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Index calculus algorithms

A general algorithmic approach to solve:
Factoring problems
Discrete logarithms in finite fields

Two main subcases:
Number field sieve (factoring and DL in medium to large
char.)
Function field sieve (DL in small to medium char.)
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Previously known complexity results

Complexity usually expressed as:

LQ(α, c) = exp((c + o(1))(log Q)α(log log Q)1−α).

Two extreme (well known) cases:
Fp, with p a large prime. NFS yields a

Lp

(

1
3
,

(

64
9

)1/3
)

complexity.

Fpn , with fixed (small) p. FFS yields a

Lpn

(

1
3
,

(

32
9

)1/3
)

complexity.

In between, the best known result was L(1/2).
(Adleman-Demarrais)
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New results for DLOG in FQ

Assume Q = pn

Eurocrypt 2006: Revisit the FFS
For p up to LQ(1/3)
Works without function fields
Basic simplest case: p = LQ(1/3)

Crypto 2006: Revisit the NFS
Works for p from LQ(1/3) up to Q
With an individual logarithm phase
Basic simplest case: p = LQ(2/3)

Put together: LQ(1/3) complexity for all finite fields

Antoine Joux DGA and UVSQ Discrete logarithms in all finite finite fields



Function Field Sieve
Number Field Sieve

Function Field Sieve

Overall strategy

As in any index calculus approach, setup followed by:
Sieving
Linear algebra using SGE and Lanczos or Wiedemann
Individual logarithms
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Function Field Sieve
Number Field Sieve

Function Field Sieve

Basic case (Setup)

Assume p = LQ(1/3, c)

Thus:

n =
1
c

(

log Q
log log Q

)2/3

.

Choose two univariate polynomials f1 and f2
with degrees d1 and d2 and d1d2 ≥ n.

Such that Res(y − f1(x), x − f2(y)) has:
an irreducible factor of degree n (modulo p).
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Function Field Sieve
Number Field Sieve

Function Field Sieve

Basic case (Setup/Sieving)

Irreducible factor: Ix (x) or Iy (y)

Two definitions of the (same) finite field Fpn

Both x and y have well defined images α and β in Fpn .

Take elements of the form:

αβ + aα+ bβ + c or aα+ β + b

In this expression, replace β by f1(α)

Or replace α by f2(β)
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Function Field Sieve
Number Field Sieve

Function Field Sieve

Basic case (Sieving)

Yields an equation:

h1(α) = h2(β).

Where h1 (resp. h2) has degree d1 + 1 (resp. d2 + 1)
Good case:

h1 and h2 split into linear factors

Multiplicative equality (up to a constant in Fp)
Between terms α+ a and β + b.
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Function Field Sieve
Number Field Sieve

Function Field Sieve

Example: F6553725

Take f1(x) = x5 + x + 3 and f2(y) = −y5 − y − 1
Then:

Ix (x) = x25 + 5x21 + 15x20 + 10x17 + 60x16 + 90x15 + 10x13 +

90x12 + 270x11 + 270x10 + 5x9 + 60x8 + 270x7 +

540x6 + 407x5 + 15x4 + 90x3 + 270x2 + 407x + 247

Iy (y) = y25 + 5y21 + 5y20 + 10y17 + 20y16 + 10y15 +

10y13 + 30y12 + 30y11 + 10y10 + 5y9 + 20y8 +

30y7 + 20y6 + 7y5 + 5y4 + 10y3 + 10y2 + 7y − 1

Antoine Joux DGA and UVSQ Discrete logarithms in all finite finite fields



Function Field Sieve
Number Field Sieve

Function Field Sieve

Example: F6553725

Take the element β + 2α− 20496
It can be written as:

α5 + 3α− 20493 =
(α+ 2445) · (α+ 9593) · (α+ 31166) · (α+ 39260) · (α+ 48610)

Or as:

−2β5 − β − 20498 =
−2(β + 1946) · (β + 17129) · (β + 18727) · (β + 43449) · (β + 49823)

Linear equation between terms log(α+ a) and log(β + b)

modulo (pn − 1)/(p − 1)
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Function Field Sieve
Number Field Sieve

Function Field Sieve

Example: F6553725 (Linear algebra)

Cardinality of F∗
6553725:

65536·3571·37693451·137055701·10853705894563968937051·P247

We compute the linear algebra modulo
q0 = (pn − 1)/(65536 · 3571), finding:

95805410880093234842298898214533393829434304594545362348
24840375483524017353229706334323184929723853320944439485

and
46495712756925209185601240503381083970050573012881700517
18556686238431642289730613529631676496393555258546887691

the logarithms of α+ 1 and β in base α.
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Function Field Sieve
Number Field Sieve

Function Field Sieve

Complexity analysis

Linear system in 2p unknowns

For each candidate, the (heuristic) probability of success
is:

1
(d1 + 1)!

· 1
(d2 + 1)!

Expected number of candidates (sieving time):

2p(d1 + 1)! · (d2 + 1)!

Time for solving the sparse linear system:

O((d1 + d2)p
2)
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Function Field Sieve
Number Field Sieve

Function Field Sieve

Complexity analysis

With d1 ≈ d2 ≈
√

n
The complexities written as LQ(1/3) become:

Linear algebra:

O((d1 + d2)p2) = LQ(1/3, 2c)

Sieving:

2p(d1 + 1)! · (d2 + 1)! = LQ

(

1
3
, c +

2
3
√

c

)

Important constraint, size of sieving space:

p3 = LQ(1/3,3c)
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Function Field Sieve
Number Field Sieve

Function Field Sieve

Complexity analysis

The algorithm is valid when:

3c ≥ c +
2

3
√

c
or c ≥ (1/3)2/3

Complexity: LQ(1/3, c + max(c, 2
3
√

c
))

Minimum at c = (1/3)2/3, complexity LQ(1/3,31/3)
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Function Field Sieve
Number Field Sieve

Function Field Sieve

Individual logarithm: example in F6553725

Logarithm to find:

λ =

24
∑

i=0

(⌊π · 65537i+1⌋ mod 65537)αi = 41667α24 + · · · + 9279.

First step, write λ = 9828 · N/D with:

N = (α + 20471) · (α + 25396) · (α + 34766) ·

(α + 54898) · (α2 + 29819α + 6546) · (α2 + 44017α + 38392) ·

(α2 + 54060α + 4880) · (α3 + 23811α
2 + 6384α + 3243)

D = (α + 18919) · (α + 31146) · (α + 38885) ·

(α + 53302) · (α2 + 52365α + 2605) ·

(α3 + 29795α
2 + 54653α + 7616) ·

(α3 + 57354α
2 + 37421α + 53988)

Second step, compute each log. by descent
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Function Field Sieve
Number Field Sieve

Function Field Sieve

Starting the descent

Take element:

(1493α+ 1)β − (40653α2 + 26561α+ 44820)

Equal to:

1493α6 + α5
− 39160α2

− 22081α − 44817 =

1493 · (α + 1964) · (α2 + 2977α + 33882) · (α3 + 23811α2 + 6384α + 3243)

And also to:

24884β10 + 48275β6 + 10792β5 + 23391β2 + 9300β + 6625 =
24884 · (β + 14197) · (β + 14995) · (β + 25133) · (β + 56789)·

(β2 + 14732β + 57516) · (β2 + 20454β + 37544) · (β2 + 50311β + 36703)
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Function Field Sieve
Number Field Sieve

Function Field Sieve

The descent . . . continued

Take element:

21022αβ + α+ 17943β + 65126

Equal to:

21022α6 + 17943α5 + 21022α2 + 15473α + 53418 =
21022 · (α + 19091) · (α + 36728) · (α + 38567) · (α + 38593)

·(α + 56621) · (α + 64596)

And also to:

44515β6
− β5 + 44515β2 + 62457β + 65125 =

44515 · (β + 148) · (β + 1344) · (β + 15752) · (β + 47579)

·(β2 + 50311β + 36703)
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Function Field Sieve
Number Field Sieve

Function Field Sieve

Individual logarithm: example in F6553725

Finally:

4053736945052440744587988507271545773377910517074639935754736
348185260902857777282008537164926838353644893694741284146999

is the logarithm of λ in basis 3α.
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Function Field Sieve
Number Field Sieve

Function Field Sieve

General case (smaller values of p)

Family of algorithms, parametrized by D

Sieve over elements of the form:

f (α)β + g(α),

where f and g are polynomials of degree D (f unitary).

Similar analysis, optimal choice d1 ≈ Dd2
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Function Field Sieve
Number Field Sieve

Function Field Sieve

Complexity of the general case when p = LQ(1/3)

D = 2

D = 1

(3)^(1/3)

(128/9)^(1/3)

D = 3

FFS NFS

(64/9)^(1/3)

D ∞
(32/9)^(1/3)

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

0 0.5 1 1.5 2

γ
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Function Field Sieve
Number Field Sieve

Function Field Sieve

Complexity for p = o(LQ(1/3))

Here D is no longer a constant

Instead take:

D = (2/3)2/3 log(Q)1/3 log log2/3(Q)

log(p)

With this choice:
Sieve space: p(2D) = LQ(1/3, (32/9)1/3)
Smoothness base size: pD = LQ(1/3, (4/9)1/3)
Smoothness probability:
exp(−2

√

(n/D) log(2
√

(n/D)))) = LQ(1/3,−(4/9)1/3)

Everything lines up correctly on total complexity:

LQ(1/3, (32/9)1/3)
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Function Field Sieve
Number Field Sieve

Function Field Sieve

Possible Extensions of FFS

Use of Galois group to speed-up computations

Very useful for F2nm

Also practical in other cases such as F37080130

Often need the description with function fields
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Function Field Sieve
Number Field Sieve

Number Field Sieve

Basic variation p = Lpn(2/3, c): setup

Finite field Fpn with p = Lpn(2/3, c) and c near 2 · (1/3)1/3

Choose polynomial f1 of degree n
irreducible over Fp

very small coefficients

Choose second polynomial f2 = f1 + p

K1 ≃ Q[X ]/(f1(X )) ∼= Q[θ1] and K2
∼= Q[X ]/(f2(X )) ∼= Q[θ2]

Note: f1 ≡ f2 mod p, so we have commutative diagram:

Q[X ]
ւ ց

O1 O2

ց ւ
Fpn
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Function Field Sieve
Number Field Sieve

Number Field Sieve

Basic variation p = Lpn(2/3, c): sieving/linear algebra

Factor bases F1 and F2 of degree 1 ideals of small norm

Choose smoothness bound B and a sieve limit S

Pairs (a,b) of coprime integers, |a| ≤ S and |b| ≤ S

No(a − bθ1) and No(a − bθ2) B-smooth

Add logarithmic maps to take into account h(Ki) 6= 1 and
unit groups

Obtain linear equation between “logarithms of ideals” in the
smoothness bases

Solve linear system
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Function Field Sieve
Number Field Sieve

Number Field Sieve

Practical optimisation: Galois extensions

p is inert in K1, so isomorphism Gal(K1/Q) ≃ Gal(FQ/Fp)

Thus: K1 has to be a cyclic number field of degree n

Partition factor base F1 in n parts F1,k with k = 1, . . . ,n

(a − bθ1) =

n
∏

k=1

∏

pi∈F1,1

ψk (pi )
ei,k

with Gal(K1/Q) = 〈ψ〉
Choose ψ such logg φ1(ψ(δi ))) = p logg φ1(δi) with pi = 〈δi 〉
Effectively divides factor base size by n
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Function Field Sieve
Number Field Sieve

Number Field Sieve

Basic variation p = Lpn(2/3, c): individual DLOG

Adapted variation of special q-descent procedure

Represent Fpn as Fp[t]/(f1(t))

Assume we want to compute logt y with y ∈ Fpn

Search for element z = y i t j for some i , j ∈ N with
1 lifting z ∈ K1, norm factors into primes smaller than some

bound B1 ∈ Lpn(2/3, 1/31/3),
2 only degree one prime ideals in the factorisation of (z)
3 E.g.: the norm of the lift of z should be squarefree

Remark: probability of squarefree smoothness is about
6/π2 probability of smoothness

Antoine Joux DGA and UVSQ Discrete logarithms in all finite finite fields



Function Field Sieve
Number Field Sieve

Number Field Sieve

Basic variation p = Lpn(2/3, c): individual DLOG

Factor principal ideal generated by z as

(z) =
∏

pi∈F1

p
ei
i

∏

j

q
ej

j

Ideals qj not contained in F1, so need to compute DLOGs
For each qj , perform special-qj descent:

1 Sieve over pairs (a, b) such that qj |(a − bθ1) and

No(a − bθ1)/No(qj) and No(a − bθ2) B2-smooth B2 < B1

2 Factor (a − bθ1) and (a − bθ2) to obtain new special qj ’s
3 Repeat until bound Bk < B ⇒ DLOGs of all qj known

Remark: special qj in both number fields K1 and K2
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Function Field Sieve
Number Field Sieve

Number Field Sieve

Practical Optimisation for individual logarithms

Instead of factoring 〈z〉, first write z as
∑

ai t i
∑

bi t i

with ai and bi are of the order of
√

p.
Use LLL to find short vector in lattice L

L =



















z tz t2z · · · tn−1z p pt pt2 · · · ptn−1

1 0 0 · · · 0 0 0 0 · · · 0
0 1 0 · · · 0 0 0 0 · · · 0
0 0 1 · · · 0 0 0 0 · · · 0
...

...
...

. . .
...

...
...

...
. . .

...
0 0 0 · · · 1 0 0 0 · · · 0



















.

Expect LLL finds short vector of norm
√

p
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Function Field Sieve
Number Field Sieve

Number Field Sieve

Example on 120 digits

Adaptation of J. & Lercier’s implementation for Fp

Finite field Fp3 with p = ⌊1039π⌋ + 2622

p = 3141592653589793238462643383279502886819

Group order p3 − 1 has 110-bit factor l

Definition of number fields K1 and K2 by

f1(X ) = X 3 + X 2 − 2X − 1 and f2(X ) = f1(X ) + p ,
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Function Field Sieve
Number Field Sieve

Number Field Sieve

Specifics of number fields K1 and K2

Q[θ1] is a cubic cyclic number field with Galois group

Aut(Q[θ1]) = {θ1 7→ θ1, θ1 7→ θ2
1 − 2, θ1 7→ −θ2

1 − θ1 + 1}

K1 has class number 1 and System of fundamental units

u1 = θ1 + 1 and u2 = θ2
1 + θ1 − 1

Q[θ2] has signature (1,1), so only need single Schirokauer
logarithmic map λ
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Function Field Sieve
Number Field Sieve

Number Field Sieve

Factor bases and sieving

Smoothness bases with 1 000 000 prime ideals
in the Q[θ1] side, we include 899 999 prime ideals, but only
300 000 are meaningful due to the Galois action,
in the Q[θ2] side, we include 700 000 prime ideals.

Lattice sieving: only algebraic integers a + bθ2 divisible by
prime ideal in Q[θ2]

Norms to be smoothed in Q[θ2] are 150 bit integers

Norms in Q[θ1] are 110 bit integers

Sieving took 12 days on a 1.15 GHz 16-processors HP
AlphaServer GS1280
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Function Field Sieve
Number Field Sieve

Number Field Sieve

Linear algebra

Compute the kernel of a 1 163 482× 793 188 matrix

Coefficients mostly equal modulo ℓ to ±1, ±p or ±p2

SGE: 450 246× 445 097 matrix with 44 544 016 non null
entries

Lanczos’s algorithm: about one week

h(K1) = 1, check DLOGs of generators of ideals in F1

(t2 + t + 1)(p
3−1)/l = G294066886450155961127467122432171,

(t − 3)(p
3−1)/l = G364224563635095380733340123490719,

(3 t − 1)(p
3−1)/l = G468876587747396380675723502928257,

where G = g(p3−1)/1159268202574177739715462155841484 l and
g = −2t + 1.
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Function Field Sieve
Number Field Sieve

Number Field Sieve

Individual DLOGs

Challenge γ =
∑2

i=0(⌊π × pi+1⌋ mod p)t i

Using Pollard-Rho, computed DLOG modulo (p3 − 1)/l ,

3889538915890151897584592293694118467753499109961221460457697271386147286910282477328.

To obtain a complete result, we expressed

γ =
−90987980355959529347 t2

− 114443008248522156910t + 154493664373341271998

94912764441570771406t2
− 120055569809711861965t − 81959619964446352567

,

Numerator and denominator are both smooth in Q[θ1]

Three level tree with 80 special-q ideals

Recovered DLOG modulo l , namely
110781190155780903592153105706975

Each special-q sieving took 10 minutes for a total of 14
hours
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Function Field Sieve
Number Field Sieve

Number Field Sieve

Complexity analysis of the basic algorithm

Input:

n =
1
c
·
(

log Q
log log Q

)1/3

, p = exp
(

c · log2/3 Q · log1/3 log Q
)

.

Parameters:

S = B = exp
(

c′ · log1/3 Q · log2/3 log Q
)

,

for some constant c′.

Number to smooth: p · B2n+o(1) = LQ(2/3, c + 2c′/c)

Prob. of smoothness: LQ(1/3,−(1/3) · (c/c′ + 2/c))

Complexity minimized at:

c′ = (1/3) · (c/c′ + 2/c)
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Function Field Sieve
Number Field Sieve

Number Field Sieve

Complexity analysis continued

Thus:

c′ =
1
3

(

1
c

+
√

3c + c−2

)

.

and heuristic complexity Lq(1/3,2c′) depends on c

Minimum when c = c0 = 2 · (1/3)1/3, where
c′ = 2 · (1/3)2/3.

At minimum, complexity:

LQ(1/3, (64/9)1/3)
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Function Field Sieve
Number Field Sieve

Number Field Sieve

Variation for smaller p

Polynomial setup same as in basic case

Main problem: sieving space is not large enough, due to
larger n

⇒ cannot collect enough relations

Solution: sieve over elements of larger degree than 1

t
∑

i=0

aiθ
i
1 and

t
∑

i=0

aiθ
i
2

Bound on norm: (n + t)n+tBa
nBf

t with
Ba is an upper bound on the absolute values of the ai

Bf a similar bound on the coefficients of f1 (resp. f2)

Antoine Joux DGA and UVSQ Discrete logarithms in all finite finite fields



Function Field Sieve
Number Field Sieve

Number Field Sieve

Variation for larger p

Main problem: coefficients in f2 too large
Our requirement, f1 and f2 with smaller coefficients and
GCD of deg. n over Fp

Idea: construct f1(x) of degree n and f2(x) of degree > n
with small coefficients such that:

f1(x) ∤ f2(x) over Q

Choose constant W and construct f1(x) = f0(x + W ),
largest coefficient at least W n

Use LLL to reduce the lattice

L =
(

f1(x) xf1(x) x2f1(x) · · · xD−nf1(x) p px px2 · · · pxD
)

Need vector with coefficients smaller than W n so

2(D+1)/4pn/(D+1) ≤ W n
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Function Field Sieve
Number Field Sieve

Number Field Sieve

Complexity of variations for p = LQ(2/3, c)

p can be written as Lq(2/3, c) for a constant c < c0

Lq(1/3,2c′) with c′ =
4
3

(

3t
4(t + 1)

)1/3

sieve over elements of degree t with 3c3t(t + 1)2 − 32 = 0

p can be written as Lq(2/3, c) for a constant c > c0

Lq(1/3,2c′) with 9c′3 − 6
c

c′2 +
1
c2 c′ − 8 = 0
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Function Field Sieve
Number Field Sieve

Number Field Sieve

Complexity of variations for p = LQ(2/3, c)

D > n

∞

Case C Case B

(64/9)^(1/3)

(128/9)^(1/3)
t

t = 3

t = 1

t = 2

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

1 2 3 4 5 6 7 8

γ
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Complexity summary for all finite fields

Three main zones:
For p up to LQ(1/3):

Lq(1/3, (32/9)1/3) ≃ Lq(1/3, 1.526 . . .)

For p from LQ(1/3) to LQ(2/3):

Lq(1/3, (128/9)1/3) ≃ Lq(1/3, 2.423 . . .)

For p above LQ(2/3):

Lq(1/3, (64/9)1/3) ≃ Lq(1/3, 1.923 . . .)

Two transitions:
For FFS/NFS when p = LQ(1/3)
For NFS when p = LQ(2/3)
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Conclusion

New, simple and practical variations of FFS and NFS

FFS sieving short and easy to write

Can simply adapt existing implementations of NFS for Fp

Field #digits When Who GIPS years Method
Fp 130 Jun. 2005 J-L 1.2 NFS

F2613 184 Sep. 2005 J-L 1.6 FFS
F37080118 101 Jun. 2005 L-V 0.4 Tori
F6553725 121 Oct. 2005 J-L ≃ 0 FFS
F37080130 168 Nov. 2005 J-L 0.1 FFS

Fp3 120 Feb. 2006 J-L-S-V 1.2 NFS
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