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Why do we need to use graphs?
What is frequent subgraph discovery?
Detail of the algorithm
Empirical evaluation with synthetic and 
real datasets
Conclusions
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Data Mining And Scientific 
Data

Data mining has emerged as a critical tool for knowledge 
discovery in large data sets.

It has been extensively used to analyze business, financial, and
textual data sets.

The success of these techniques has sparked interest in 
applying them to various scientific and engineering fields.

Astronomy
Biology
Ecosystem modeling
Fluid dynamics
Genomics
Structural mechanics
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Pattern Discovery In Scientific 
Data
Most of existing data mining algorithms are 
based on transaction representation, i.e., sets 
of items.
Scientific datasets with structures, layers, 
hierarchy  and/or geometry often do not fit well 
in this transaction setting.

e.g., Numerical simulations, 3D protein structures, 
chemical compounds, etc.

Need algorithms that operate natively on datasets 
in their native/structured representation

Need algorithms that operate natively on datasets 
in their native/structured representation
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Representation For Scientific 
Datasets

Which representation is good?
Abstract compared with the original raw 
(and typically flat) numerical data
Yet powerful enough to capture the 
important characteristics

Labeled directed/undirected graphsLabeled directed/undirected graphs
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Modeling Data With Graphs…
Going Beyond Transactions

Graphs can be used to 
accurately model and 
represent scientific data 
sets. 
Graphs are suitable for 
capturing arbitrary 
relations between the 
various objects.

Data Instance Graph Instance

Object Vertex

Object’s Attributes Vertex Label

Relation Between
Two Objects

Edge

Type Of Relation Edge Label
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Example
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Graph Mining

Finding patterns in these graph 
Finding groups of similar graphs 
Building predictive models for the 
graphs
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Interesting Patterns 
Frequent Subgraphs

Discovering interesting patterns

Finding frequent, recurrent subgraphs

Efficient algorithms need to be developed 
that operate and take advantage of this 

representation

Efficient algorithms need to be developed 
that operate and take advantage of this 

representation
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Finding Frequent Subgraphs:
Input and Output
Problem setting: similar to finding frequent 
itemsets for association rule discovery
Input

Database of graph transactions
Undirected simple graph (no loops, no multiples edges)
Each graph transaction has labeled edges/vertices.
Transactions may not be connected

Minimum support threshold σ
Output

Frequent subgraphs that satisfy the support threshold
Each frequent subgraph is connected.
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Finding Frequent Subgraphs:
Input and Output

Support = 100%

Support = 66% 

Support = 66% 

Input: Graph Transactions Output: Frequent Connected Subgraphs 
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FSG 
Frequent Subgraph Discovery Algorithm

Incremental and breadth-first fashion on the size of 
frequent subgraphs (like Apriori for frequent itemsets)
Counting of frequent single and double edge 
subgraphs
For finding frequent size k-subgraphs (k ≥ 3), 

Candidate generation
Joining two size (k – 1)-subgraphs similar to each other.
Candidate pruning by downward closure property
Frequency counting
Check if a subgraph is contained in a transaction.
Repeat the steps for k = k + 1
Increase the size of subgraphs by one edge.
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FSG: Algorithm
Single edges

3-candidates

4-candidates

Double edges

3-frequent 
subgraphs 

4-frequent 
subgraphs 



14

FSG: Methodology
Edge-based

Transaction ↔ Labeled graph
Item ↔ Vertex
Itemset ↔ Connected subgraph
Size of an itemset ↔ Number of edges

(size of a subgraph)

FSG finds frequent connected subgraphs in 
the bottom-up and breadth-first fashion.
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Trivial Operations Become 
Complicated With Graphs…

Candidate generation
To determine two candidates for joining, we need to 
perform subgraph isomorphism.
Isomorphism for redundancy check

Candidate pruning
To check downward closure property, we need subgraph 
isomorphism.

Frequency counting
Subgraph isomorphism for checking containment of a 
frequent subgraph

How to reduce the number of graph/subgraph 
isomorphism operations?
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FSG Approach: 
Candidate Generation

3-frequent

4-candidates
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FSG Approach: 
Candidate Generation

3-frequent

4-candidates

2-frequent Intersection of the parent 
lists of two 3-frequent 
subgraphs
Without subgraph 
isomorphism, we can detect 
the core of the two 3-
frequent subgraphs.
Redundancy check by 
canonical labeling
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Candidate Generation Based On 
Core Detection
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Candidate Generation Based On 
Core Detection

First Core

Second Core

First Core Second Core 
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FSG Approach: 
Candidate Pruning

Downward closure 
property
Every (k – 1)-subgraph 
must be frequent
Keep the list of those 
(k – 1)-subgraphs

3-subgraphs

4-candidate
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FSG Approach: 
Candidate Pruning

Pruning of size k-candidates
For all the (k – 1)-subgraphs of a size k-
candidate, check if downward closure 
property holds.

Canonical labeling is used to speedup the 
computation.

Build the parent list of (k – 1)-frequent 
subgraphs for the k-candidate.

Used later in the candidate generation, if this 
candidate survives the frequency counting check.
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FSG Approach: 
Frequency Counting

 

T1 = {f1, f2, f3} 

T2 = {f1} 

T3 = {f2} 

c = join(f1, f2) 

Transactions 

TID(f2) = {T1, T3} 
TID(f1) = {T1, T2} 

TID(c) = subset(TID(f1) AND TID(f2)) 

Frequent Subgraphs

Candidate

Perform only subg_isomorph(c, T1))
TID lists require a lot of memory!
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FSG Approach: 
Frequency Counting

Frequency counting
Keep track of the TID lists.
If a size k-candidate is contained in a transaction, 
all the size (k – 1)-parents must be contained in 
the same transaction.
Perform subgraph isomorphism only on the 
intersection of the TID lists of the parent frequent 
subgraphs of size k – 1.

Significantly reduces the number of subgraph 
isomorphism checks.
Trade-off between running time and memory
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Empirical Evaluation

Synthetic datasets
Sensitivity study

Number of labels used in input graphs
Transaction size
Number of transactions

Real dataset
Chemical compounds from PTE challenge

Pentium III 650 MHz, 2GB RAM
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Evaluation: Synthetic Datasets
Try to mimic the idea of the data generator 
for frequent itemset discovery, used in the 
Apriori paper (Agrawal and Srikant, VLDB, 
1994).
Generate a pool of potential frequent 
subgraphs (“seeds”).
Embed randomly selected seeds into each 
transaction until the transaction reaches the 
specified size.
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Sensitivity: 
The Number Of Labels
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Sensitivity: Transaction Size
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Sensitivity: 
Number of Transactions

2% support
Transaction size
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Evaluation:
Chemical Compound Dataset

Predictive Toxicology Evaluation (PTE) 
Challenge (Srinivasan et al., IJCAI, 1997)
340 chemical compounds
Sparse

Average transaction size 27.4 edges, 27.0 vertices
Maximum transaction has 214 edges.

4 edge labels, 66 vertex labels
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Evaluation:
Chemical Compound Dataset
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Evaluation: 
Chemical Compound Dataset

AGM spent 8 days for support 10% on 
400 MHz PC.

Inokuchi et al., An apriori-based algorithm 
for mining frequent substructures from 
graph data, PKDD, 2000
Vertex-based
AGM finds frequent induced subgraphs that 
may not be connected

FSG took 28 seconds for support 10%.
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Conclusions
Linear scalability w. r. t. # of transactions
FSG runs faster as the number of distinct 
edge/vertex labels increases.
Average size of transactions |T|

Significant impact on the running time
Subgraph isomorphism for frequency counting
Edge density

Increases the search space of graph/subgraph 
isomorphism exponentially.

Suitable for sparse graph transactions
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Topology Is Not Enough 
(Sometimes)
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Extension To Discovering 
Geometric Patterns

Ongoing work, no preliminary results.  Sorry!
Geometric graphs

Most of scientific datasets naturally contain 2D/3D 
geometric information.
Each vertex has 2D/3D coordinates associated.
Geometric graphs are the same as the purely 
topological graphs except the coordinates (i.e., 
edges and vertices have labels assigned).
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What Is Good With Geometry?
Coordinates of vertices are helpful
In topological graph finding, isomorphism which is 
known to be expensive operation, is inevitable.

Candidate generation
Frequency counting

By using coordinates, we can narrow down the 
search space of (sub)graph isomorphism drastically.

Geometric hashing (pre-computing geometric configurations)
Rotation
Scaling
Translation
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Search Space Of Purely 
Topological Isomorphism

 
A 

B C 

x

y z

 
(A := x) (A := x, B := y) (A := x, B := y, C:= z)

(A := x, B := z) (A := x, B := z, C:= y)

(A := y, B := x) (A := y, B := x, C:= z)(B := x)

(A := z, B := x) (A := z, B := x, C:= y)

(A := y, C := x) (A := y, B := z, C:= x)(C := x)

(A := z, C := x) (A := z, B := y, C:= x)

Complexity = O (n !)
n: # of vertices
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Use Of Coordinates In 
Geometric Isomorphism

 

A 

B C 

x

y z

Tolerance 
Radius The radius of the shaded 

area determines the 
tolerance of the matching.

To seek for a map of “A”, we can focus the inside of the 
shaded area.

That eliminates “y” and “z” for a mapping of “A”.
Complexity depends on the # of configurations

= O (n 2), instead of O (n !) for 2D
n: # of vertices
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Thank you!

http://www.cs.umn.edu/~karypis
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Finding Frequent Subgraphs
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FSG: Methodology
AGM (Inokuchi et al., An apriori-based 
algorithm for mining frequent substructures 
from graph data, PKDD 2000)

Vertex-based
Transaction ↔ Labeled graph
Item ↔ Vertex
Itemset ↔ Induced subgraph
Size of itemset ↔ Number of vertices

(order of subgraph)
Discovered frequent subgraphs may not be 
connected
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Graph/Subgraph Isomorphism:  
Hard Problems

Graph isomorphism
Determine if two graphs are equivalent.
Suspected to be neither in P nor in NP-complete.

Subgraph isomorphism
Determine if a graph is a part of another.
NP-complete

Canonical labeling is equivalent to graph 
isomorphism.
They are expensive operations, but doable especially 
when graphs are relatively small.

Frequent subgraphs are smaller than the input transactions.
How to reduce the number of graph/subgraph 
isomorphism operations?
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FSG Approach: 
Candidate Generation

To generate a size k-candidate (k edges)
Take the intersection of the parent lists of two
(k – 1)-frequent subgraphs

To see if two (k – 1)-frequent subgraphs share the same 
size (k – 2)-parent.
Parent lists are obtained at the pruning phase.
Subgraph isomorphism free!

Example
parent(c 5) = { g 4, h 4, i 4}, parent(d 5) = { f 4, g 4, h 4}
Generate size 6-candidates from the cores g 4 and h 4.

Canonical labeling for redundancy check
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