cannot identify objects reliably

Problems become very evident at single-pixel scale
The most informative test cases are also most uncertain

• Further: Lack of physical understanding of problem means
even experts may be surprised at what is really there.

Conceptual inadequacies in models

Methods are often not suitably invariant to resolution
Classes in image segmentation are often not mutually exclusive
Spatial independence is often assumed at some point
Need spatial/temporal stationarity which rarely exists
Bayesian ‘dogma of precision’: every state can be assigned a
probability; every outcome can be assigned a cost (Walley 1991)

✬ ✩

✫ ✪
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IMAGE LABELING

Solar imagery

Reliably identify structures in the photosphere
Sunspots: Depressed intensity and high magnetic flux
Faculae: Regions of enhanced intensity and moderate flux
Quiet sun: everything else

Relate these structures to irradiance changes (weather/climate)
Also: space weather (identify large δ-spots which cause flares)

Mars Geology

Identify soil structure (dust, sand, pebbles)
Detect rocks on soil background
Classify rock types (sedimentary/igneous, weathering, impact)

Methods

Automatic, objective classification using statistical model

Model quantifies the uncertain relation of observables to classes

Model uses spatial information to choose labels

Falsifiable models can be checked against
the data they claim to model

General method that extends unchanged to other settings, e.g.
more observables
different number of features
explicit accounting for miscalibration; outliers
inclusion of physical knowledge (like sensor noise)

✬ ✩

✫ ✪
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EXAMPLE SOLAR DATA

Irregularly-sampled time series of (full-disk) images
Analyzed May 1996 – Sep 2000; 60GB across 25 000 images
Below: SoHO/MDI, 17:58 UTC on 7 September 1997

Preprocessed Magnetogram: Detail

Preprocessed Photogram: Detail
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PROBABILISTIC IMAGE MODELS

Quantitatively describe the uncertain relation between
observables and labels in a general probabilistic framework

Labels x Data y

P (x) P (y |x)

✲

✛

Synthesis

Analysis

✛Observer

At each spatial position, one of K physical processes is dominant.

Observables arise depending on the dominant physical process.

Generation of observables may be viewed as adding uncertainty
(noise) to the underlying dominant process.

Goal of analysis is to invert this noisy mapping.

Variables of the Model

Index set N of spatial coordinates s = (i, j)

Unobservable labels x = [xs]s∈N & observables y = [	ys]s∈N
xs: small integer 1 . . . K (e.g., ACR/Fac/QS)
	ys: real vector (e.g., the pair (magnetic field, light intensity))

Statistical model given by two distributions P (x) and P (y |x)

✬ ✩

✫ ✪
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MODEL THE OBSERVATIONS

Linking to Observables with P (y |x)
Make the link via scientist-labeled images and distribution-fitting

Alternatively, can infer automatically from data via clustering

Obtain K distributions, one for each feature class

As strawman, put forward per-class normal distributions

P (	ys | xs = k) ∼ Normal(	µk,Σk)

with d× 1 class means and d× d covariance matrices.

(QS class, k = 1: fits the SoHO/MDI data reasonably well using
	µ1 = [ 0 1 ] and Σ1 = (0.01)2I .)

For MDI, the normal distribution is inadequate for all classes:
strongly multimodal
cannot even transform to normality (e.g., with |flux|)
quiet class,e.g., contains superpositions of effects
(supergranulation is discernable in scatter plots)
=⇒ it fails standard statistical tests.
...normal model is thus falsified.

We must introduce more realistic data models P (	y | x)

✬ ✩

✫ ✪
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MIXTURE DENSITY MODELS

p(	y; θ) =
G∑
g=1

αgN(	y; 	µg,Σg)

θ = {(α1, 	µ1, Σ1) · · · (αG, 	µG, ΣG)}
Accounts for multimodality and superpositions of effects
A very general family: take G large.
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Goal: From data Y = [	y 1 · · · 	y n], find a density model p(	y; θ̂)
Method: Determine parameters by maximum-likelihood using Y :

θ̂ = argmax
θ

logP (Y ; θ) = arg max
θ

n∑
i=1

log p(	y i; θ)

Performed via EM algorithm: done once and the model is fixed

Supervised mode: scientists find regions of each class xs = k;
estimate θk independently for 1 ≤ k ≤ K

Unsupervised: Provide pooled data, then EM divides 	y into
components — assign G bumps to K classes after the fact.

Mixed mode: Some class-assignments are supplied to EM,
others are determined in unsupervised mode.

✬ ✩

✫ ✪
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MODEL VALIDATION

Overfitting

Find θ̂ from Y , varying number of bumps G = 1, 2, ...

θ̂G = argmax
θ

logPG(Y ; θ)

As G increases, “better” fits θ̂G to Y are obtained

Overfitting phemomenon: too many parameters to fit reliably

Controlling model complexity with cross-validation
Cross-validated likelihood (Smyth 1999)

Solution: evaluate models on a separate validation data set
Hold aside test data Z = [	y 1 · · · 	ym] disjoint from Y

Train θ̂G from Y with maximum-likelihood as indicated
Test θ̂G on separate data Z

Contrast test likelihood PG(Z; θ̂G) with PG(Y ; θ̂G): the
former is an unbiased estimate of fit of θ̂G to true distribution

Next, generate more training/test (Y /Z) splits to get more
estimates of goodness-of-fit

Average of these goodness-of-fit indicators shows what model
complexity the data can support

Also, can serve to test robustness of model to changes in data to
which it should be largely invariant

✬ ✩

✫ ✪
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MODELS USED: SOHO/MDI
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Model Fit, varying Complexity
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MODELS USED: MT. WILSON
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MODELING SPATIAL VARIATIONS

Quantifying Spatial Smoothness with P (x)

Typically β ≥ 0 controls smoothness in the prior

P (x) =
1
Z
exp

(
−β

∑
s∼s′

1(xs �= xs′)
)

where s ∼ s′ means: site s close to site s′, e.g. one pixel away

Penalty of β per disagreement of nearby pixels to enforce spatial
coherence of labelings

Key property of locality: P (xs = x | x(s)) = P (xs = x | xN (s))

At β = 0, penalty and spatial constraint vanish

Sample realizations from P (x)

Sample from Uniform Prior Sample from MRF Prior Sample from Asymetric MRF Prior

✬ ✩

✫ ✪
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ASIDE: CONTINUITY AND EDGES

Such Markov random field models allow edges in modeled images
Change in discrete hidden variable forces
significant change in real-valued observable

Jumps undesirable in many image restoration contexts

Motivates conditional autoregressive (CAR) model

P (xs = x | x(s)) = P (xs = x | xN (s)) = N(AxN (s),Σ)

but with conditionally normal distribution

(Autoregression: predict xs in terms of “itself” xN (s))

Joint distribution of CAR model is normal, easing computation

Natural parallel with familiar one-dimensional models

Continuous Discrete
Time Series Autoregressive (AR) Hidden Markov models (HMM)

or Kalman models
Imagery CAR models Markov random fields (MRF)

MRF computations are the hardest: our best tools do not apply
Non-gaussian, so no reduction to clever matrix manipulations
Bayes net of many short cycles, junction tree algs liable to fail

But: sampling, Metropolis-Hastings, and MCMC methods
developed for MRFs enable very complex models

✬ ✩

✫ ✪
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SIMULATING MRFS

Distribution P (x) = Z−1 exp
(
−β∑

s∼s′ 1(xs �= xs′)
)

No direct simulation: no Z, and state space of x huge!

Randomized algorithm: Gibbs sampler

Basis: craft a MC having P as its stationary distribution
Adaptation of stat-mech methods (c.f. Metropolis et al. 1953)
for simulating the state of interacting systems

Iterative algorithm: starts at some labeling and
refines it pixel-by-pixel over many image sweeps

Method:
Choose an initial x̂
Scan pels in raster fashion.

At pel s, find P (x̂s = x | x̂(s)), 1 ≤ x ≤ K.
Choose new x̂s by drawing from this distribution [*]

Repeat scanning

Result: As scans go to infinity, x̂⇒P (·).
That is, iterate enough and the labeling is a draw from P (x)

Remarks

Flip of one label can eventually influence all labels

This method, and similar Metropolis-Hastings methods, are the
basis for updating more complex spatial models

✬ ✩

✫ ✪
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INFERRING THE LABELING

Invert the noisy data via maximum a posteriori (MAP) rule

x̂ = argmax
x

P (x|y)
Bayes formula shows P (x|y) ∝ P (y|x)P (x)
For normal P (ys | xs), algebra reveals the objective function

logP (x|y) = − 1
2σ2

∑
s∈N

∥∥	ys − 	µxs

∥∥2 − β
∑
s∼s′

1(xs �= xs′)

Interpretation
First term: fidelity to data (observation close to its mean)
Second term: image smoothness (this couples the pixel labels)

Maximizing P (x |y)
• Use Gibbs sampler to draw from the distribution P (x |y)
• To maximize P (x |y), nest G.S. within simulated annealing

That is, pick large λ and draw via G.S. from

Pλ(x |y) := (1/Zλ)P (x |y)λ
(Effectively scale entire log-posterior, above, by λ)

• Simulated annealing: raise λ as Gibbs sampler iterates
If λ up slowly enough, mode is reached

λ λ

• Takes about 3 min/image on Sun workstation (360MHz).

✬ ✩

✫ ✪
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SOHO/MDI LABELINGS

Labeling: 1998/01/15 11:11 UTC + 0,1,2,3,4,5 days
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CHALLENGES IN LABELING

Belief propagation

MRF in Bayes network notation:

Belief propagation algorithm finds MAP estimate in acyclic
networks — MRF clearly has cycles!

Y. Weiss (2000) found conditions for belief propagation to
produce correct answers even for graphs with cycles; these include
certain Gaussian models but not discrete MRFs.
Interestingly, Fridman and Mumford used belief propagation
successfully for inference in some tightly coupled MRF graphs.

Relaxation labeling methods

Gibbs sampling algorithms flip pixel labels one at a time.
Can relax the labeling problem into a continuous-valued linear
program, and use max-flow/min-cut methods to identify
connected groups of labels to flip all at once.

On the one hand, impractical poly-time algorithms come within
small factors of the global optimum (Kleinberg and Tardos 1999).
On the other hand, heuristic cut-set identification algorithms are
practical for medium-sized problems and have significantly
outperformed Gibbs sampling (Boykov, Veksler, Zabin 1998;
Ishikawa 2000).

✬ ✩
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SPATIO-TEMPORAL INFERENCE

Object trajectories
Sea-level pressure over the Pacific (δt = 48 hrs.)
Cyclone center shown by white cross
Right: trajectories from a series of (quantized) observations
Data from P. Smyth, UC Irvine

Other examples: sunspot motion, microblock motion from GPS

Objects through time

Images

Labels

Objects
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✬ ✩
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HIERARCHICAL SPATIAL MODELS

Better Representations

Represent an object via a compactly-described membership
function hs indicating subjective belief site s is active region

— Larger-scale representation of an object
— Provides interpretability

Several Simple Mechanisms

Outlines: Grenander et al., 1991
Polygons: Green 1996
Continuum triangulations: Nicholls 1997, 1998
Delaunay triangulations: Turmon 1998

Binds nearby on-object regions into one object

Two fundamental quantities:

Indicator function hs, s ∈ N
h(s) = 1 means on-object, h(s) = 0 if not
Parameterized by tie points in N .

Function complexity κ(h) ≥ 0
e.g., the number of tie points, or
intensity of point process generating tie points

✬ ✩

✫ ✪
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LINK TO OBSERVATIONS

Establish Markov dependence between hierarchical model layers

P (h,x,y) = P (h)P (x |h)P (y |x)
Raw

Intensities
Pixel

Labels
Membership

Function
TriangulationMRF Scheme

Interpretability/Abstraction

Probabilistic Model
Penalize complexity by setting

P (h) = Z−1 exp
[−γ κ(h)]

This choice gives an additive penalty to disjoint objects

Intermediate layer uses hs to bias the event {xs = Object}:
− logP (x |h) = β

∑
s∼s′

1(xs �= xs′) + α
∑
s∈N

|1(xs = Object)− h(s)|

The data distribution P (y |x) is as before.
• One can do inference by maximizing the posterior

P (h,x |y) = P (h,x,y)/P (y) ∝ P (h,x,y)

or minimizing its negative logarithm

γ κ(h) + α
∑
s∈N

|1(xs = Object)− h(s)|

+ β
∑
s∼s′

1(xs �= xs′) +
1
2σ2

∑
s∈N

(ys − µxs)
2

✬ ✩

✫ ✪
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INFERRING COMPLEX MODELS

We describe inferring shape models for fixed labeling

To speed convergence, replace 1(xs = Object) above
with its probability given the data
(Fully analogous to ICE algorithm of Art Owen)

Now the objective simplifies to

γ κ(h) + α
∑
s∈N

∣∣∣P (xs = Object |y)− h(s)
∣∣∣

Metropolis-Hastings sampler

Inference means choosing tie-point positions

Construct a Markov chain on the state space of tie points

V =
⋃
k

Vk =
⋃
k

(N × N )k

that has limit distribution

π(h) = P (h |x,y)

(Maximize P (h |x,y) with same annealing setup as earlier)
Metropolis-Hastings proposes state changes and probabilistically
accepts them to achieve the desired limit distribution

The operator set consists of
tie-point move (M),
tie-point raise/lower (R),
tie-point add (Ak) or kill (A′

k)

✬ ✩

✫ ✪
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DESIGNING THE MARKOV CHAIN

The operator set consists of
vertex move (M),
vertex raise/lower (R),
vertex add (Ak) or kill (A′

k),
gradient move (G)

Operators are chosen equiprobably. Each one...
At state h, proposes a move to h′ with prob. q(h, h′)
Accepts the proposed state with probability α(h, h′)

Reaching Equilibrium

Presence of add/kill operators ensures irreducibility of MC.
Positive probability of rejecting the proposal ensures aperiodicity.

Detailed balance is thus sufficient to obtain equilibrium at π
(variable-dimension state space makes this nontrivial)

We pick α(h, h′) between 0 and 1 such that

α(h, h′)
α(h′, h)

=
π(h′)q(h′, h)
π(h)q(h, h′)

The local changes introduced by the operators make π(h′)/π(h)
easy to compute: only changed triangles affect it

✬ ✩
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MODELING THE TEMPORAL PART

State-based motion models
Include influence of exogenous inputs and observable covariates
Discover motion clusters by uncovering a hidden class C

Examples
Generalizations of the Kalman filter as Bayes nets with state ut
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mixed dynamical model model with exogenous inputs rt

Build temporal models atop de-coupled spatial models

Implications

Two domains of divide and conquer
Easy cases: dominant locality in space (sunspots) or time (GPS)

...allows decoupled solutions
Coping with both simultaneously is harder, even beyond
current limits of practical optimization technology

Problems...
estimate model parameters automatically
learn the model structure automatically

✬ ✩
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CHALLENGES IN OBJECT MODELING

Markov chain Monto Carlo

We have available various sampling techniques, including
Metropolis-Hastings, Gibbs sampling, diffusion processes (e.g.,
Miller, Grenander), and variable-dimension sampling (e.g., P.
Green).
It is relatively easy to design a sampler, but hard to show it has
converged to the stationary distribution:

subtle identifiability problems
multimodality
flat spots in posterior

Perfect sampling

Can sometimes draw exact samples from Markov chains in which
the stationary distribution is reached only asymptotically (Propp
and Wilson, 1996).

Such samples drawn from Potts MRF priors have revealed that
typical Gibbs sampling MRF simulations are over-smoothed!

Perfect sampling may contribute to better convergence of MCMC
samplers (e.g., Green and Murdoch 1999).

✬ ✩

✫ ✪

D-7(25)



CONCLUSIONS

Machine procedures offer many benefits to scientific inference

Persistent issues:
Building tractable models of observational reality
Obtaining accurate training data
Designing and executing clear falsification experiments

Labeling Images

Use of statistical models allows falsification experiments,
easy extension to wider class of problems

Spatially, temporally uniform data is key to accurate labelings

Complex models

Useable temporal and spatial statistical models do exist
...but the best ML perspectives often absent from this work

agnostic models, robust algorithms, cross-validation,
automation
Cooperating space/time models, linked spatiotemporal models

Futures

Languages to express statistical models on structured domains
Model selection in complex, flexible model space

✬ ✩
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