

Outline

- Working principle of power analysis attacks
- DPA Attacks on unprotected implementations
- Countermeasures
 Asking
 - (Hiding)
- Second-order DPA attacks, and template-based DPA attacks on protected implementations

2/21

Comparison, further reading

The goal of this talk is to look into different flavors of DPA attacks.

Elisabeth Oswald

Contractive of the second seco

5/21

Elisabeth Oswald

Christen Strong

Template-based DPA attacks					
A template attack consi Characterization Phase Determine those points "relevance" and build te • A template is built f • A template consists distribution.	the pair (m,C) that defines multiva	Decur ariate normal			
Analysis Phase: Match the templates to the given trace(s). The template that fits best, indicates the correct key. • For each key guess and each input, compute the intermediate value and look up the corresponding template • The template that fits best indicates the intermediate value and therefore the key.					
Elisabeth Oswald	7/21	University of			

Outline

- -1/1-Working principle of power analysis attacks
- DPA Attacks on unprotected implementations
- Countermeasures Masking
 - (Hiding)
- Second-order DPA attacks, and template-based DPA attacks on protected implementations

8/21

Comparison, further reading

ų,

The goal of this talk is to look into different flavors of DPA attacks.

Elisabeth Oswald

University of BRISTOI

D	DPA attack on an AES hardware implementation					
•	DPA peaks reveal information about the key and the implementation - Parallelism	Byte 1 Byte 2 0.1 Byte 5 0.1 Byte 2 0.1 Byte 5 5 0.1 Byte 6 5 0.1 0 Byte 5 0 Byte 6 5 0.1	Byte 3 0.1 Byte 7 0.1 Byte 7 0.1 Byte 8 5			
-	DPA peaks are significantly smaller than for software implementation	0.1 0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.				
-	DPA peaks are different for different key bytes	-0.1 0 Byte 13 0.1 -0.1 0.1 -0.1 0.1 -0.1 0.0 0.	0.1 Byte 15 5 0 Byte 16 5 0.1 0.1 5 0 5 0 5			
EI	isabeth Oswald	11/21	University of BRISTOL			

Second-order DPA attacks

- Masking provides security against first-order DPA attacks, if each masked intermediate value $v_{\rm m}$ is pair wise independent of v and m
 - v_m and m are independent, v_m and v are independent, but
 - v_m and (v,m) are not independent
- Second-order DPA attacks exploit the joint leakage of two intermediate values that are processed by the cryptographic device
 - Any two values u and v that are concealed by the same mask can be used
 - Several of such values typically occur in an implementation for performance reasons

14/21

```
Elisabeth Oswald
```

Contractive of the second seco

Practical application to masked implementations— Simplified (1-bit) scenario						
a _m	b _m	HW(a XOR b)) HW(a _m)-HW([b _m) C(a _m)-C(b _m)		
0	0	0	0	0		
0	1	1	1	٤		
1	0	1	1	ε		
1	1	0	0	0		
• Second-order DPA attacks work because HW(a XOR b) correlates with a function that can be defined on the traces						
C(a _m)-C(b _m) is a good choice if a device leaks the Hamming weight						
 On 8-bit processors, the correlation can be expected to be about 0.24 						
"Find" C(a _m) and C(b _m) by brute-force search of an "interesting interval"						
The so-called "pre-processing" step						
Elisabeth C	Dswald	15/21		University of BRISTOL		

The number of needed power traces can be determined before the actual attack is performed						
We can compute the for breaking a masked We can compute the We simply run through the turns out that p is	number of measurements needed AES implementation exact correlation coefficient ugh all values of P, K and M (all 8-bit values) s 0.2405	(P ⊕ K) ⊕ M ↓ MS-box				
 The sampling distribu allows deriving the num 	tion of the correlation coefficient ber of needed traces	\bullet S(P \oplus K) \oplus M				
 Transform ρ to a value 	ue Z which is normally distributed	$ (C(S(P \oplus K) \oplus M) - C(P \oplus K \oplus M) $				
 Use standard methor confidence level 1-α 	ds of statistics to derive N given a $\boldsymbol{\rho}$ and a	$\stackrel{\sim}{HW}(S(P\oplus K)\oplusP\oplusK)$				
 Scale by the SNR of 	the device	$\left(\right)^{2}$				
■The number of measu N = 462 (Z _{0.999} =3.7)	rements for ρ = 0.24 is	$N = 3 + 8 \left(\frac{Z_{1-\alpha}}{\ln \frac{1+\rho}{1-\rho}} \right)$				
Elisabeth Oswald	17/21	University of				

