Another Attempt to Sieve With Small Chips— Part II: Norm Factorization

Rainer Steinwandt Florida Atlantic University

(joint work with Willi Geiselmann, Fabian Januszewski, Hubert Köpfer and Jan Pelzl) Setting the Scene Sieving step of the NFS: yields (a,b)-pairs such that two integers N_{a/r}(a,b) homogeneous polynomials have "good chances to be smooth".

Challenge: special purpose designs like TWIRL produce (a,b)-candidates at a high rate → fast smoothness test (+ factoring)

Motivation

One Solution (e.g., TWIRL):

log "big" prime factors during sieving

→ adds to the—anyway non-trivial complexity of a device like TWIRL

Alternative idea:

Could an ECM device do all the smoothness tests + factorizations "in real time", hence eliminating the need for logging primes?

Objective

More ambitious hope:

Could an ECM device even replace a complete algebraic TWIRL device?

More modest goal here:

Is an ECM post-processing for a 1024-bit TWIRL feasible?

TWIRL's diary logic could be avoided
... and performance would suffice for the device from Willi's talk

NFS Parameters

No asymptotic claim, values as for TWIRL:

Sieving region:

-A<a≤A, 0<b≤B with A=5.5.10¹⁴, B=2.7.10⁸

Rational side:

- deg(N_r)=1
- smoothness bound: 3.5.109
- two large primes
 ≤4.10¹¹

Algebraic side:

- $deg(N_a)=5$
- smoothness bound: 2.6.10¹⁰
- two large primes
 ≤ 6.10¹¹

Required Performance

- Expected TWIRL output (1 GHz):
 ~655 (a,b)-candidates per second (a few more at the beginning)
- Numbers to be tested and factored: $N_r(a,b)$: no more than 216 bit $N_a(a,b)$: no more than 350 bit

Design goal: ECM engine to cope with 1000 such (a,b)-pairs per second

Elliptic Curve Method

Basic idea to factor n:

(a) Pick random elliptic curve $E(\mathbb{Z}/n\mathbb{Z})$ & $P \in E$ (b) For some $k=p_1^{e_1}\cdots p_r^{e_r}$, compute $k \cdot P$ (c) ... hope that n has prime divisors p,q: $k \cdot P = 0$ in $E(\mathbb{Z}/p\mathbb{Z})$ and $k \cdot P \neq 0$ in $E(\mathbb{Z}/q\mathbb{Z})$ gcd computation yields divisor of n Here: prime bound 402 (r=79, $e_i = \lfloor \log_{p_i}(530) \rfloor$)

Choice of Curves

Atkin/Morain '93: For S:=(12:40) \in Q² on E: Y²=X³-8X-32 we have

- ord(S) = ∞ , and
- each r.S yields a curve E_r with $16|\#E_r$.

Note: Unlike E, we can transform the curves E_r into Montgomery/Chudnovsky form By²=x³+Ax²+x

...can't do better

(Mazur '76)

Precomputation

84 curves E_r should suffice—estimated loss of "good" (a,b)-candidates <0.5%:

Precompute & store 84 rational βs from which needed curves & points mod n can be derived:

- numerators & denominators ≤17 kbit
- mod n reduction for new curve in parallel to ECM computation on available curves

Montgomery ladder _for point multiplication

2nd Phase of ECM

Here: Improved Standard Continuation (Montgomery/Brent):

- (Large) primes considered: 402<q<9680
- (Lurge) Fridden
 For each q we have r,s: q=2(st+r) + 1
 f=30

Check $q \cdot Q \stackrel{?}{=} 0$ via (2st+1) $\cdot Q \stackrel{?}{=} \pm 2r \cdot Q$

With $v \cdot Q = (X_v : - :Z_v)$, test all qs at once via

 $gcd(\Pi_{r,s} (X_{2r}Z_{2st+1} - X_{2st+1}Z_{2r}), n) \neq 1?$

Product Tree

...depth 3 sufficient for our purposes

- ... allows recovery of multiple divisors at once
- ... serves as primality test
- ... most encountered divisors will be prime (preceding trial division for factors <10⁵)

• 9592 primes, 108 prime powers,
 • pipelined structure with
 10 division circuits

Structure of a Factorization Unit

Rational & Algebraic Factorization

Rational side:

- norm comput. ≈ evaluate affine polynomial
- av. factor size after trial division: ≈ 200 bit

(a,b)-candidates passing rational tests (along with factors)

Algebraic side:

- norm comput. ~ 5 mult. + 5 add.
- basic structure as on the rational side, identical set of elliptic curves
- operands are larger, but fewer candidates

Area Estimate

Existing work on fast arithmetic applies (Montgomery, Tenca/Koç, Pelzl et al.,...)

- With 0.13µm CMOS, one "ECM cluster" (6 ECM units + reduction unit):
 ≈ 4.92 mm² (rational)
 ≈ 5.76 mm² (algebraic)
- Trial division pipeline:
 ≈ 0.17 mm² (rational)
 ≈ 0.21 mm² (algebraic)

Central control unit: ≤ 1 mm²

Coping with TWIRL...

... for chips of size 147 mm² (≈ Pentium 4) we can group 29 rational or 25 algebraic ECM clusters on one chip

... Software simulations for factoring norms:

- Rational side:
 on average 61 curves (--> 0.8 s per norm)
- Algebraic side: 240 MHz
 on average 70 curves (-2 s per norm)

5 rational + 6 algebraic chips should suffice

Conclusions

... for a 1024-bit TWIRL, logging the prime factors does not seem to be necessary: post-processing with ECM seems realistic

... coping with the (a,b)-candidates output by the device in Willi's talk should be doable

More details:

ICISC '06 proceedings, pp. 118-135 (Springer LNCS 4296)