Concurrent Non-Malleable Witness Indistinguishability

Rafail Ostrovsky (UCLA, USA)
Giuseppe Persiano (Univ. Salerno – ITALY)
Ivan Visconti (Univ. Salerno – ITALY)
Outline

- Concurrent ZK, NMZK, Witness Indist.
- Non-Malleable Witness Indistinguishability
- Cnst-Rnd Concurrent NMWI in the plain model
- Cnst-Rnd Concurrent NMZK in the BPK Model
- UC with preprocessing
Interactive Proof System

\[x \in L \]

Prover P \hspace{1cm} a \hspace{1cm} b \hspace{1cm} z \hspace{1cm} Verifier V

Los Angeles, nov 15 2006
Interactive Proof System

$x \in L$

Properties:

Completeness: if $x \in L$ then V outputs 1
Soundness: if NOT($x \in L$) then V outputs 0
Interactive Zero-Knowledge Proofs

Zero Knowledge:

\[x \in L \]
Interactive Proof of Knowledge

\[x \in L \]

Witness Extraction:

\[x \in L \]
Outline

- Concurrent ZK, NMZK, Witness Indist.
- Non-Malleable Witness Indistinguishability
- Cnst-Rnd Concurrent NMWI in the plain model
- Cnst-Rnd Concurrent NMZK in the BPK Model
- UC with preprocessing
Man-in-the-Middle (MiM) Attack

$x \in L$

r, w

$x' \in L$
Concurrent MiM Attack

\[x \in \mathbb{L} \]

\[x' \in \mathbb{L} \]
Concurrent NMZK

\[x \in L \quad x' \in L \]

\[y': (x', y') \in R_L \]
Concurrent NMZK

\[x \in L \]

\[x' \in L \]
Outline

- Concurrent (ZK, NMZK), Witness Indist.
- Non-Malleable Witness Indistinguishability
- Const-Rnd Concurrent NMWI in the plain model
- Const-Rnd Concurrent NMZK in the BPK Model
- UC with preprocessing
Witness Indistinguishable Proofs

$x \in L$

Witness Indistinguishability:
For all $x \in L$, for all pair (y,y') of valid witnesses for $x \in L$

$\text{View}^*_V(P(y),x,y,y') \approx \text{View}^*_V(P(y'),x,y,y')$ where ZK implies WI
Witness Indistinguishability

ZK implies WI
but WI helps for the design of ZK protocols
(e.g., FLS-paradigm):
 Non-Black-Box ZK
 NIZK in the SRS model [FLS90,DDOPS01]

can we use a notion of WI secure against MiM
attacks for the design of CNMZK protocols?
Outline

- Concurrent (ZK, NMZK), Witness Indist.
- Non-Malleable Witness Indistinguishability
- Cnst-Rnd Concurrent NMWI in the plain model
- Cnst-Rnd Concurrent NMZK in the BPK Model
- UC with preprocessing
Witness Encoded in a Proof

- we focus on commit-and-prove arguments where in the first message the prover commits to the witness by using a statistically binding (therefore we consider computational indistinguishability) commitment scheme (this message is the “witness encoded in the proof”) and then proves that the committed message is an NP-witness for $x \in L$

- the goal of the MiM is to relate the witnesses encoded in the proofs he gives with the witnesses encoded in the proofs he receives
Concurrent MiM Attack

$x \in L$

$x' \in L$

w
CNMWI, very informally

CNM Witness Indistinguishability:

“the distribution of the witnesses encoded in the proofs given by the man-in-the-middle is independent of the distribution of the witnesses encoded in the proofs given by the prover”
CNMWI, informally

CNM Witness Indistinguishability:

let $\text{mim}_{<x>}(<w>)$ the random variable that the describes the witnesses encoded in the proofs given by the mim when receiving proofs for $<x>$ from P with encoded witnesses $<w>$

CNMWI requires that the following distributions are comput. indistinguishable

$\{\text{mim}_{<x>}(<w>)\}, \{\text{mim}_{<x>}(<w'>)\}$
CNMZK vs CNMWI

CNMWI

\(x \in L \)

\(w_0, w_1 \)

CNMZK

\(x'^{'} \in L \)

\(y'^{'}: (x'^{'}, y'^{'} \in R_L \)

Los Angeles, nov 15 2006
CNMWI+ (informal)

CNMWI+ following the Simulation paradigm:

“for any PPT adversary A that in a MiM attack proves statements \(<x>\) to a honest verifier with proofs that encode witnesses \(<w>\), there exists a ppt S that by accessing to A proves statements \(<x>\) to a honest verifier with proofs that encode witnesses \(<w>\)”

this definition implies both the previous def. of CNMWI and that of CNMZK
CNM Commitments [PR05]

CNM Commitments:

“for any PPT adversary A that in a MiM attack commits to messages \(<w> \), there exists a PPT S that by accessing to A outputs commitments to messages \(<w> \)”

Can CNM commitment schemes help for designing CNMWI argument systems?
Outline

- Concurrent ZK, NMZK, Witness Indist.
- Non-Malleable Witness Indistinguishability
- Const-Rnd Concurrent NMWI in the plain model
- Const-Rnd Concurrent NMZK in the BPK Model
- UC with preprocessing
Constant Round CNMWI

$P \rightarrow V$ send a commitment of the witness w
$P \rightarrow V$ use the one-left many-right statistical concurrent non-malleable ZK argument of knowledge of [PR05a] for proving that w is a witness for $x \in L$

Remark: this protocol is a PoK and it is only a cosmetic variation of the one by [PR05b] for concurrent non-malleable commitments
Outline

- Concurrent ZK, NMZK, Witness Indist.
- Non-Malleable Witness Indistinguishability
- \textit{Cnst-Rnd} Concurrent NMWI in the plain model
- \textit{Cnst-Rnd} Concurrent NMZK in the BPK Model
- UC with preprocessing
The Bare Public-Key (BPK) model (CGGM00)

- In a key-registration stage:
 - Each verifier (non-interactively) posts her public key on a public file, common to all parties.
 - There is no bound on the power of the adversary that therefore can control the entire resulting file.

- In the proof stage:
 - The same public file is part of the common input in all proofs and the verifiers can use their private keys.

- BPK is a weaker version of the (PKI) model since
 - public keys do NOT need to be certified during the key-registration phase.
BPK model: the Key-Registration Stage

\[
\text{sk}_j \rightarrow \text{pk}_j
\]
BPK model: first attack of the MiM

sk_j
V_j

(pk_j)
aux

pk_j
pk_i
BPK model: the **Proof Stage**

\[x \in L \]

\[x' \in L \]

\[pk_j \]

\[pk_i \]

\[w \]

\[sk_j \]
CNMZK in the BPK model

\[\gamma_{j_0} = f(s_{k_{j_0}}), \gamma_{i_1} = f(s_{k_{j_1}}) \]

\[x \in L \]

\[\text{CNMWIPoK } s_{k_{j_0}} \lor s_{k_{j_1}} \]

\[\text{CNMWIPoK } x \in L \lor s_{k_{j_0}} \lor s_{k_{j_1}} \]
Man-in-the-Middle Attack

\[y_{j0} = f(sk_{j0}), \ y_{i1} = f(sk_{j1}) \]

\[\begin{array}{c|c}
 Y_{j0} & Y_{j1} \\
 \hline
 Y^*_{j0} & Y^*_{j1} \\
\end{array} \]

\[x \in L \quad x' \in L \]

\[\begin{array}{c}
 sk^*_{j0} \lor sk^*_{j1} \\
 x \in L \lor sk^*_{j0} \lor sk^*_{j1} \\
\end{array} \]

\[\begin{array}{c}
 sk_{j0} \lor sk_{j1} \\
 x' \in L \lor sk_{j0} \lor sk_{j1} \\
\end{array} \]

Los Angeles, nov 15 2006
Simulator for the MiM

\(\gamma_{j0} = f(\text{sk}_{j0}), \gamma_{i1} = f(\text{sk}_{j1}) \)

\(\approx \quad \text{Sim of} \quad \approx \quad \text{CGGM00} \)

\(x \in L \quad \Rightarrow \quad \text{sk}_{jb} \)

\(x' \in L \quad \Rightarrow \quad \text{sk}_{j0} \lor \text{sk}_{j1} \)

\(x \in L \lor \text{sk}^*_{j0} \lor \text{sk}^*_{j1} \)

\(x' \in L \lor \text{sk}_{j0} \lor \text{sk}_{j1} \)
Concurrent NMZK

\[x \in L \quad y' : (x', y') \in R_L \]
Simulator for the MiM

\[\gamma_{j0} = f(sk_{j0}), \gamma_{j1} = f(sk_{j1}) \]

\[y_{j0} = f(sk_{j0}), y_{j1} = f(sk_{j1}) \]

\[x \in L \]

\[sk_{j0} \lor sk_{j1} \]

\[x' \in L \]

\[sk_{j0} \lor sk_{j1} \]

\[x \in L \lor sk_{j0} \lor sk_{j1} \]

\[x' \in L \lor sk_{j0} \lor sk_{j1} \]
Concurrent NMZK

\[x \in L \quad \Rightarrow \quad x' \in L \]

get \(w \in \{ y', sk_{j0}, sk_{j0} \} \)

if \(w = y' \) \(\checkmark \)

else if \(w = sk_{j(1-b)} \) \(\checkmark \)

else if \(w = sk_{jb} \) ??
Simulator for the MiM

\[x \in L \]

\[x' \in L \]

\[sk_{j0} \lor sk_{j1} \]

\[sk_{j0} \lor sk_{j1} \]

\[sk^*_{j0} \lor sk^*_{j1} \]

\[sk^*_{j0} \lor sk^*_{j1} \]

\[sk_{jb} \]

Los Angeles, nov 15 2006
Simulator for the MiM

\[x \in L \]

\[x' \in L \]

\[\text{sk}^*_{j0} \lor \text{sk}^*_{j1} \]

\[\text{sk}_{j0} \lor \text{sk}_{j1} \]

\[\text{sk}^*_{j(b)} \]

\[\text{sk}_{jb} \]
The MiM for CNMZK in BPK is reduced to a MiM for CNMWI in the plain model

\[
\begin{align*}
 x & \in L \\
 x' & \in L \\
 sk^*_{j0} \lor sk^*_{j1} & \\
 sk_{j0} \lor sk_{j1} & \\
 x \in L \lor sk^*_{j0} \lor sk^*_{j1} & \\
 x' \in L \lor sk_{j0} \lor sk_{j1} & \\
 sk_{jb} & \\
 sk_{jb}, sk^*_{j(b)} & \\
 sk_{j0} \lor sk_{j1} & \\
 sk^*_{j0} \lor sk^*_{j1} & \\
 x \in L \lor sk^*_{j0} \lor sk^*_{j1} & \\
 x' \in L \lor sk_{j0} \lor sk_{j1} & \\
 sk_{jb} & \\
\end{align*}
\]
Reducing the MiM to a MiM for CNMWI

\[\text{sk}_{j0} \lor \text{sk}_{j1} \]
\[x \in L \lor \text{sk}^*_{j0} \lor \text{sk}^*_{j1} \]

\[\text{sk}_{j0}, \text{sk}^*_{j(0)} \]

\[\text{sk}_{j1} \lor \text{sk}_{j1} \]
\[x \in L \lor \text{sk}^*_{j0} \lor \text{sk}^*_{j1} \]

\[\text{sk}^*_{j0} \lor \text{sk}^*_{j1} \]
\[x' \in L \lor \text{sk}_{j0} \lor \text{sk}_{j1} \]

\[\text{sk}_{j0} \]

\[\text{sk}_{j1}, \text{sk}^*_{j(1)} \]

\[\text{sk}^*_{j0} \lor \text{sk}^*_{j1} \]
\[x' \in L \lor \text{sk}^*_{j0} \lor \text{sk}^*_{j1} \]

\[\text{sk}_{j1} \]
Comparison with previous CNMZK

<table>
<thead>
<tr>
<th>Paper</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>DDOPS 01</td>
<td>Shared Random String</td>
</tr>
<tr>
<td>PS 04 / BS 05</td>
<td>Relaxed Security</td>
</tr>
<tr>
<td>KLP 05</td>
<td>Timing Assumption</td>
</tr>
<tr>
<td>PRS 06</td>
<td>Plain (polylog rounds)</td>
</tr>
<tr>
<td>This work</td>
<td>Bare Public Key</td>
</tr>
</tbody>
</table>
Outline

- Concurrent ZK, NMZK, Witness Indist.
- Non-Malleable Witness Indistinguishability
- Cnst-Rnd Concurrent NMWI in the plain model
- Cnst-Rnd Concurrent NMZK in the BPK Model
- UC with preprocessing
UC [Can01+CLOS02+BCNP04]

- [CLOS02] UC for any functionality can be reduced to realizing F_{mcom} (multi-instance commitment functionality)
- [BCNP04] F_{mcom} can be reduced to realizing F_{kr} (key registration funct.)
Key Registration Funct. [BCNPO04]

- F_{kr} requires that the functionality can see each private key and guarantees that
 - each party has a well formed public key
 - the public keys of the honest parties are safe (private keys are not known by the adversary)
Key Registration Funct. [BCNP04]

- F_{kr} is realized in BCNP04
- Assuming the existence of trusted third parties
 - With any F_{crs}
 - With a PKI-like registration service where the key authority generates public keys and gives the public keys to parties
 - With a PKI-like registration service where parties generate keys but have to send both the public and secret keys to the authority
 - With semi-trusted authorities
- Assuming isolated stand-alone executions
 - Each party generates a public key and gives a ZKPoK of the secret key to a trusted authority
UC with Preprocessing

- key-stage preprocessing (non-interactive):
 - run the key-stage of the CNMZK protocol in the BPK model; each party generates and posts also the additional public key PK used in BCNPO4

- key-knowledge preprocessing (interactive):
 - each party interested in running protocols with other parties, runs the proof stage of the CNMZK protocol in the BPK model, proving knowledge of the secret key SK
Comparison with previous results

<table>
<thead>
<tr>
<th>Paper</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLOS 02</td>
<td>Common Reference String</td>
</tr>
<tr>
<td>BCNP 04</td>
<td>TTP or Isolated ZKPoK</td>
</tr>
<tr>
<td>PS 04 / BS 05</td>
<td>Relaxed Security</td>
</tr>
<tr>
<td>KLP 05</td>
<td>Timing Assumption</td>
</tr>
<tr>
<td>This work</td>
<td>Preprocessing (2 stages)</td>
</tr>
</tbody>
</table>
the prover

the verifier

the simulator

the extractor

the man-in-the-middle

Thanks!