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Index calculus algorithms

@ Factoring problems

@ Discrete logarithms in finite fields

@ A general algorithmic approach to solve:
@ Two main subcases:

@ Number field sieve (factoring and DL in medium to large
char.)

@ Function field sieve (DL in small to medium char.)
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Previously known complexity results

@ Complexity usually expressed as:

Lo(a,€) = exp((c + o(1))(log Q)*(loglog Q)*~*)
@ Two extreme (well known) cases:
o Fp, with p a large prime. NFS yields a

1/3
L | 5. o4 complexity.
37\ 9

o Fpn, with fixed (small) p. FFS yields a

1 (32\3 .
Lpn 3 <§> complexity.

@ In between, the best known result was L(1/2).
(Adleman-Demarrais)
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New results for DLOG in Fq

® Assume Q = p"

@ Eurocrypt 2006: Revisit the FFS
@ Forpuptolg(1/3)
@ Works without function fields

@ Basic simplest case: p = Lo(1/3)
@ Crypto 2006: Revisit the NFS

@ Works for p from Lo (1/3) upto Q
@ With an individual logarithm phase

@ Basic simplest case: p = Lo(2/3)

@ Put together: Lo(1/3) complexity for all finite fields
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Function Field Sieve

Number Field Sieve FunCtlon Fleld Sleve
Overall strategy

@ As in any index calculus approach, setup followed by:
@ Sieving

@ Linear algebra using SGE and Lanczos or Wiedemann
@ Individual logarithms
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Function Field Sieve

Number Field Sieve FunCtlon Fleld Sleve
Basic case (Setup)

@ Assume p = Lg(1/3,¢)
® Thus:

loglog Q ’
@ Choose two univariate polynomials f; and f,

with degrees d; and d, and d;d, > n.
@ Such that Res(y — f1(x),x — fa(y)) has:

an irreducible factor of degree n (modulo p).

1 (Iﬁy
C
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Functon Fea Seve —— Function Field Sieve
Basic case (Setup/Sieving)

@ Irreducible factor: Iy(x) or ly(y)
@ Two definitions of the (same) finite field Fpn

@ Both x and y have well defined images « and 3 in Fpn.

@ Take elements of the form:

af+aa+bg+c or

aa+0+b
@ In this expression, replace g by f;(«)
@ Or replace a by f,(f)
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Function Field Sieve

Number Field Sieve FunCtlon Fleld Sleve
Basic case (Sieving)

@ Yields an equation:

hi(a) =

ha(3).
@ Where h;y (resp. hy) has degree di + 1 (resp. d, + 1)
@ Good case:

@ hy and h; split into linear factors

@ Multiplicative equality (up to a constant in [p)
o Betweenterms a +aand 3+ b.
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Functon Field Sieve —— Fnction Field Sieve

Number Field Sieve

Example: Fgs53725

@ Take fi(x) =x®+x +3andfp(y) = —y5 —y — 1
@ Then:

k() = x2°45x21 +15x% + 10x*" + 60x° + 90x*° 4 10x*® +
90x 12 + 270xt 4 270x° + 5x° + 60x® + 270x” +
540x° + 407x° + 15x* + 90x3 + 270x2 + 407x + 247
ly(y) = y25 + 5y21 + 5y20 + 10y17 + 20y16 + 10y15 +
10y*® + 30y*? + 30y** + 10y*° + 5y° + 20y® +
30y’ +20y°® + 7y° 4 5y* + 10y3 + 10y? + 7y — 1
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Function Field Sieve
Number Field Sieve
Example: Fgsg372

Function Field Sieve

@ Take the element S + 2o — 20496
@ It can be written as:

a® + 3a — 20493 =

(v + 2445) - (o + 9593) - (o + 31166) - (a + 39260) - (v + 48610)
@ Oras:

~ 235 — 320498 =

—2(3 + 1946) - (3 + 17129) - (5 + 18727) - (B + 43449) - (3 + 49823)

@ Linear equation between terms log(« + a) and log(3 + b)
modulo (p" —1)/(p — 1)

Antoine Joux DGA and UVSQ

[m]

&
Discrete logarithms in all finite finite fields

DA



Functon Fea Seve —— Function Field Sieve

Number Field Sieve

Example: Fgs53725 (Linear algebra)

© Cardinality of Fg 0!

65536-3571-37693451-137055701-10853705894563968937051- P47

@ We compute the linear algebra modulo
do = (p" — 1)/(65536 - 3571), finding:

95805410880093234842298898214533393829434304594545362348
24840375483524017353229706334323184929723853320944439485
and
46495712756925209185601240503381083970050573012881700517
18556686238431642289730613529631676496393555258546887691

the logarithms of oo + 1 and /3 in base «.
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Function Field Sieve

Number Field Sieve FunCtlon Fleld Sleve
Complexity analysis

@ Linear system in 2p unknowns

IS:

@ For each candidate, the (heuristic) probability of success
1

1

(dy + 1)1

(dz + 1)!
@ Expected number of candidates (sieving time):

2p(dy + 1)!- (d2 + 1)!
@ Time for solving the sparse linear system:

O((dy + da)p?)
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Function Field Sieve

Number Field Sieve FunCtlon Fleld Sleve
Complexity analysis

OWithdlﬁdzﬁ\/ﬁ

@ The complexities written as L (1/3) become:
@ Linear algebra:

O((d1 + d2)p?) = Lo(1/3,2c)
@ Sieving:

1

2
2p(dy +1)! - (d2 +1)! = Lg <§,c + —)
@ Important constraint, size of sieving space:

3vc
p3 = LQ(1/37 3C)
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Function Field Sieve

Number Field Sieve
Complexity analysis

Function Field Sieve

@ The algorithm is valid when:

3c>c+ 2 or c>
> NG >

(1/3)*°
@ Complexity: Lq(1/3,¢ + max(c, %))

@ Minimum at ¢ = (1/3)?/3, complexity Lo(1/3,3/3)
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Functon Fea Seve —— Function Field Sieve

Number Field Sieve

Individual logarithm: example in Fgsg3725

@ Logarithm to find:

24
A = ) (|r-65537"""| mod 65537)a' = 416670 + -- - + 9279.
i=0

@ First step, write A = 9828 - N/D with:

N = (a+20471)- (o + 25396)- (o + 34766) -
(o + 54898) - (o + 29819 + 6546) - (a” + 44017 + 38392) -
(o® + 54060 + 4880) - (o® + 238110 + 6384« + 3243)
D = (a+18919) (a+31146)- (« + 38885)-
(o +53302) - (o + 523650 + 2605) -
(o® + 2979507 + 546530 + 7616) -
(

o® +573540° + 37421a + 53988)

@ Second step, compute each log. by descent
(=] = = =
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Function Field Sieve

uncton freid Sieve - Eynction Field Sieve
Starting the descent

@ Take element:

(1493 o + 1)3 — (40653 a2 4 26561 o + 44820)
@ Equal to:

1493a® + a® — 3916002 — 22081 o — 44817 =

1493 - (o + 1964) - (o 4+ 2977 + 33882) - (o® + 23811a° + 6384« + 3243)
@ And also to:

24884 31° + 48275 3° 4 10792 3° + 23391 32 + 9300 8 + 6625 =
24884 - (3 + 14197) - (58 + 14995) - (3 + 25133) - (5 + 56789)-

(8% + 147320 + 57516) - (8% + 204543 + 37544) - (4° + 503113 + 36703)
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Function Field Sieve
The descent ..

Number Field Sieve

Function Field Sieve
continued

@ Take element:

21022 a3 + o 4+ 17943 3 + 65126
@ Equal to:

21022 % + 17943 a° + 21022 o® + 15473 a + 53418 =

21022 - (o +19091) - (o + 36728) - (o + 38567) - (a + 38593)
@ And also to:

(o +56621) - (o + 64596)
44515 3% — 3° 4 44515 32 4 62457 3 + 65125 =
44515 - (3 + 148) - (8 + 1344) - (8 + 15752) - (3 + 47579)

(82 + 503113 + 36703)

Antoine Joux DGA and UVSQ
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Function Field Sieve
Number Field Sieve

Function Field Sieve
Individual logarithm: example in Fgsg3725

@ Finally:

4053736945052440744587988507271545773377910517074639935754736
348185260902857777282008537164926838353644893694741284146999
is the logarithm of X in basis 3a.
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Function Field Sieve
Number Field Sieve

Function Field Sieve
General case (smaller values of p)

@ Family of algorithms, parametrized by D
@ Sieve over elements of the form:

f(a)8 +g(a),

where f and g are polynomials of degree D (f unitary)
@ Similar analysis, optimal choice d; ~ Dd,
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Functon Fea Seve —— Function Field Sieve

Number Field Sieve

Complexity of the general case when p = Lg(1/3)
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Function Field Sieve
Number Field Sieve

Function Field Sieve
Complexity for p = o(Lo(1/3))

@ Instead take:

@ Here D is no longer a constant

1/3 2/3
D= (2/3)2/3 |Og(Q) |Og Iog (Q)
log(p)
@ With this choice:

o Sieve space: p®P) = Lq(1/3,(32/9)Y/3)

@ Smoothness base size: p° = Lo(1/3, (4/9)/3)

@ Smoothness probability:
exp(~2,/(n/D)log(2\/(n/D)))) = Lo(1/3, —(4/9)"/%)

@ Everything lines up correctly on total complexity:

Lo(1/3,(32/9)*%)

Antoine Joux DGA and UVSQ

[m] [ =
Discrete logarithms in all finite finite fields

DA



Functon Fea Seve —— Function Field Sieve

Number Field Sieve

Possible Extensions of FFS

@ Use of Galois group to speed-up computations
@ Very useful for Famm

@ Also practical in other cases such as F37ggs20
@ Often need the description with function fields
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Function Field Sieve
Number Field Sieve

Number Field Sieve
Basic variation p = Ln(2/3, c): setup

@ Finite field Fyn with p = Lyn(2/3,¢) and ¢ near 2 - (1/3)1/3
@ Choose polynomial f; of degree n
@ irreducible over [,

o very small coefficients

@ Choose second polynomial

® Ky~ Q[X]/(f2(X)) = Q[f1] and Kz = Q[X]/(f2(X)) = Q[62]

@ Note: f; = f, mod p, so we have commutative diagram:

Q[X]

Antoine Joux DGA and UVSQ
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Function Field Sieve Number F|e|d S|eve

Number Field Sieve

Basic variation p = Ly (2/3, ¢): sieving/linear algebra

@ Factor bases F; and F, of degree 1 ideals of small nhorm
@ Choose smoothness bound B and a sieve limit S
@ Pairs (a,b) of coprime integers, |a| < Sand |b| < S

No(a — bf;) and No(a — bf,) B-smooth

@ Add logarithmic maps to take into account h(K;) # 1 and
unit groups

@ Obtain linear equation between “logarithms of ideals” in the
smoothness bases

@ Solve linear system

(=] = = =
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Function Field Sieve
Number Field Sieve

Number Field Sieve
Practical optimisation: Galois extensions

@ pisinertin Ky, so isomorphism Gal(K;/Q) ~ Gal(Fq /Fp)
@ Thus: Ky has to be a cyclic number field of degree n

@ Partition factor base 7 inn parts 7y, withk =1,...,n

(a=bo) =[] I ¢ G

k=1pi€F1,1
with Gal(Ky/Q) = ()

@ Choose ¢ such logy ¢1(¢(d;))) = p10gg ¢1(di) with p;
@ Effectively divides factor base size by n

= (&)
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Function Field Sieve Number F|e|d S|eve

Number Field Sieve

Basic variation p = Ly (2/3, ¢): individual DLOG

@ Adapted variation of special g-descent procedure
@ Represent Fpn as Fplt]/(f1(t))
@ Assume we want to compute log, y withy € Fpn

@ Search for element z = y'tl for some i,j € N with

@ liting z € Ky, norm factors into primes smaller than some
bound B; € Ly (2/3,1/3%/3),

@ only degree one prime ideals in the factorisation of (z)

© E.g.: the norm of the lift of z should be squarefree

@ Remark: probability of squarefree smoothness is about
6/72 probability of smoothness
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Function Field Sieve
Number Field Sieve

Number Field Sieve
Basic variation p = Ly (2/3, ¢): individual DLOG

@ Factor principal ideal generated by z as

@ =[] »" 14
j

pi€F1

@ Ideals g; not contained in 7, so need to compute DLOGs
@ For each g, perform special-q; descent:

© Sieve over pairs (a,b) such that gj|(a — b#;) and

No(a — b6d1)/No(qg;) and No(a — b6,)

B,-smooth B, < By
© Factor (a — b6;) and (a — bé,) to obtain new special g;’s
© Repeat until bound B, < B = DLOGs of all gj known

@ Remark: special gj in both number fields K; and K;
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Function Field Sieve
Number Field Sieve

Number Field Sieve
Practical Optimisation for individual logarithms

@ Instead of factoring (z), first write z as

@ Use LLL to find short vector in lattice L

Zait‘

> bti
with &; and b; are of the order of \/p.

z tz t?2z . t"1z p
1 0 O 0 0
01 O 0 0
L=10 0 1 0 0
0O 0 O 1 0

pt
0
0

0

0

pt?
0
0
0

0

@ Expect LLL finds short vector of norm ,/p

Antoine Joux DGA and UVSQ
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mberresseve | NUMbEr Field Sieve
Example on 120 digits

@ Adaptation of J. & Lercier's implementation for [,
@ Finite field F: with p = [10%97 ] + 2622

p = 3141592653589793238462643383279502886819

@ Group order p® — 1 has 110-bit factor |

@ Definition of number fields K; and K, by
f(X)=X34+X%-2X —-1

and fz(X):fl(X)+p,

Antoine Joux DGA and UVSQ
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Function Field Sieve
Number Field Sieve

Number Field Sieve
Specifics of number fields K; and K

@ QI61] is a cubic cyclic number field with Galois group

AU(Q[61]) = {01 — 01,601 — 6 — 2,01 — —07 — 61 + 1}

@ K; has class number 1 and System of fundamental units

u1:91+landu2:9%+91—1

@ Q6] has signature (1,1), so only need single Schirokauer
logarithmic map A

Antoine Joux DGA and UVSQ
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Function Field Sieve Number F|e|d S|eve

Number Field Sieve

Factor bases and sieving

@ Smoothness bases with 1 000 000 prime ideals

@ in the Q[6,] side, we include 899 999 prime ideals, but only
300000 are meaningful due to the Galois action,
@ in the Q[6;] side, we include 700000 prime ideals.

@ Lattice sieving: only algebraic integers a + b6, divisible by
prime ideal in Q[6>]

@ Norms to be smoothed in Q[f,] are 150 bit integers
@ Norms in Q[#;] are 110 bit integers

@ Sieving took 12 days on a 1.15 GHz 16-processors HP
AlphaServer GS1280

(=] = = =
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Function Field Sieve Number F|e|d S|eve

Number Field Sieve

Linear algebra

@ Compute the kernel of a 1163482 x 793 188 matrix
@ Coefficients mostly equal modulo ¢ to +1, +p or +p?

@ SGE: 450246 x 445097 matrix with 44544 016 non null
entries

@ Lanczos's algorithm: about one week
@ h(K;) =1, check DLOGs of generators of ideals in F;

(t2 4t + 1)(P°-1/I —  (5294066886450155961127467122432171
(t — 3)(P°-1)/l — (3364224563635095380733340123490719
(3t — 1)(P°-1/I —  (G468876587747396380675723502928257

3
where G = g(p —1)/1159268202574177739715462155841484 | and
g=-—-2t+1.
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foneonfecsee  Number Field Sieve

Number Field Sieve

Individual DLOGs

@ Challenge v = 22 o(|7 x p't*| mod p)t’
@ Using Pollard-Rho, computed DLOG modulo (p3 — 1)/I,

3889538915890151897584592293694118467753499109961221460457697271386147286910282477328.

@ To obtain a complete result, we expressed

—90987980355959529347t2 — 114443008248522156910t + 154493664373341271998
94912764441570771406t2 — 120055569809711861965t — 81959619964446352567

@ Numerator and denominator are both smooth in Q[6,]
@ Three level tree with 80 special-q ideals

@ Recovered DLOG modulo |, namely
110781190155780903592153105706975

@ Each special-q sieving took 10 minutes for a total of 14
hours
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Function Field Sieve

Number Field Sieve Number Field Sieve
Complexity analysis of the basic algorithm

@ Input:
1 logQ 1/ _ 2/3 1/3
= E.<W> , p=exp (c -log’* Q - log™* log Q) .

@ Parameters:

S =B =exp (c/ -log*/® Q - log?/® log Q) ,
for some constant c’.
@ Number to smooth: p - B2"+°(1) = | 4(2/3,¢ + 2¢’/c)
@ Prob. of smoothness: Lo(1/3,—(1/3) - (c/c’ +2/c))
@ Complexity minimized at:
¢’ =(1/3)-(c/c’ +2/c)
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mberresseve | NUMbEr Field Sieve
Complexity analysis continued

@ Thus:

1/1
C/:§<E+ 3c+c2

and heuristic complexity Lq(1/3,2c’) depends on ¢
@ Minimum when ¢ = ¢g = 2 - (1/3)Y/3, where
¢/ =2-(1/3)%/3.

@ At minimum, complexity:

Lo(1/3,(64/9)Y3)

Antoine Joux DGA and UVSQ
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Function Field Sieve Number F|e|d S|eve

Number Field Sieve

Variation for smaller p

@ Polynomial setup same as in basic case

@ Main problem: sieving space is not large enough, due to
larger n

@ = cannot collect enough relations
@ Solution: sieve over elements of larger degree than 1

t t
D ay and ) abh
i—0 i—0

@ Bound on norm: (n 4 t)"+'B,"B;" with

@ B, is an upper bound on the absolute values of the a;
@ By a similar bound on the coefficients of f; (resp. f2)
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Function Field Sieve Number F|e|d S|eve

Number Field Sieve

Variation for larger p

@ Main problem: coefficients in f, too large

@ Our requirement, f; and f, with smaller coefficients and
GCD of deg. n over [y

@ Idea: construct f;(x) of degree n and f(x) of degree > n
with small coefficients such that:

f1(x) 1f2(x) overQ

@ Choose constant W and construct f1(x) = fo(Xx + W),
largest coefficient at least W"
@ Use LLL to reduce the lattice

L=(fi(x) xfy(x) x*fy(x) - xP"y(x) p px px?
@ Need vector with coefficients smaller than W" so
2(D+1)/4pn/(D+l) <wn
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Function Field Sieve
Number Field Sieve

Number Field Sieve
Complexity of variations for p = Lg(2/3, c)

@ p can be written as Lq(2/3, ¢) for a constant ¢ < cg

Lq(1/3,2¢)

with o= 4(- 3 )"
3 \4(t+1)
sieve over elements of degree t with 3c3t(t + 1)2 -32=0

@ p can be written as Lq(2/3, ¢) for a constant ¢ > cg

Lq(1/3,2¢")  with 9c” — SC/Z + L

?C/—SZO

Antoine Joux DGA and UVSQ
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Function Field Sieve
Number Field Sieve

2.5

Number Field Sieve
Complexity of variations for p = Lg(2/3, c)

(128/9)~(1/3)
Case B
D>n
(64/9)7(1/3)
18 1 2 3 a 5 6 7
v

8
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Complexity summary for all finite fields

@ Three main zones:

@ ForpuptoLg(1/3):

Lq(1/3,(32/9)Y/3) ~ L4(1/3,1.526...)
@ Forp from Lg(1/3) to Lo(2/3):

Lq(1/3,(128/9)Y/3) =~ L4(1/3,2.423..)
@ For p above Lq(2/3):

Lq(1/3,(64/9)Y/3) ~ L4(1/3,1.923...)
@ Two transitions:

@ For FFS/INFS when p = Lo(1/3)
@ For NFS when p = Lo(2/3)
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[m] [ =
Discrete logarithms in all finite finite fields

DA



Conclusion

@ New, simple and practical variations of FFS and NFS
@ FFS sieving short and easy to write
@ Can simply adapt existing implementations of NFS for Fp,

Field | #digits | When | Who | GIPSyears | Method
Fp 130 Jun. 2005 J-L 1.2 NFS
Fa613 184 Sep. 2005 J-L 1.6 FFS
Farogors | 101 | Jun. 2005 | LV 0.4 Tori
Fassarzs | 121 | Oct. 2005 |  J-L ~0 FFS
Farosoi0 | 168 | Nov. 2005 |  J-L 0.1 FFS
p3 120 Feb. 2006 | J-L-S-V 1.2 NFS

o o - = = 9ac
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