
Frequent Subgraph Discovery
Mining Scientific & Relational Data Sets

Michihiro Kuramochi and George Karypis

Department of Computer Science & Engineering
University of Minnesota

2

Outline

Why do we need to use graphs?
What is frequent subgraph discovery?
Detail of the algorithm
Empirical evaluation with synthetic and
real datasets
Conclusions

3

Data Mining And Scientific
Data

Data mining has emerged as a critical tool for knowledge
discovery in large data sets.

It has been extensively used to analyze business, financial, and
textual data sets.

The success of these techniques has sparked interest in
applying them to various scientific and engineering fields.

Astronomy
Biology
Ecosystem modeling
Fluid dynamics
Genomics
Structural mechanics

4

Pattern Discovery In Scientific
Data
Most of existing data mining algorithms are
based on transaction representation, i.e., sets
of items.
Scientific datasets with structures, layers,
hierarchy and/or geometry often do not fit well
in this transaction setting.

e.g., Numerical simulations, 3D protein structures,
chemical compounds, etc.

Need algorithms that operate natively on datasets
in their native/structured representation

Need algorithms that operate natively on datasets
in their native/structured representation

5

Representation For Scientific
Datasets

Which representation is good?
Abstract compared with the original raw
(and typically flat) numerical data
Yet powerful enough to capture the
important characteristics

Labeled directed/undirected graphsLabeled directed/undirected graphs

6

Modeling Data With Graphs…
Going Beyond Transactions

Graphs can be used to
accurately model and
represent scientific data
sets.
Graphs are suitable for
capturing arbitrary
relations between the
various objects.

Data Instance Graph Instance

Object Vertex

Object’s Attributes Vertex Label

Relation Between
Two Objects

Edge

Type Of Relation Edge Label

7

Example

0 200 400 600 800 1000 1200
0

200

400

600

800

1000

1200

 1100

 2500

 1000

 3600

 1200

 900

 1100

 1600

 2400

 2300

 1800

 1700

 1100

 900

 900

 1300

 1200

 2400

 2300

 1200

 2300

 2100

 900

 2300

 1000

 1100

 900

 700

 1200
 1200

 1600

 1600

 3400

 1300

X

Y

Corresponding Graph Transaction No. 3

8

Graph Mining

Finding patterns in these graph
Finding groups of similar graphs
Building predictive models for the
graphs

9

Interesting Patterns
Frequent Subgraphs

Discovering interesting patterns

Finding frequent, recurrent subgraphs

Efficient algorithms need to be developed
that operate and take advantage of this

representation

Efficient algorithms need to be developed
that operate and take advantage of this

representation

10

Finding Frequent Subgraphs:
Input and Output
Problem setting: similar to finding frequent
itemsets for association rule discovery
Input

Database of graph transactions
Undirected simple graph (no loops, no multiples edges)
Each graph transaction has labeled edges/vertices.
Transactions may not be connected

Minimum support threshold σ
Output

Frequent subgraphs that satisfy the support threshold
Each frequent subgraph is connected.

11

Finding Frequent Subgraphs:
Input and Output

Support = 100%

Support = 66%

Support = 66%

Input: Graph Transactions Output: Frequent Connected Subgraphs

12

FSG
Frequent Subgraph Discovery Algorithm

Incremental and breadth-first fashion on the size of
frequent subgraphs (like Apriori for frequent itemsets)
Counting of frequent single and double edge
subgraphs
For finding frequent size k-subgraphs (k ≥ 3),

Candidate generation
Joining two size (k – 1)-subgraphs similar to each other.
Candidate pruning by downward closure property
Frequency counting
Check if a subgraph is contained in a transaction.
Repeat the steps for k = k + 1
Increase the size of subgraphs by one edge.

13

FSG: Algorithm
Single edges

3-candidates

4-candidates

Double edges

3-frequent
subgraphs

4-frequent
subgraphs

14

FSG: Methodology
Edge-based

Transaction ↔ Labeled graph
Item ↔ Vertex
Itemset ↔ Connected subgraph
Size of an itemset ↔ Number of edges

(size of a subgraph)

FSG finds frequent connected subgraphs in
the bottom-up and breadth-first fashion.

15

Trivial Operations Become
Complicated With Graphs…

Candidate generation
To determine two candidates for joining, we need to
perform subgraph isomorphism.
Isomorphism for redundancy check

Candidate pruning
To check downward closure property, we need subgraph
isomorphism.

Frequency counting
Subgraph isomorphism for checking containment of a
frequent subgraph

How to reduce the number of graph/subgraph
isomorphism operations?

16

FSG Approach:
Candidate Generation

3-frequent

4-candidates

17

FSG Approach:
Candidate Generation

3-frequent

4-candidates

2-frequent Intersection of the parent
lists of two 3-frequent
subgraphs
Without subgraph
isomorphism, we can detect
the core of the two 3-
frequent subgraphs.
Redundancy check by
canonical labeling

18

Candidate Generation Based On
Core Detection

19

Candidate Generation Based On
Core Detection

First Core

Second Core

First Core Second Core

20

FSG Approach:
Candidate Pruning

Downward closure
property
Every (k – 1)-subgraph
must be frequent
Keep the list of those
(k – 1)-subgraphs

3-subgraphs

4-candidate

21

FSG Approach:
Candidate Pruning

Pruning of size k-candidates
For all the (k – 1)-subgraphs of a size k-
candidate, check if downward closure
property holds.

Canonical labeling is used to speedup the
computation.

Build the parent list of (k – 1)-frequent
subgraphs for the k-candidate.

Used later in the candidate generation, if this
candidate survives the frequency counting check.

22

FSG Approach:
Frequency Counting

T1 = {f1, f2, f3}

T2 = {f1}

T3 = {f2}

c = join(f1, f2)

Transactions

TID(f2) = {T1, T3}
TID(f1) = {T1, T2}

TID(c) = subset(TID(f1) AND TID(f2))

Frequent Subgraphs

Candidate

Perform only subg_isomorph(c, T1))
TID lists require a lot of memory!

23

FSG Approach:
Frequency Counting

Frequency counting
Keep track of the TID lists.
If a size k-candidate is contained in a transaction,
all the size (k – 1)-parents must be contained in
the same transaction.
Perform subgraph isomorphism only on the
intersection of the TID lists of the parent frequent
subgraphs of size k – 1.

Significantly reduces the number of subgraph
isomorphism checks.
Trade-off between running time and memory

24

Empirical Evaluation

Synthetic datasets
Sensitivity study

Number of labels used in input graphs
Transaction size
Number of transactions

Real dataset
Chemical compounds from PTE challenge

Pentium III 650 MHz, 2GB RAM

25

Evaluation: Synthetic Datasets
Try to mimic the idea of the data generator
for frequent itemset discovery, used in the
Apriori paper (Agrawal and Srikant, VLDB,
1994).
Generate a pool of potential frequent
subgraphs (“seeds”).
Embed randomly selected seeds into each
transaction until the transaction reaches the
specified size.

26

Sensitivity:
The Number Of Labels

0 10 20 30 40
0

1000

2000

3000

4000

5000

6000

Number of Edge/Vertex Labels, N

R
un

ni
ng

 T
im

e
[s

ec
]

D = 10000, σ = 2%, |I| = 5, |T| = 40

10000 transactions
2% support
Average seed size
|I| = 5
Average transaction
size |T| = 40

More labels
Faster execution

27

Sensitivity: Transaction Size

0 10 20 30 40
0

50

100

150

200

250

300

350

400

Average Transaction Size, T [#edges]

R
un

ni
ng

 T
im

e
[s

ec
]

D = 10000, σ = 2%, |I| = 5

N = 3
N = 5
N = 10

10000 transactions
2% support
Average seed size
|I| = 5

Average
transaction size, T,
significantly affects
the execution time,
especially with
fewer labels.

28

Sensitivity:
Number of Transactions

2% support
Transaction size
T = 5, 10, 20, 40
Average seed size
|I| = 5
10 edge/vertex labels

Linear scalability
0 2 4 6 8

x 10
4

0

500

1000

1500

Number of Transactions, D

R
un

ni
ng

 T
im

e
[s

ec
]

σ = 2%, N = 10, |I| = 5

T = 5
T = 10
T = 20
T = 40

29

Evaluation:
Chemical Compound Dataset

Predictive Toxicology Evaluation (PTE)
Challenge (Srinivasan et al., IJCAI, 1997)
340 chemical compounds
Sparse

Average transaction size 27.4 edges, 27.0 vertices
Maximum transaction has 214 edges.

4 edge labels, 66 vertex labels

30

Evaluation:
Chemical Compound Dataset

0 10 20 30 40 50
0

1

2

3

4

5

6

7

8

9
x 10

4

Minimum Support, σ [%]

R
un

ni
ng

 T
im

e
[s

ec
]

0 10 20 30 40 50
0

500

1000

1500

2000

2500

3000

3500

4000

Minimum Support, σ [%]

N
um

be
r

of
 F

re
qu

en
t S

ub
gr

ap
hs

 D
is

co
ve

re
d

31

Evaluation:
Chemical Compound Dataset

AGM spent 8 days for support 10% on
400 MHz PC.

Inokuchi et al., An apriori-based algorithm
for mining frequent substructures from
graph data, PKDD, 2000
Vertex-based
AGM finds frequent induced subgraphs that
may not be connected

FSG took 28 seconds for support 10%.

32

Conclusions
Linear scalability w. r. t. # of transactions
FSG runs faster as the number of distinct
edge/vertex labels increases.
Average size of transactions |T|

Significant impact on the running time
Subgraph isomorphism for frequency counting
Edge density

Increases the search space of graph/subgraph
isomorphism exponentially.

Suitable for sparse graph transactions

33

Topology Is Not Enough
(Sometimes)

O

O

I

OH

H

H

H

H

H

H

H

H

H

H

H

H

H

H H

H

H

H

H

H

H

H

O

O
HH

H

H

H

HH

H

H

H

H

H

OH

H H

H

H

H H

H

H

H

H

H

H

H

100 chemical
compounds with 30
atoms
Support = 10%
3 patterns of 14 edges
found

3-(3,5-dibromo-4-hydroxyphenyl)-2-(4-iodophenyl)acrylic acid

(4-phenyl-1,3-butadienyl)benzene

methyl 3-phenanthrenecarboxylate

1-methoxy-4-(2-phenylvinyl)benzene

34

Extension To Discovering
Geometric Patterns

Ongoing work, no preliminary results. Sorry!
Geometric graphs

Most of scientific datasets naturally contain 2D/3D
geometric information.
Each vertex has 2D/3D coordinates associated.
Geometric graphs are the same as the purely
topological graphs except the coordinates (i.e.,
edges and vertices have labels assigned).

35

What Is Good With Geometry?
Coordinates of vertices are helpful
In topological graph finding, isomorphism which is
known to be expensive operation, is inevitable.

Candidate generation
Frequency counting

By using coordinates, we can narrow down the
search space of (sub)graph isomorphism drastically.

Geometric hashing (pre-computing geometric configurations)
Rotation
Scaling
Translation

36

Search Space Of Purely
Topological Isomorphism

A

B C

x

y z

(A := x) (A := x, B := y) (A := x, B := y, C:= z)

(A := x, B := z) (A := x, B := z, C:= y)

(A := y, B := x) (A := y, B := x, C:= z)(B := x)

(A := z, B := x) (A := z, B := x, C:= y)

(A := y, C := x) (A := y, B := z, C:= x)(C := x)

(A := z, C := x) (A := z, B := y, C:= x)

Complexity = O (n !)
n: # of vertices

37

Use Of Coordinates In
Geometric Isomorphism

A

B C

x

y z

Tolerance
Radius The radius of the shaded

area determines the
tolerance of the matching.

To seek for a map of “A”, we can focus the inside of the
shaded area.

That eliminates “y” and “z” for a mapping of “A”.
Complexity depends on the # of configurations

= O (n 2), instead of O (n !) for 2D
n: # of vertices

38

Thank you!

http://www.cs.umn.edu/~karypis

39

Finding Frequent Subgraphs

40

FSG: Methodology
AGM (Inokuchi et al., An apriori-based
algorithm for mining frequent substructures
from graph data, PKDD 2000)

Vertex-based
Transaction ↔ Labeled graph
Item ↔ Vertex
Itemset ↔ Induced subgraph
Size of itemset ↔ Number of vertices

(order of subgraph)
Discovered frequent subgraphs may not be
connected

41

0 200 400 600 800 1000 1200
0

200

400

600

800

1000

1200

 2600

 2900 1000

 1200

 1100

 3100

 1000

 1700

 1000

 900

 1500
 1000

 3500

 800

 800

 3100

 1100

 1400

 800

 3100

 1600

 900

 1300

 1500

 700

 900

 900 1100

 800

 1600

 1300

 1000

 1300

 3100

 900

 800

 1800
 1400

 2500

 1900

X

Y

Corresponding Graph Transaction No. 1

42

Graph/Subgraph Isomorphism:
Hard Problems

Graph isomorphism
Determine if two graphs are equivalent.
Suspected to be neither in P nor in NP-complete.

Subgraph isomorphism
Determine if a graph is a part of another.
NP-complete

Canonical labeling is equivalent to graph
isomorphism.
They are expensive operations, but doable especially
when graphs are relatively small.

Frequent subgraphs are smaller than the input transactions.
How to reduce the number of graph/subgraph
isomorphism operations?

43

FSG Approach:
Candidate Generation

To generate a size k-candidate (k edges)
Take the intersection of the parent lists of two
(k – 1)-frequent subgraphs

To see if two (k – 1)-frequent subgraphs share the same
size (k – 2)-parent.
Parent lists are obtained at the pruning phase.
Subgraph isomorphism free!

Example
parent(c 5) = { g 4, h 4, i 4}, parent(d 5) = { f 4, g 4, h 4}
Generate size 6-candidates from the cores g 4 and h 4.

Canonical labeling for redundancy check

	Frequent Subgraph DiscoveryMining Scientific & Relational Data Sets
	Outline
	Data Mining And Scientific Data
	Pattern Discovery In Scientific Data
	Representation For Scientific Datasets
	Modeling Data With Graphs…Going Beyond Transactions
	Example
	Graph Mining
	Interesting Patterns ? Frequent Subgraphs
	Finding Frequent Subgraphs:Input and Output
	Finding Frequent Subgraphs:Input and Output
	FSG Frequent Subgraph Discovery Algorithm
	FSG: Algorithm
	FSG: Methodology
	Trivial Operations Become Complicated With Graphs…
	FSG Approach: Candidate Generation
	FSG Approach: Candidate Generation
	Candidate Generation Based On Core Detection
	Candidate Generation Based On Core Detection
	FSG Approach: Candidate Pruning
	FSG Approach: Candidate Pruning
	FSG Approach: Frequency Counting
	FSG Approach: Frequency Counting
	Empirical Evaluation
	Evaluation: Synthetic Datasets
	Sensitivity: The Number Of Labels
	Sensitivity: Transaction Size
	Sensitivity: Number of Transactions
	Evaluation:Chemical Compound Dataset
	Evaluation:Chemical Compound Dataset
	Evaluation: Chemical Compound Dataset
	Conclusions
	Topology Is Not Enough (Sometimes)
	Extension To Discovering Geometric Patterns
	What Is Good With Geometry?
	Search Space Of Purely Topological Isomorphism
	Use Of Coordinates In Geometric Isomorphism
	Finding Frequent Subgraphs
	FSG: Methodology
	
	Graph/Subgraph Isomorphism: Hard Problems
	FSG Approach: Candidate Generation

