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Quantum information and computation

 Quantum information and computation 
 How is information encoded in nature?
 What is nature’s computational power?

 Quantum algorithm for Factoring [Shor 93]
 Unconditionally secure key distribution [Bennett-Brassard 84]
 Quantum computers probably won’t solve NP-complete problems [BBBV94]



Why care about Quantum Information?

 Quantum Information and Computation 
 Computational power of nature
 Advances in Theoretical Physics
 Rich Mathematical Theory
 Advances in classical Computer Science
 Practical Quantum Cryptography
 Advances in Experimental Physics

Why is 
Quantum Computation 

important?



Quantum Information

 Quantum bit (qubit): Carrier of quantum information

 A quantum mechanical system, which can be in a state |0〉, |1〉 or any 
linear combination of them. {|0〉, |1〉} is any orthonormal basis

                                                                                      

 Physical Examples:
Spin of an electron, Spin of a nuclear, Photon polarization, Two-level 
atom, Non-abelian anyon, …

 Here, a qubit is an abstract mathematical object, i.e.                  
a unit vector in a 2D Hilbert space. 

0,1



Probability Theory – Quantum Information I

Entanglement  (more general than correlations!!!)Correlations

Quantum bit:    unit vector in a 2D Hilbert space 

Quantum state: on logn qubits

Binary Random Var.  X:

Random Variable  X:

e0

e1



Probability Theory – Quantum Information II

Measurement (Projective) 
A measurement of        in an orthonormal basis 

  is a projection onto the basis 
vectors and

Pr[outcome is bi ] = 

Measurement

Evolution by Unitary Matrices
(preserve l2-norm)

Evolution by Stochastic Matrices
(preserve l1-norm)

S⋅p= p '



Probability Theory – Quantum Information II

Measurement (Projective) 
A measurement of        in an orthonormal basis           is a 
projection onto the basis vectors and

Pr[outcome is bi ] =

Examples

•

• XOR of two bits
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Density matrix

 Mixed state: Classical distribution over pure quantum states

 Density matrix: (hermitian, trace 1, positive)

1. contains all information about the state. 
Pr[outcome is bk ]

5. Different ensembles can have the same ρ 

={ 1
2

∣0 〉−∣1 〉 w.p.1/2

∣0 〉 w.p.1/2 }



Entropy of Quantum states

 Shannon Entropy: randomness in the measurement
Random variable X, distribution P

 Von Neumann Entropy: randomness in the best possible measurement
Mixed quantum state ρ, Density matrix ρ 

         , where E are the eigenvectors and λi the eigenvalues. 

 Von Neumann Entropy shares many properties with the Shannon Entropy.



Properties of von Neumann Entropy

  
 

        where ρ contains m qubits. 

 Conditional Entropy 

 Mutual information 

 Strong subadditivity

 “Quantum” Fano’s Inequality
 

S ∣=S −s 

S :=S S −S 



Von Neumann Entropy
(similar properties)

Shannon Entropy

Mixed states 
(distribution over pure quantum states)

Probability Distributions

Unitary Matrices
  
Measurements (in different bases)

Stochastic Matrices
   
Measurement

Entanglement
(more general than correlations!!!)

Correlations

Quantum state
Complex amplitudes

Random Variable  X
Positive probabilities

Probability Theory - Quantum Information 



Amplitudes vs. Accessible Information

 Exponential number of amplitudes
We can encode n bits        into log(n) qubits
  e.g.

 Only indirect access to the information via measurements
No measurement can give us all the bits of x.

 Holevo’s bound :  n qubits encode at most n bits. 

 X: classical random variable, ρ: quantum encoding, Y: result of a 
measurment on ρ. Then  S(X:Y) ≤ n

 Bits cannot be compressed into fewer quantum bits.



Random Access Codes

 Random Access Code
     Let C be a probabilistic encoding from {0,1}n to R  s.t.  

 Lower bound on length

 Hence, 

∀ x∀ i∈[n] ,Pr [AC x ,i=x i]≥1 /2

I x ;C x ≤H C x≤log∣R∣

I x ;C x =H x−H x∣C  x≥H x −∑
i

H xi∣C x ≥ 1−H 1/2n

H x , y∣z ≤H x∣z H  y∣z 

H x∣y ≤H 1 /2log∣R∣ ≥ n



Quantum Random Access Codes

 Quantum Random Access Code
     Let C be a quantum encoding from {0,1}n to R  s.t.                                    

 Lower bound on length

 Hence, 

∀ i∈[n] ,Pr [AC x  ,i =x i]≥1 /2

S x ;C x≤S C x≤logdim R

S x ;C x=S x−S  x∣C x≥S x−∑
i

S xi∣C x ≥ 1−H 1/2n

S x , y∣z≤S x∣z S  y∣z 

S x∣y≤H 1/2log dimR ≥ n

Highly nontrivial!!! 

Holevo's bound



  Quantum vs. Classical Information 

001110100011

Input  x Input  y
Goal: Output P(x,y)  
    ( minimum communication )

 Quantum communication can be exponentially smaller  than 
classical communication complexity

 Two-way communication [Raz99]
 One-way communication [Bar-Yossef, Jayram, Kerenidis 04], [Gavinsky, 

Kempe, Kerenidis, Raz, deWolf 06] 
 Simultaneous Messages   [BJK 04]

Communication complexity



  Quantum Information and Cryptography

 Unconditionally Secure Key distribution [Bennett, Brassard 84]

 Random number Generators [id Quantique]
 Private Information Retrieval [Kerenidis, deWolf 03, 04]
 Message Authentication, Signatures [Barnum et al. 02, Gottesman, Chuang 01]
 Quantum One-way functions [Kashefi, Kerenidis 05]

001110100011100011

 Quantum cryptography in practice



  Quantum Information & Classical Computer Science

 Classical results via quantum arguments

 Lower bound for Locally Decodable Codes [Kerenidis, deWolf 03]

 Lattice Problems in NP \ coNP [Aharonov, Regev 04]

 Matrix Rigidity [deWolf 05]

 Circuit Lower Bounds [Kerenidis 05]

 Lower bounds for Local Search [Aaronson 03]



Why care about Quantum Information revisited

 Quantum Information and Computation 
 Computational power of nature
 Advances in Theoretical Physics
 Rich Mathematical Theory
 Advances in classical Computer Science
 Practical Quantum Cryptography
 Advances in Experimental Physics

Why is 
Quantum Computation 

important?


