Independence of Heegner Points
Joseph H. Silverman
Michael Rosen
Brown University

Number Theory and Cryptography — IPAM
October 9–13, 2006
Modular Curves
and
Heegner Points
The Modular Curve $X_0(N)$

The **Modular Curve** $X_0(N)$ parametrizes isomorphism classes of pairs

$$x \in X_0(N) \quad x \longleftrightarrow (E, C)$$

where

- $E$ is an elliptic curve,
- $C \subset E[N]$ is a cyclic subgroup of order $N$.

Two pairs $(E, C)$ and $(E', C')$ are equivalent if there is an isomorphism

$$f : E \xrightarrow{\sim} E' \quad \text{with} \quad f(C) = C'.$$

It turns out that the set of pairs $(E, C)$ has a natural structure as an (affine) algebraic curve, and adding a few points (cusps) gives the projective curve $X_0(N)$. 
Heegner Points on $X_0(N)$

A **Heegner point** is a special type of point on $X_0(N)$ that is manufactured using:

- $k$: a quadratic imaginary field
- $\mathcal{O} \subset k$: the ring of integers of $k$
- $n \subset \mathcal{O}$: an ideal with $\mathcal{O}/n \cong \mathbb{Z}/N\mathbb{Z}$

Notice that $\mathcal{O}$ is a lattice in $\mathbb{C}$, so it defines an elliptic curve via the classical complex analytic construction

$$E(\mathbb{C}) \cong \mathbb{C}/\mathcal{O}.$$  

Further, this elliptic curve has a subgroup

$$\mathbb{Z}/N\mathbb{Z} \cong n^{-1}/\mathcal{O} \subset \mathbb{C}/\mathcal{O}.$$ 

The pair $(\mathbb{C}/\mathcal{O}, n^{-1}/\mathcal{O})$ is an elliptic curve with a cyclic subgroup of order $N$. The associated point $\xi \in X_0(N)$ is called the **Heegner point** attached to $k$. 

Independence of Heegner Points
Properties of Heegner Points

Quite a lot is known about the arithmetic properties of Heegner points. Let \( \xi \in X_0(N) \) be a Heegner point attached to the quadratic imaginary field \( k \). The theory of complex multiplication implies that

\[
k(\xi) = H_k = \text{the Hilbert class field of } k.
\]

Thus

\[
[k(\xi) : k] = h_k \approx \sqrt{\text{Disc}_k}.
\]

Note that there is a subexponential algorithm to compute the degree of the field \( k(\xi) \).

Class field theory and the theory of complex multiplication provide an explicit description of the action of \( \text{Gal}(k(\xi)/k) \) on \( k(\xi) \), analogous to the theory of cyclotomic fields.
Deuring Lifts and Heegner Points

Let $\tilde{E}/\mathbb{F}_p$ be an (ordinary) elliptic curve defined over a finite field and let $\tilde{C} \subset \tilde{E}(\mathbb{F}_p)$ be a cyclic subgroup of order $N$. The pair $(\tilde{E}, \tilde{C})$ defines a point

$$\tilde{\xi} = (\tilde{E}, \tilde{C}) \in X_0(N)(\mathbb{F}_p).$$

Let

$$\mathcal{O} = \text{End}(E) \quad \text{and} \quad k = \mathcal{O} \otimes \mathbb{Q},$$

so $k$ is a quadratic imaginary field and $\mathcal{O}$ is an order in $k$. For simplicity, we assume that $\mathcal{O}$ is the ring of integers of $k$.

**Theorem (Deuring).** There is a Heegner point $\xi \in X_0(N)(H_k)$ associated to $k$ and a prime ideal $\mathfrak{p}$ of $H_k$ so that

$$\xi \mod \mathfrak{p} = \tilde{\xi}.$$
Elliptic Curves
and
Modular Parametrizations
Elliptic Curves and Modular Parametrizations

**Modular Parametrizations**

Let $E/\mathbb{Q}$ be an elliptic curve. A **Modular Parametrization of $E$** is a finite morphism

$$\Phi : X_0(N) \longrightarrow E.$$

**Theorem** (*Wiles et. al.*). Let $E/\mathbb{Q}$ be an elliptic curve of conductor $N$. Then $E$ has a modular parametrization $\Phi : X_0(N) \rightarrow E$ defined over $\mathbb{Q}$.

In practice, if $N$ is small, one can explicitly write down and work with a modular parametrization, either algebraically or complex analytically.
Heegner Points on $E$

For the remainder of this talk, we fix an elliptic curve $E/\mathbb{Q}$ and a modular parametrization defined over $\mathbb{Q}$,

$$\Phi_E : X_0(N) \longrightarrow E.$$ 

Let $\xi \in X_0(N)$ be a Heegner point on $X_0(N)$ attached to $k$. Then we say that

$$P = \Phi_E(\xi) \in E$$

is a Heegner point of $E$ attached to $k$.

Since $k(\xi) = H_k$, it follows that Heegner points on $E$ also generate fields of large degree,

$$[k(P) : k] \geq \frac{h_k}{\deg \Phi_E} \approx \frac{\sqrt{\text{Disc}_k}}{\deg \Phi_E}.$$ 

Independence of Heegner Points
Independence of Heegner Points
Collections of Heegner Points on $E$

We can get points in $E(\mathbb{Q})$ by using the trace map:

$$\text{Trace}_{H_k/\mathbb{Q}}(P) = \sum_{\sigma \in \text{Gal}(H_k/\mathbb{Q})} \sigma(P) \in E(\mathbb{Q}).$$

**Theorem.** (Gross, Zagier, Kohnen) All traces of all Heegner points on $E$ generate a subgroup of $E(\mathbb{Q})$ of rank at most 1.

In another direction, Rubin, Kolyvagin, and others have studied families of Heegner points $P_1, P_2, P_3, \ldots$ satisfying norm compatibility (Euler system) conditions. These points are defined over towers of ring class fields $k_1 \subset k_2 \subset k_3 \subset \cdots$ of a single quadratic imaginary field $k$.

We ask a question of a somewhat different flavor.
Independence of Heegner Points

**Question.** Are Heegner points associated to distinct fields independent? Under a mild class number condition, we show that the answer is **YES.**

**Definition.** We write $m^{\text{odd}}$ for the largest odd divisor of an integer $m$.

**Theorem (Rosen, Silverman).** Let

- $E/\mathbb{Q}$ an elliptic curve without CM.
- $\Phi_E$ a modular parametrization of $E$.
- $k_1, \ldots, k_t$ distinct quadratic imaginary fields.
- $h_1, \ldots, h_t$ the class numbers of $k_1, \ldots, k_t$.
- $P_1, \ldots, P_t$ Heegner points on $E$ for $k_1, \ldots, k_t$.

There is a constant $C = C(E, \Phi_E)$ such that

$$h_1^{\text{odd}}, \ldots, h_t^{\text{odd}} > C \implies P_1, \ldots, P_t \text{ are independent.}$$
A (Negative) Application to the ECDLP

A natural way to attempt to solve the Elliptic Curve Discrete Logarithm Problem (ECDLP) is to lift points from $\tilde{E}(\mathbb{F}_p)$ to either $E(\mathbb{Q})$ or $E(\overline{\mathbb{Q}})$.

There have been many attempts to do this using various elementary lifting ideas, but none has yielded a practical algorithm to solve ECDLP.

An initial motivation for our research was to use Deuring-Heegner lifts to solve the ECDLP.

If Heegner points associated to distinct fields did have some tendency to be dependent, then here is a rough idea of how one might solve the ECDLP using Deuring-Heegner lifts:

- Take points in $\tilde{E}(\mathbb{F}_p)$ and pull back to $\tilde{X}_0(\mathbb{F}_p)$.
- Lift to Heegner points in $X_0(\mathbb{Q})$ and push to $E(\mathbb{Q})$.
- Find dependencies in $E(\overline{\mathbb{Q}})$ and reduce modulo $p$. 
A (Negative) Application to the ECDLP

In more detail:

(1) The goal is to find $m$ so that $\tilde{S} = m\tilde{T}$ in $\tilde{E}(\mathbb{F}_p)$.
(2) Lift to $E/\mathbb{Q}$ and fix $\Phi_E : X_0(N) \to E$.
(3) Compute many $\tilde{P}_i = a_i\tilde{S} - b_i\tilde{T} \in \tilde{E}(\mathbb{F}_p)$.
(4) Pull $\tilde{P}_i$ back via $\Phi_E$ to $\tilde{\xi}_i \in \tilde{X}_0(N)(\mathbb{F}_p)$.
(5) Lift $\tilde{\xi}_i$ to a Heegner point $\xi_i \in X_0(N)(\mathbb{Q})$. (Deuring)
(6) Use descent or heights to relate the $P_i = \Phi_E(\xi_i)$.
(7) Reduce the relation mod $p$ to get $a\tilde{S} = b\tilde{T}$.
(8) Then $m = a^{-1}b \pmod{|\tilde{E}(\mathbb{F}_p)|}$.

• In (2), $E$ needs small coefficients, so that $N$ is small and we can work explicitly with $\Phi$.

• In (5), presumably one should use only points whose field $k_i$ has smooth discriminant and smooth class number.
Independence of Heegner Points
Sketch of the Proof
Statement of the Theorem

We recall the statement of the theorem.

**Theorem.** Let

\[ E/\mathbb{Q} \] an elliptic curve without CM.

\( \Phi_E \) a modular parametrization of \( E \).

\( k_1, \ldots, k_t \) distinct quadratic imaginary fields.

\( h_1, \ldots, h_t \) the class numbers of \( k_1, \ldots, k_t \).

\( P_1, \ldots, P_t \) Heegner points on \( E \) for \( k_1, \ldots, k_t \).

There is a constant \( C = C(E, \Phi_E) \) such that

\[ h_1^{\text{odd}}, \ldots, h_t^{\text{odd}} > C \]

\[ \implies \]

\( P_1, \ldots, P_t \) are independent.
Sketch of the Proof of Independence of Heegner Points

Assume that $P_1, \ldots, P_t$ are a minimal dependent set and write

$$n_t P_t = \sum_{i=1}^{t-1} n_i P_i.$$

To ease notation, let

$$n = n_t, \quad P = P_t, \quad k = k_t.$$

Also let

$$K = k_1 k_2 \cdots k_t,$$

$$\mathcal{C}_\ell(K) = \text{ideal class group of } K,$$

$$H_i = \text{Hilbert class field of } k_i.$$
Step 1: \([k(nP) : k]\) is a power of 2

Proof: The fact that \(nP = \sum n_i P_i\) implies that

\[K(nP) \subset KH_t \cap KH_1 H_2 \cdots H_{t-1}.\]

We then use class field theory and idempotent relations to analyze

\[\mathcal{C}\ell(K)^{\text{odd}} \text{ as a } \mathbb{Z}\left[\frac{1}{2}\right] \left[\text{Gal}(K/\mathbb{Q})\right]-\text{module}\]

and deduce consequences about the Hilbert class fields that yields the desired result.
Step 2: There is a constant $C_0$ such that 

$$\left[ k(P) : k(mP) \right] \mid C_0 \quad \text{for all } m \geq 1.$$ 

**Proof:** There are two parts. The first is:

**Lemma:** Let 

$$\Gamma \subset \text{GL}_2(\mathbb{Z}/m\mathbb{Z}) \quad \text{a subgroup,}$$

$$W \subset (\mathbb{Z}/m\mathbb{Z})^2 \quad \text{a } \Gamma\text{-invariant submodule.}$$

Assume that the action of $\Gamma$ on $W$ is **abelian**. Then 

$$|\Gamma| \cdot |W|^{1/3} \leq |\text{GL}_2(\mathbb{Z}/m\mathbb{Z})|.$$ 

The proof is elementary, but somewhat intricate.

The second part is to apply Serre’s theorem on the image of 

$$\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \longrightarrow \text{GL}_2(\hat{\mathbb{Z}}).$$

This is where the “no CM” assumption is used.
Step 3: \([k(P) : k]^{\text{odd}} \mid C_0^{\text{odd}}\)

Proof: Use Steps 1 and 2 on the odd parts of
\[
[k(P) : k] = [k(P) : k(nP)][k(nP) : k].
\]

Step 4: \([k(\xi) : k(P)] \mid (\deg \Phi_E)!\)

Proof: Follows from our earlier observation that
\[
[k(\xi) : k(P)] \leq \deg \Phi_E.
\]

Step 5: \(C = (C_0(\deg \Phi_E)!)^{\text{odd}}\) works

Proof: Combining Steps 1–4 tells us that
\[
h_t^{\text{odd}} = [k(\xi) : k]^{\text{odd}} = [k(\xi) : k(P)]^{\text{odd}}[k(P) : k]^{\text{odd}}
\]
divides \(C\), contradicting the assumption \(h_t^{\text{odd}} > C\).
Final Remarks and Open Questions
Remarks on the Odd Class Number Condition

Is the condition $h_i^{\text{odd}} \geq C$ necessary?

We don’t know, but it is certainly necessary at several stages of our proof!

Further, it is true for “most” quadratic fields.

**Theorem** *(Soundararajan)* Let $k_1, k_2, \ldots$ be the list of all quadratic imaginary fields arranged in order of increasing absolute discriminant. Then for any constant $C$,

$$\# \{k_i : h_{k_i}^{\text{odd}} \leq C \text{ and } |D_{k_i}| \leq X\} \ll X \frac{(\log \log X)^6}{\log X}$$

**Additional Questions**

- Is the “no CM” condition necessary?
- Prove analogous results for Heegner points associated to nonmaximal orders.
Heegner Points in Cryptography

Deuring lifts and Heegner points are of fundamental importance in the arithmetic theory of elliptic curves. So although the idea sketched earlier to use them to solve ECDLP does not work, they are non-elementary tools to use when studying questions on elliptic curves.

As an example of a positive application of Heegner points to cryptography, David Kohel has used them to count points in $E(\mathbb{F}_p)$:

Heegner Points for Real Quadratic Fields

Henri Darmon has described a way to (conjecturally) attach a Heegner point $P_k \in E(\bar{\mathbb{Q}})$ to a real quadratic field $k$. The construction uses Tate’s $p$-adic uniformization

$$\mathbb{C}_p^* \rightarrow E(\mathbb{C}_p).$$

Conjecturally, “Darmon-Heegner points” share many properties with classical Heegner points, including the fact that $P_k$ is defined over the Hilbert class field of $k$. In particular, if $k$ has class number 1, which is quite common, and if $w(E/\mathbb{Q}) = -1$, then $P_k$ is in $E(\mathbb{Q})$. Hence if $P_1, \ldots, P_r$ are Darmon-Heegner points with $r > \text{rank } E(\mathbb{Q})$, then they are dependent.

An open problem is to find an analog of the Deuring Lifting Theorem in the setting of Darmon-Heegner points.