
IPAM WS IV 4-8 dec. 2006 Parallel HW for Pairings pp. 1 / 78

STMicroelectronics
Advanced System Technology

Parallel Hardware for the
Computation of Pairings

Luca Breveglieri, Gerardo Pelosi
Politecnico di Milano, Italy

luca.breveglieri,gerardo.pelosi@polimi.it
and

Guido Bertoni, Pasqualina Fragneto - ST Microelectronics, Italy
guido.bertoni,pasqualina.fragneto@st.com

Giampaolo Agosta, Martino Sykora - Politecnico di Milano, Italy
giampaolo.agosta,martino.sykora@polimi.it

IPAM WS IV 4-8 dec. 2006 Parallel HW for Pairings pp. 2 / 78

Outline

• Recall on Pairings (e.g. Tate)
• Overview of Pairing Options
• Computing Pairings – State of the Art
• Parallel Coprocessors for Pairings

– Methodology – architecture and design
– Instant Break – back to elliptic curve crypto
– Case I – dedicated parallel HW
– Case II – more on dedicated parallel HW
– Case III– programmable reconfigurable HW

• Considerations and Conclusion

IPAM WS IV 4-8 dec. 2006 Parallel HW for Pairings pp. 3 / 78

Recall on Pairings
definition of pairing

and cryptographic relevance

IPAM WS IV 4-8 dec. 2006 Parallel HW for Pairings pp. 4 / 78

Pairing Recall - I

• groups G1 and G2 are additive and multiplicative
• function e () commutes with addition:

– e (p1 + p2, q) = e (p1, q) ⋅ e (p2, q)
– e (p, q1 + q2) = e (p, q1) ⋅ e (p, q2)

• function e () commutes with iterated addition:
– e (np, q) = e (p, nq) = e (p, q)n

• difficult discrete log. problem both in G1 and G2
• for G1 use groups of points on elliptic curves
• for G2 use finite field multiplicative groups

211:),(GGGqpe →×

IPAM WS IV 4-8 dec. 2006 Parallel HW for Pairings pp. 5 / 78

Pairing Recall - II

bilinearity: abQPebQaPe),(),(= 1, GQP ∈∀
Zba ∈,

211:),(GGGqpe →×

ee((aPaP, , bQbQ) =) = ee((bPbP, , aQaQ))

consequence relevant for cryptography

can swap the two integers a and b

IPAM WS IV 4-8 dec. 2006 Parallel HW for Pairings pp. 6 / 78

Cryptographic Interpretation of Pairing

• s ∈ N is secret P, Q and E (curve) are public
• sP, sQ must be hard discrete log. problems
• es must be a hard discrete log. problem

ee(P(P, , Q) Q) isis the the element for establishingelement for establishing the the encryptionencryption keykey
and and is computed byis computed by meansmeans of a of a pairingpairing

P

sQ
e(P, Q)s

A

B

A
e(P, Q)s

sP

Q B

IPAM WS IV 4-8 dec. 2006 Parallel HW for Pairings pp. 7 / 78

IBE - Boneh-Franklin Protocol

Bob Alice

V = M ⊕ e (rIDA, Ppub) and rP

IDIDAA

master key s : secret
P, Ppub= sP : public

Trusted Authority

IDAr r randomrandom

IDIDAAPpub

sIDsIDAA

<V, <V, rPrP>>

ee(rID(rIDAA, , PPpubpub) =) = ee(rID(rIDAA, , sPsP) =) = ee(ID(IDAA, P), P)rsrs = = ee(ID(IDAA, P), P)sr sr = = ee((sIDsIDAA, , rPrP))

V ⊕ e (sIDA, rP) = M

Boneh-Franklin is similar to the ElGamal cryptosystem
but rKp,A is replaced by a pairing e(rIDA, Ppub) (e.g. Tate)

⊕ is a bitwise XOR

IPAM WS IV 4-8 dec. 2006 Parallel HW for Pairings pp. 8 / 78

Pairing Options

parameters curves
and algorithms

IPAM WS IV 4-8 dec. 2006 Parallel HW for Pairings pp. 9 / 78

Pairing Options - Fields
• F2

m binary field
– has reduced HW (and partly SW) complexity
– may not be recommendable due to attacks

(Coppersmith attack, and others)

• F3
m ternary field

– has reduced HW complexity (but worse than F2
m)

– is suppsed to be less prone to efficient attacks
• Fp prime field

– is more complex to implement in HW
(arithmetic is more similar to that of integers)

– is a “flat” field, without any specific internal structure

IPAM WS IV 4-8 dec. 2006 Parallel HW for Pairings pp. 10 / 78

Pairing Options - Types
• Weil: is the hystorical pairing definition

– is less efficient than others invented later
– becomes more efficient for very high security levels

(as it does not have any final exponentiation)

• Tate: is the most popular pairing definition in crypto
– halvens the Weil definition, but adds a final exponentiation
– is the basis for defining the remaining ones (Eta and Ate)
– Eta and Ate are more efficient in special cases

• Eta: is an optimization of the Tate definition
– reduces slightly computational complexity
– but works only for supersingular curves

• Ate: is an optimization of the Tate definition
– reduces slightly computational complexity
– and is conceived for non-supersingular curves

IPAM WS IV 4-8 dec. 2006 Parallel HW for Pairings pp. 11 / 78

Pairing Options - Curves
• Pairings map elliptic curve points of order r to values in the

underlying finite field or in an extension thereof.

• Ordinary elliptic curves
– are completely generic (but smooth, of course)
– are definable over the fields F2

m, F3
m and Fp

– the embedding degree is k > 1 (and may be > > > 1)
(k is the field min. ext. degree to contain all the order r points)

– and hence need have special support algorithms for finding
curves with a sufficiently low parameter k

• Supersingular elliptic curves
– have a special property related to the # of curve points
– are definable over the fields with embedding degree:

• F2
m k = 4

• F3
m k = 6

• Fp k = 2
– and allow to obtain simplifications of various kinds

IPAM WS IV 4-8 dec. 2006 Parallel HW for Pairings pp. 12 / 78

Pairing Options - Algorithms
• binary field F2

m has algorithm
– Kwon-ETA, only for supersingular curves

• ternary field F3
m has algorithms

– Duursma-Lee (DL) and two variants:
• Kwon (K)
• Refined DL (RDL)

all of them only for supersingular curves
– ETA, only for supersingular curves

• prime field Fp has algorithms
– BKLS-GHS, for any type of curve

(is the basic Miller alg., slightly optimized)
– ATE, only for non-supersingular curves

• still an open list, there may be more in the future

IPAM WS IV 4-8 dec. 2006 Parallel HW for Pairings pp. 13 / 78

with suited parametrizations
this conditional can be solved

Example – Basic Miller Alg. in Fp
input: m = ⎡log2 r⎤ r = (rm − 1, …, r0)2 P ∈ E (Fp) [r] Q ∈ E (Fpk) [r]
output: e (P, Q) = e (P, Q) = fP (DQ) ε ε = (p k − 1) / r

pick a random point R ∈ E
compute Q’ ← Q + R
V ← P
f ← 1
for i = m − 1 downto 0 do -- the loop body is the substantial part of the alg.

compute the straight lines g V,V and g V,−V for doubling V
f ← f 2 g V,V (Q’) g V,−V (R) / (g V,−V (Q’) g V,V (R))
V ← 2 V
if ri = 1 then

compute the straight lines g V,P and g (V+P),−(V+P) for adding V and P
f ← f g V,P (Q’) g (V+P),−(V+P) (R) / (g (V+P),−(V+P) (Q’) g V,P (R))
V ← V + P

end if
end for
return f ε

rational function
associated with P divisor associated with Q

elliptic
curve

final
exponent

IPAM WS IV 4-8 dec. 2006 Parallel HW for Pairings pp. 14 / 78

Computation - State of the Art

cost and performance
for computing pairings

(as of december 2006)

IPAM WS IV 4-8 dec. 2006 Parallel HW for Pairings pp. 15 / 78

Pairing Computation - SW

field & k
MOV

security
level

reference
& algorithm

time in ms
Pentium IV @ 3 GHz

 F2
239 k = 4 956 Galbraith et al. ANTS 02, LNCS

BKLS-GHS 10.8
 F2

239 k = 4 956 Barreto et al. IACR org. TR 04 / 375
Kwon-Eta-BGOhS 1.70

 F3
97 k = 6 922 Barreto et al. IACR org. TR 04 / 375

Eta-BGOhS 2.72
 F3

97 k = 6 922 Granger et al. LMS J. Cmp. & Math., 06
Refined Duursma-Lee 4.05

 F2
379 k = 4 1516 Scott et al., CHES 06, LNCS

Kwon-Eta-BGOhS 3.88
 Fp p ∼ 2512

 k = 2 1024 Scott et al., CHES 06, LNCS
BKLS (twisted) non supersingular 2.97

 Fp p ∼ 2256

 k = 4 1024 Scott et al., CHES 06, LNCS
ATE non supersingular 3.16

comparisons should be made only between similar field types
(too many arithmetic and programming differences otherwise)

time is referred to the computation of the entire pairing (with final exp.)

291 ms ARM
@ 206 MHz

IPAM WS IV 4-8 dec. 2006 Parallel HW for Pairings pp. 16 / 78

Pairing Computation – HW

comparisons should be made only between similar field types
(too many arithmetic and architectural differences otherwise)

reference field MOV
sec. level

device
type

device
size

(FPGA elm.)

multiplier
digit-size

freq.
MHz

time
µs

Shu et al.
ICFPT 06, IEEE-CS F2

239 956 FPGA 25,287 16 84 34
Shu et al.

ICFPT 06, IEEE-CS F2
283 1132 FPGA 37,803 32 72 49

Kerins et al.
CHES 05, LNCS F3

97 922 FPGA 55,616 4 15 594
Grabher et al.

CHES 05, LNCS F3
97 922 FPGA + emb.

processor 4,481 4 150 399
Ronan et al. (hyperelliptic)

ITNG 06, IEEE –CS F2
103 1236 FPGA 43,986 16 32 749

ours (Duursma-Lee) F3
97 922 FPGA 31,907 4 61 138

time is referred to the computation of the entire paring (with final exp.)
no final exp.

IPAM WS IV 4-8 dec. 2006 Parallel HW for Pairings pp. 17 / 78

Observations on Performance
• After several years of research, SW performance has

eventually reached the order of magnitude from 1 to 10
ms, yet running on powerful platforms (P IV @ 3 GHz).

• On embedded systems (which are much less powerful,
say ARM @ ≈ 200 MHz or even less), SW performance
is in the order of magnitude from 100 to 1000 ms (=1 s).

• HW performance is in the order of magnitude from 100
to 1000 µs, or slightly better in few somewhat special
cases, but clock frequencies are rather low.

• The gap between SW and HW performance is not large
(say from one to two orders of magnitude only), hence
HW implementation is likely to be in a still somewhat
primitive state, at least if comparing to SW.

• True, presently HW is only on FPGA, not on ASIC …

IPAM WS IV 4-8 dec. 2006 Parallel HW for Pairings pp. 18 / 78

Methodology

general architectural model
and how to design it

IPAM WS IV 4-8 dec. 2006 Parallel HW for Pairings pp. 19 / 78

Objective

• A methodology for exploring whether
pairing algorithms are suited to parallel
HW (or partially HW) implementation.

• A general parallel architecture model,
with replicated arithmetic function units,
connections and registers.

• Some case studies, for evaluation and
to identify promising research directions.

IPAM WS IV 4-8 dec. 2006 Parallel HW for Pairings pp. 20 / 78

Parallel Architecture Model

the function units may be replicated

Control Unit
(state machine
or processor)

Register File

(temp. variables)

Adder(s) /
Subtractor(s) Multiplier(s)

Root
Extractor(s)

Exponent
Unit(s)

Inversion
Unit(s) PPaarraalllleell

DDaattaappaatthh

Bundle of Busses

a dedicated multiple bus datapath architecture

IPAM WS IV 4-8 dec. 2006 Parallel HW for Pairings pp. 21 / 78

Static Scheduling Concepts - I
• Model the algorithm as a Data Dependence Graph

– operation ⇒ node (labeled with operation time latency)
– data dependence ⇒ directed arc

• Restructure the DDG and expose as much
parallelism as possible among the operations, yet
compatibly with additional constraints (cost, etc).

• Design the dedicated parallel architecture that
corresponds to the DDG:
– node ⇒ function unit (adder, multiplier, etc)
– directed arc ⇒ internal bus
– plus possibly registers for temporary variables

(register allocation)

IPAM WS IV 4-8 dec. 2006 Parallel HW for Pairings pp. 22 / 78

Static Scheduling Concepts - II

exampleexample

while (y < a) {
y = u + x·u·z + y·u·dy

}

high high levellevel formform
of the of the algorithmalgorithm

while (y < a) {
t1 = x·u
t2 = t1·z
t3 = y·u
t4 = t3·dy
t5 = t2 + t4
y = u + t5

}

while (y < a) {
t1 = x·u t3 = y·u
t2 = t1·z t4 = t3·dy
t5 = t2 + t4
y = u + t5

}

expose elementary expose elementary
arithmetic operationsarithmetic operations

1 1 multipliermultiplier unitunit
6 6 statementsstatements

scheduled loopscheduled loop body body
of the of the algorithmalgorithm

parallel multiplicationsparallel multiplications

2 2 multipliermultiplier unitsunits
4 4 statementsstatements

temporary variablestemporary variables

IPAM WS IV 4-8 dec. 2006 Parallel HW for Pairings pp. 23 / 78

Static Scheduling Concepts - III
beforebefore schedulingscheduling ……

… and after… and after
schedulingscheduling

2 2 multipliermultiplier unitsunits
4 control 4 control stepssteps

AsAs SoonSoon AsAs PossiblePossible
(ASAP) (ASAP) scheduleschedule

control step

time 1 1 multipliermultiplier unitunit
6 control 6 control stepssteps

Data
Dependence
Graph (DDG)

IPAM WS IV 4-8 dec. 2006 Parallel HW for Pairings pp. 24 / 78

Static Scheduling Concepts - IV

dedicateddedicated architecturearchitecture correspondingcorresponding toto the the previousprevious ASAPASAP
scheduleschedule –– includesincludes asas manymany bussesbusses asas necessarynecessary

forfor connectingconnecting allall the the functionfunction unitsunits ((herehere mulmul. and . and addadd.).)

parallel datapath busses and register file

function units

output busses

input busses

register file

muxes

IPAM WS IV 4-8 dec. 2006 Parallel HW for Pairings pp. 25 / 78

Scheduling Disciplines - I
• A scheduling discipline puts together three things:

– an algorithm to schedule, e.g. a pairing
– a target function to optimize, e.g. time performance
– and a set of constraints to fulfill, e.g. the maximum admittable

cost (= the num. of func. units) of the circuit
• In general the scheduling problem is NP-complete,

and hence hard to solve in an optimal way.
• There are several disciplines, more or less efficient,

to compute sub-optimal schedules:
– As Soon As Possible ASAP
– As Late As Possible ALAP
– Operation Scheduling OS
– List Based Scheduling LBS
– and others …

IPAM WS IV 4-8 dec. 2006 Parallel HW for Pairings pp. 26 / 78

Scheduling Disciplines - II

Scheduling disciplines can be classified depending on:
the target function and the set of constraints

the algorithm for exploring the solution space

ResourceResource--constrainedconstrained disciplinesdisciplines
minimize timetime (circuit ends algorithm as quickly as possible)

but keep cost under control (fix max num. of function units)

TimeTime--constrainedconstrained disciplinesdisciplines
minimize costcost (circuit has as few as possible function units)

but keep timetime under control (fix max time for the circuit)

IPAM WS IV 4-8 dec. 2006 Parallel HW for Pairings pp. 27 / 78

List Based Scheduling – LBS - I
• Minimize time, constrain resources (e.g. num. of FUs).
• Idea: if the freedom for placing an operation is high,

do not rush to schedule now that operation.
• How to do:

– schedule progressively the operations, until all are done
– and give preference to those that have limited freedom

• Is a compromise between ASAP and ALAP.
• Does not have a unique solution, in general.
• Is a heuristic scheduling discipline.
• But is proved to be somewhat efficient.
• And explores extensively (though not completely) the

solution space (otherwise would be NP-complete).

IPAM WS IV 4-8 dec. 2006 Parallel HW for Pairings pp. 28 / 78

List Based Scheduling – LBS - II
LBS is a resource-constrained discipline.
The LBS discipline works as follows:

describe the algorithm as a DDG (nodes and arcs)
label each DDG node with the time latency of the function unit
set the max number of function units (per unit type, possibly)
execute the following allocation step:
− for each not yet allocated node of the DDG, compute its mobility

(the time interval between the earliest and latest possible allocation)
− allocate the node(s) (i.e. the operation(s)) with minimum mobility
− if there are still unallocated nodes left, repeat the step

allocate registers for temporary variables, if necessary
output the scheduled DDG(s) and variable allocation(s)

One of the scheduled DDG(s) (e.g. a time-optimal one)
will be used to design the circuit.

IPAM WS IV 4-8 dec. 2006 Parallel HW for Pairings pp. 29 / 78

LBS – How to Program
• The LBS discipline is too complex to apply manually, therefore

design and implement a specific SW toolchain.
• Toolchain inputs (must be prepared manually):

– a file containing the pairing algorithm, programmed at the level
of the base field operations and with temporary variables (use
an ad hoc defined language to do so, in assembler style)

– a description file listing the latencies of the FUs and all other
constraints (e.g. max # of FUs per type, etc)

• Toolchain steps to execute (are two procedures written in C):
– run the LB scheduling procedure and collect all possible

schedules (may be numerous …) – filter them if necessary
– run an auxiliary register allocation procedure, at least for

the interesting schedules, and collect the allocation table
• Toolchain output: a file listing all possible LB schedules.
• Possibly, automatically design the VHDL model of the schedules

of interest, including in particular the controller unit (this part of
the toolchain is currently under development).

• Otherwise, do so manually, then synthesize and evaluate.

IPAM WS IV 4-8 dec. 2006 Parallel HW for Pairings pp. 30 / 78

Instant Break

back to elliptic curve cryptography

IPAM WS IV 4-8 dec. 2006 Parallel HW for Pairings pp. 31 / 78

Parallelism in ECC
• Parallelism is proved or shown to exist and to be exploitable in ECC.

– A. Antola, G. Bertoni, L. Breveglieri, P. Maistri, Parallel Architectures for Elliptic Curve
Cryptoprocessors over Binary Extension Fields, Proc. Midwest Symposium, IEEE, 2003
– parallelism for ECC, static scheduling and evaluation

– G. Bertoni, L. Breveglieri, C. Paar, T. Wollingher, Finding Optimum Parallel Coprocessor Design
for Genus 2 Hyperelliptic Curve Cryptosystems, Proc. ITCC, IEEE, 2004 – as above, but for HECC

– G. Bertoni, L. Breveglieri, F. Sozzani, F. Turcato, A Parallelized Design for an Elliptic Curve
Cryptosystem Coprocessor, Proc. ITCC, IEEE, 2005 – as above, but in Fp

– G. Bertoni, L. Breveglieri, C. Paar, T. Wollingher, Performance of HECC Coprocessors Using
Inversion-Free Formulae, Proc. ICCSA, LNCS 3982, Springer, 2006 – as above, but for HECC

– L. Batina, B. Preneel, K. Sakiyama, I. Verbauwhede, Superscalar Coprocessor for High-Speed
Curve-Based Cryptography, Proc. CHES, LNCS 4249, Springer, 2006
– parallelism in (H)ECC, dynamic scheduling, implementation figures, etc

– more ? … (add if you know)

• ECC precedes pairing, why not extending parallelism to pairing as well ?
– G. Bertoni, L. Breveglieri, P. Fragneto, G. Pelosi, Parallel Hardware Architectures for the

Cryptographic Tate Pairing, ITNG, IEEE, 2006 – dedicated parallel hardware
– G. Agosta, L. Breveglieri, G. Pelosi, M. Sykora, Programming Highly Parallel Reconfigurable

Architectures for Public-Key Cryptographic Applications, ITNG, IEEE, 2007 (to appear)
– reconfigurable parallel programmable hardware

– more ? ... (add if you know)

IPAM WS IV 4-8 dec. 2006 Parallel HW for Pairings pp. 32 / 78

Case Study – I

dedicated architectures
for Tate pairing in F3

m

IPAM WS IV 4-8 dec. 2006 Parallel HW for Pairings pp. 33 / 78

Objective

• Design a parallel HW dedicated coprocessor
for the Tate pairing in the base field F3

m.
• Design and optimize the architecture by

means of the LBS scheduling methodology.
• Analyze performance and cost for several

automatically scheduled solutions.
• Experimental performance / cost evaluation

on FPGA and comparison with litterature.
• Some final considerations …

IPAM WS IV 4-8 dec. 2006 Parallel HW for Pairings pp. 34 / 78

Basic (Arithmetic) Assumptions
• Elementary arithmetic in F3 = {−1, 0, 1}.
• Base field F3

m (m = 97 elements of F3).
• Representation in standard basis by the

trinomial xm + xh − 1 (for a small h).
• Supersingular elliptic curve over F3

m.
• Three pairing algorithms to analyze:

– Duursma-Lee (Miller algorithm in closed form)
– Kwon-BOGS (an algorithmic variant of DL)
– Refined DL (unrolled DL plus refinement)

IPAM WS IV 4-8 dec. 2006 Parallel HW for Pairings pp. 35 / 78

Duursma-Lee Algorithm
formulated at the level of the operations in the base field F3

m

total computational load of the DL loop body

IPAM WS IV 4-8 dec. 2006 Parallel HW for Pairings pp. 36 / 78

Tate Pairing Algorithms

• Operation counting in the loop body of the algorithms
for the base field F3

m.

• These operations will be modeled in HW (i.e. VHDL).
• Evaluation will be done by implementation on FPGA.

IPAM WS IV 4-8 dec. 2006 Parallel HW for Pairings pp. 37 / 78

Max Degree of Parallelism
ASAP schedules in ideal conditions:

– there are unboundedly many function units and busses
– time latencies are all identical (i.e. all = 1 clock cycle)

the “variability range” is max number of FUs beyond which
a further time latency reduction does not happen any more

In principle, exploitable parallelism is high !

IPAM WS IV 4-8 dec. 2006 Parallel HW for Pairings pp. 38 / 78

• Addition and subtraction (same func. unit)
are performed in parallel on m elements of F3.

• Multiplication is performed in the digit-serial /
parallel to parallel way:
– first factor completely available in parallel
– second factor: scanned by a window of D ≥ 1 bits

at a time (with D ≤ m − h to simplify reduction)
– product completely available in parallel at the end

• Cube power: easy, interleave 0’s and reduce.
• Cube root: almost easy, so-called “thinning”.

Function Units - HW Description

IPAM WS IV 4-8 dec. 2006 Parallel HW for Pairings pp. 39 / 78

Function Units - Adder
adder of elements of F3

m

computes ± A(x) ± B(x)

A(x) B(x)

parallel / parallel to
parallel addition unit

F3 coded as
−1 1 0
0 0 0
1 0 1

sub-unit for inverting the
sign of an element of F3

m

f

−f−A(x)

A(x)

IPAM WS IV 4-8 dec. 2006 Parallel HW for Pairings pp. 40 / 78

Function Units - Multiplier

input: A, B ∈ F3
m

output: C ≡ A × B mod p(x)

C ← 0
for i = 0 to ⎡m / D⎤ − 1 do

C ← Bi A + C
A ← A xD mod p(x)

return C

digit-serial multiplication core

accumulator

mod p(x)

shift register A xD mod p(x)

2m 2m

D 2m

2m + 2D − 2

2m + 2D − 2

2m

LSD
modular

multiplier

parallel / digit-serial to
parallel multiplication unit

multiplier of elements of F3
m

computes A(x) × B(x)

IPAM WS IV 4-8 dec. 2006 Parallel HW for Pairings pp. 41 / 78

control steps

looploop bodybody

time

ASAP Schedule - Duursma-Lee

++ adderadder / / subtrsubtr..

×× multipliermultiplier

C C cubecube powerpower

R R cubecube rootroot

unitaryunitary
latencies latencies &&

unconstrainedunconstrained
resourcesresources

IPAM WS IV 4-8 dec. 2006 Parallel HW for Pairings pp. 42 / 78

control steps

looploop bodybody

time

ALAP Schedule - Duursma-Lee

++ adderadder / / subtrsubtr..

×× multipliermultiplier

C C cubecube powerpower

R R cubecube rootroot

unitaryunitary
latencies latencies &&

unconstrainedunconstrained
resourcesresources

IPAM WS IV 4-8 dec. 2006 Parallel HW for Pairings pp. 43 / 78

control steps

looploop bodybody

time

LBS Schedule - Duursma-Lee
Function UnitsFunction Units

9 9 multipliersmultipliers

4 4 addersadders//subtrsubtr.s.s

1 1 cubecube rootroot unitunit

1 1 cubecube power power unitunit

FU FU Latency Latency TimeTime

real timingsreal timings

Execution Execution TimeTime

8787 clock clock cyclescycles

TempTemp. . RegistersRegisters

35 35 eacheach of 2of 2mm bitsbits

(m = 97 D = 4)

IPAM WS IV 4-8 dec. 2006 Parallel HW for Pairings pp. 44 / 78

Architecture Evaluation – I

1
1
1
1
1
1
1
1
√

4
3
3
4
4
4
4
1
+

13224

10516
10815

9927,8
871≥ 9

159
234
423
T

2
2
2
^

3
2
1
×

identification of the optimal time schedule, depending on
the number of multipliers (the cost-dominant function unit)

optimal T for the loop body of the DL alg.

0

50

100

150

200

250

300

350

400

450

0 1 2 3 4 5 6 7 8 9 10 11 12 13
number of multipliers

time (clock cycles)

≈ 90 % optimum T

optimal
time

IPAM WS IV 4-8 dec. 2006 Parallel HW for Pairings pp. 45 / 78

Architecture Evaluation - II

identification of the optimal area-time product schedule, depending on
the number of multipliers (the cost-dominant function unit)

number of multipliers

optimal AT for the loop body of the DL alg.
normalized AT

optimum AT

optimal
area-time

TAT %√+^×

29.7
34.6
20.6
9.6
min
2.7
0.2
6.3
23.8

991328
1

1
1
1
1
1
1
1

4

3
3
4
3
2
1
1

13514

10516
10815

9927

871≥ 9

168
246
426

1
1
1

3
2
1

non
optimal

IPAM WS IV 4-8 dec. 2006 Parallel HW for Pairings pp. 46 / 78

complete pairing algorithms

Architecture Evaluation - III

time saturates as the number
of multiplication units grows

(m = 97 D = 4)

IPAM WS IV 4-8 dec. 2006 Parallel HW for Pairings pp. 47 / 78

Architecture Evaluation - IV

AT exhibits a minimum point
(changes depending on the alg.)

complete pairing algorithms (m = 97 D = 4)

IPAM WS IV 4-8 dec. 2006 Parallel HW for Pairings pp. 48 / 78

time-optimal algorithms when varying the number of multipliers,
the digit size D and the base field size m (= 97, 193, 239 F3 elements)

minimum execution time (in clock cycles) for the loop body
of the DL \ RDL algorithms, with 5 multipliers

Architecture Evaluation - V

IPAM WS IV 4-8 dec. 2006 Parallel HW for Pairings pp. 49 / 78

Function Units - Summary

FFone flip-flop
MX one 2-to-1 mux

F3A one adder in F3

F3M one multiplier in F3

eventually measure all the costs as FPGA elements

area cost and time latency of the various
function units, depending on m and D

IPAM WS IV 4-8 dec. 2006 Parallel HW for Pairings pp. 50 / 78

type number of
adders / multipliers

clock frequency
(MHz)

area
(FPGA slices)

time
(clock cycles)

Kerins at al.
(CHES 2005) ≥ 100 / ≈ 18 ≈ 15 55,616 8,924

scheduled DL
(2006) 4 / 9 60.9 31,986 8,439

Grabher et al.
(CHES 2005)

not a parallel design
(serial, one function unit per type) 59,946

FPGA implementation - VirteX2P100 – performance vs. cost
(time is referred to the entire computation of the DL algorithm, but no final exp.)

% FPGA 9 multipliers 4 adders / subtr.s cube power
& root

busses registers
& controller

72 % 27 % 2.8 % 0.9 % 41.3 %

Architecture Comparisons

FPGA percentage occupation

ESTIMATE
not fully

implemented

(D = 4)
suggests
to bound

connections

IPAM WS IV 4-8 dec. 2006 Parallel HW for Pairings pp. 51 / 78

Some Considerations
• The Tate pairing algorithms in F3

m over supersingular
curves are well suited for parallelism at the level of
the operations in the base field.

• The complexity of the analysis and synthesis of the
parallel HW solutions is beyond the reach of intuitive
or hand-made techniques.

• Formal methodologies and disciplines (scheduling)
are advisable to carry out an extensive exploration
of the architectural solution space.

• More extensive exploration is however necessary:
– other types of fields curves and algorithms wanted
– more implementations wanted (and ASIC, not only FPGA)
– include connections in the constrained resources - next
– is scheduling limited to be useful only in pure HW ? - next

IPAM WS IV 4-8 dec. 2006 Parallel HW for Pairings pp. 52 / 78

Case Study – II

more on dedicated architectures
for Tate pairing in F3

m and Fp

IPAM WS IV 4-8 dec. 2006 Parallel HW for Pairings pp. 53 / 78

Objective

• Design a more “realistic” parallel architecture:
– adopt a somewhat standard datapath model
– possibly more suited to multiple algorithms

• Constrain the following computing resources:
– the number of function units
– the number of interconnections

• Schedule a few algorithms and compare the
costs and performances of the solutions.

• Some final considerations …

IPAM WS IV 4-8 dec. 2006 Parallel HW for Pairings pp. 54 / 78

Parallel Architecture Model

the FUs may be replicated

a standard 3-bus datapath architecture

input bus 1

input bus 2

output bus

more FUs

unary
operator

binary
operator

Control
Unit

(state mac.
or proc.)

Register
File

(temp. var.)

FU1

FU4

FU2

FU3

IPAM WS IV 4-8 dec. 2006 Parallel HW for Pairings pp. 55 / 78

Duursma-Lee Algorithm in F3
m

optimal T for the loop body of the DL alg. in F3
m

0

50

100

150

200

250

300

350

400

450

500

1 2 3 4 5 6 7 8

number of multipliers

two input busses - one output bus

unlimited number of busses

99
105
108
132
159
234
423

T

116
124
131
157
180
250
438

T

1
1
1
1
1
1
1

√

3
3
4
4
4
4
1

+

24

16
15

27, 8

2
2
2

^

3
2
1

×

with 3 busses

under 20% slow down

(m = 97 D = 4)
unlimited busses

IPAM WS IV 4-8 dec. 2006 Parallel HW for Pairings pp. 56 / 78

schedule (unlimited # of busses)
time<<+×

2180215
2660214
3180213
4700312
9380111

BKLS Algorithm in Fp - I
optimized BKLS alg. for supersingular curve p ≈ 2512 & k = 2

time<<+outputinput×

schedule (limited # of busses)

238011125
281011114
338011133
478011112
942011111

under 10% slow down

loop body only

FU time latencies in clock cycles

20201010520

<<+outputinput×

L. Marnane, preprint

AT is almost constant

time is in clock cycles

IPAM WS IV 4-8 dec. 2006 Parallel HW for Pairings pp. 57 / 78

BKLS Algorithm in Fp - II

schedule (limited # of busses)

236012225
238011125
240011115
time<<+outputinput×

optimal T for the loop body of the BKLS algorithm

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1 2 3 4 5 5 5 5 5 5

limited # of busses

unlimited # of busses

effect of some combinations
of input & output busses

very small
changes

other combinations
of FUs with 5 multipliers

(not relevant)

IPAM WS IV 4-8 dec. 2006 Parallel HW for Pairings pp. 58 / 78

Some Considerations
• When bounding the number of connections,

the incidence on time performance is small
(roughly from 10 % to 20 % at worst).

• There is a relevant exploitable parallelism
(e.g. up to 5 multipliers).

• The architecture is somewhat standard and:
– could be easily rescheduled for other algorithms
– provided these alg.s use the same function units

• For instance, one might schedule also:
– the final exponentiation (for Tate pairing)
– elliptic curve auxiliary stuff (e.g. scalar mult.)

IPAM WS IV 4-8 dec. 2006 Parallel HW for Pairings pp. 59 / 78

Case Study – III

reconfigurable programmable
architectures for Tate pairing in Fp

IPAM WS IV 4-8 dec. 2006 Parallel HW for Pairings pp. 60 / 78

Motivation
• Reconfigurable parallel programmable architectures

have gained popularity, as it is possible to integrate
many (say 10-100) simple small processors, each
with a local program memory, on a single chip.

• A reconf. par. programmable architecture is similar to
a dedicated one, but the FUs are programmable.

• This kind of architectural model:
– is object of intense research nowadays, and various

research projects exist as well as some commercial
solutions of differing types

– is proposed for several application types, (e.g. multimedia),
where cryptography is likely to exist as well

• Therefore, such a model is an interesting case study
for the parallel computation of pairings.

IPAM WS IV 4-8 dec. 2006 Parallel HW for Pairings pp. 61 / 78

Objective
• Explore the feasibility of reconfigurable parallel

programamble architectures for pairing in Fp.
• Program a simple such architecture model, namely

the future multi-processor DSP-Fabric chip by ST
Microelectronics (also called Tiled Architecture).

• Use an appropriate parallel programming technique,
that includes scheduling, to achieve a satisfctory
parallelism level for the entire pairing algorithm.

• Analyze time performance for several schedules,
with respect to the number of processing nodes.

• Experimental evaluation of time performance and
comparisons with possible similar solutions.

• Some final considerations …

IPAM WS IV 4-8 dec. 2006 Parallel HW for Pairings pp. 62 / 78

Generalities
• According to AsTrO taxonomy, reconfigurable

architectures of the Scalar Operand Network
type (those of interest here) can be classified
as below, depending on the method for:
– assigning instructions blocks to nodes
– moving data through memory and nodes
– scheduling the instruction flow in each node

• The three tasks above can be carried out in a
static way (decided at compile-time) or in a
dynamic way (decided at execution-time).

• DSP-Fabric is of the static/static/static type.

IPAM WS IV 4-8 dec. 2006 Parallel HW for Pairings pp. 63 / 78

Tiled Architecture Model - I
DSP-Fabric (by ST Microelectronics) with 64 nodes

processor
node

shared
connections
(reconfig.)

cluster of
four nodes

IPAM WS IV 4-8 dec. 2006 Parallel HW for Pairings pp. 64 / 78

cluster of four nodes
(fully interconnected)

architecture of the node
(datapath & control)

Tiled Architecture Model - II

32 bit small
simple & fast

processor

32 bits

32 bits

IPAM WS IV 4-8 dec. 2006 Parallel HW for Pairings pp. 65 / 78

a feasible static interconnection of clusters

if both the fan-in and fan-out of one 4-node cluster are of 4 wires,
clusters 0 and 1 saturate, respectively, while 2 and 3 do not

Tiled Architecture Model - III

shared connections

hierarchical cluster of 16 nodes (partially interconnected)

IPAM WS IV 4-8 dec. 2006 Parallel HW for Pairings pp. 66 / 78

Pairing on Tiled Architecture
• Idea: imagine of replacing the arithmetic HW function

units (add, mul) with equivalent SW function units:
– each SW function unit is a program routine
– and runs split in parallel on a group of nodes

• Optimize each SW FU independently and use as few
nodes as possible (intra-routine parallelism):
– so far compilers can not do so efficiently
– intra-routine parallelism need be done manually

• Program in parallel the pairing algorithm and use the
SW FUs as black boxes (inter-routine parallelism):
– schedule the pairing algorithm for parallel execution
– inter-routine parallelism can be determined in an automated

way similarly to the case of dedicated HW architectures
• Execute the pairing algorithm with a cycle-accurate

simulation tool and evaluate performance vs. cost.

IPAM WS IV 4-8 dec. 2006 Parallel HW for Pairings pp. 67 / 78

SW Function Unit – Adder - I
• Modular addition (integer addition plus reduction) is

computable on a subset of nodes and is organized
in a parallel way.

• The addition algorithm is divided into smaller blocks
(e.g. 32 + 32 → 32 bits) as well as reduction, and is
programmed as a SW function unit.

• Here a carry-select approach is followed, to speed
up the carry propagation chain.

• Some intra-routine optimization is necessary to
parallelize well (hand-made).

• The resulting SW routines must then be scheduled
to expose parallelism compatibly with the selected
constraints (e.g. the max number of available nodes).

IPAM WS IV 4-8 dec. 2006 Parallel HW for Pairings pp. 68 / 78

part of the SW implementation of the modular adder as a
SW function unit (for 2 summands of 3 words each)

node 1 node 2 node 3 node 4 node 5 …
clock cycles

data dependence

NOPs

SW Function Unit – Adder - II

intra-routine parallelismcarry select
approach

IPAM WS IV 4-8 dec. 2006 Parallel HW for Pairings pp. 69 / 78

sample time / space scheduling of a 128-bit modular addition
dark and light shaded areas represent integer addition and reduction, resp.

SW Function Unit – Adder - III

hand-made
reassignement
of instructions

time
clock
cycles

nodes nodes
with node
wrapping

carry-select
appoach

IPAM WS IV 4-8 dec. 2006 Parallel HW for Pairings pp. 70 / 78

• Modular multiplication is computable on a subset
of nodes, similarly to what done for addition.

• It is computed by the well-known Montgomery alg.
of the parallel / digit-serial to parallel type.

• The implementation is similar to that of addition
(details omitted) and intra-routine optimization is
again necessary to parallelize well (hand-made).

• The resulting SW routines must then be scheduled
(along with addition) to expose parallelism compatibly
with the constraints (e.g. the max number of nodes).

SW Function Unit – Multiplier

IPAM WS IV 4-8 dec. 2006 Parallel HW for Pairings pp. 71 / 78

high-level automatic LB scheduling of the DDG for the doubling step
(Miller alg. in Fp)

<< shift leftshift left

++ / / −− addadd / sub/ sub

∗∗ Montgomery Montgomery multmult..
unitary latenciesunitary latencies &&

unconstrained resourcesunconstrained resources

to the next
loop iteration

Algorithm Scheduling

inter-routine
parallelism

looploop bodybody

IPAM WS IV 4-8 dec. 2006 Parallel HW for Pairings pp. 72 / 78

time and area/time product for the software implementation of the
Montgomery multiplier as a function of input words and number of nodes

Parameter n is the number of words (here 32 bit words).

Area is evaluated as the number of nodes (processors).

hand-made
reassignment
of instructions

SW Function Unit – Summary

IPAM WS IV 4-8 dec. 2006 Parallel HW for Pairings pp. 73 / 78

time (clock cycles)

area (# of nodes)

Pareto A × T diagram

≈ 64 nodes
≈ 1 million cycles

≈ 48 nodes
≈ 2 million cycles

≈ 40 nodes
≈ 3 million cycles

Architecture Evaluation

IPAM WS IV 4-8 dec. 2006 Parallel HW for Pairings pp. 74 / 78

Architecture Comparisons
• Difficult to compare DSP-Fabric with FPGA,

however case study 1 reports 8.439 @ 60.9 MHz,
time 138 µs (but for F3

m with m = 97, not for Fp)
• DSP-Fabric (Fp, p ≈ 2512): ≈ 1 million cycles, @ up

to 400 MHz, 64 nodes, time 2.5 ms (chip ≈ 7 mm2

in ASIC technology, planned for 2009).
• Strong ARM (Fp, p ≈ 2512): ≈ 60 million cycles @

206 MHz, 1 node, time 291 ms (Scott et al. 2006).
• See also Scott et al. 3 ms (on a P IV @ 3 GHz).

Parallelism does very well in DSP-Fabric !
time performance span

FPGA = 1 DSP-Fabric ≈ 10-102 ARM ≈ 103-104

IPAM WS IV 4-8 dec. 2006 Parallel HW for Pairings pp. 75 / 78

Some Considerations
• Reconfigurable programmable parallel architectures

seem to be a promising technology for paring (and
also for ECC, as most operations are common).

• Present compilers for reconfig. architectures can not
exploit the parallel features of the current pairing
algorithms (and of ECC algorithms either).
⇒ need for the automation of parallelization
⇒ other case studies (algorithms, fields, FUs)

• Moreover, such architectures have interesting power
consumption features, which fact perhaps could be
exploited for cryptography as well (against attacks).

IPAM WS IV 4-8 dec. 2006 Parallel HW for Pairings pp. 76 / 78

The End (by now)

overall conclusions
and future research

IPAM WS IV 4-8 dec. 2006 Parallel HW for Pairings pp. 77 / 78

Overall Conclusions
• Pairing algorithms exhibit a notable degree of

parallelism, in several different conditions:
– parallelism is intrinsic to the algorithm and stable
– is due not only to “side” effects (parameters or

simplifying hypotheses or technology)
• Parallelism is better exposed at the level of the

operations in the base field (not at high level).
• Formalization and automation are necessary to

expose and exploit parallelism (e.g. scheduling).
• Various technological options are available to

compute pairings (not only, e.g. ECC) in parallel.
• This seems to be a research worthy of pursuing.

IPAM WS IV 4-8 dec. 2006 Parallel HW for Pairings pp. 78 / 78

Future Research
• Continue exploration with other current and possibly

newcoming pairing algorithms.
• Complete and improve design toolchain:

– in particular add a VHDL modeling procedure
– possibly add a graphical output facility

• And extend methodology to the scheduling
of multiple algorithms:
– pairings are unlikely to be used in isolation
– need be mixed with other algorithms (e.g. ECC)
– identify reasonable criteria for assigning relative weights

to multiple algorithms
– criteria might come from the mix of algorithms needed

by high-level cryptographic protocols (e.g. IBE)
• Add more if you want …

