Trapdoor-Free RSA Like Assumption

Yvo Desmedt BT Chair of Information Security University College London, UK

August 23, 2006

Extended Abstract

Although a lot of research was done in the 1980's on proving cryptosystems based on factoring, two examples being Rabin's scheme and Goldwasser-Micali-Rivest, in the last decade a very large number of papers have appeared using the Diffie-Hellman assumptions and variants.

We make two remarks on this approach. First the Diffie-Hellman assumptions may be wrong, while the factoring one may be correct. Second, the Diffie-Hellman assumption does not involve a trapdoor, but both factoring as well as RSA do. For obvious reasons it may be good to obtain a variant of the RSA assumption, for which we can give reasonable evidence that it is likely trapdoor free.

We now propose a first proposal. Assume that a party chooses n = pq and chooses some uniformly random odd e between 1 and n. Instead of using the function $f_1(r) := r^e \mod n_1$ only (as in the ordinary RSA), users additionally output $f_2(r) :=$ $r^{e_2} \mod n_2$, where $n_2 = n_1 + d$, where d is small and $e_2 = e$. We now discuss how to use f_1 and f_2 to propose a probabilistic one-way function. Assume (n_1, n_2, e) is public. Let $x \in Z_{n_1}^*$ be an input. The user first chooses $r_1 \in_R Z_n$ computes $r_2 =$ $x - r_1 \mod n_2$ and outputs $f(x) = (f_1(r_1), f_2(r_2))$. Observe that r_2 is statistically indistinguishable from a uniform random element in Z_{n_2} , as follows easily from [?]. We now wonder whether this probabilistic function f is trapdoor-free. It is trivial to see that this corresponds to analyzing whether anybody can construct an n_1 and n_2 such that he/she can computationally invert f_1 and f_2 .

We now analyze the security of this first proposal. Assume q > p and $q = p + \alpha$. We now analyze whether a party can choose p, q, p' and q', where p and q are primes, but p' and q' are not necessarily. Let p' = p + a and q' = q + b. The condition p'q' = n + d now gives us (p+a)(q+b) = pq + bp + aq + ab = pq + d which is true if and only if $bp + a(p + \alpha) + ab = d$, or

$$p(b+a) + \alpha a + ab = d. \tag{1}$$

1

If we want to demonstrate that the first proposal is insecure, then necessary conditions are sufficient. Since p is large, a and b are small and α (relatively) small, we decide to choose b = -a. Using this choice, Eq. 1 becomes:

$$a^2 - \alpha a + d = 0 \tag{2}$$

Solving this equation in the unknown a we obtain:

$$a = \frac{\alpha \pm \sqrt{\alpha^2 - 4d}}{2} \tag{3}$$

Since α is even, we can replace it by 2k. Then Eq. 3 becomes:

$$a = k \pm \sqrt{k^2 - d} \tag{4}$$

We now use Eq. 4 to demonstrate that the first proposal is insecure. Take $\alpha = 2$, i.e. k = 1, which means we speak about twin primes p and q. Moreover, we let d = 1. Then a = 1 and b = -1. Obviously n + 1 becomes a square number. So, if p and q are reasonable sized primes, then the one who constructs n might be able to factor n + d and then f_2 can be inverted in polynomial time.

We now discuss a second proposal. Instead of using just two moduli, being n_1 and $n_2 = n_1 + d$, we will use several. We let $n_i = n_1 + d_i$, where all d_i are small, and this for $i = 2, \ldots, l$. We conjecture that when l is not too small, there will be at least one function $f_i(r) := r^{e_i} \mod n_i$ which one cannot invert in polynomial time. A possible choice for e_i is $e_i = e_1$. We do not require that $gcd(e_i, \phi(n_i)) = 1$. The probabilistic function f applied on x now corresponds to choose r_i such that $r_1 + r_2 + \cdots + r_l = x \mod n_1$, then f_i is applied on r_i , so $f(x) = (f_1(r_1), f_2(r_2), \ldots, f_l(x_l))$.