Discrete logarithms in all finite finite fields

Antoine Joux DGA and UVSQ

IPAM (October 9th, 2006)

Joint work with Reynald Lercier, Nigel Smart, Frederik Vercauteren

Index calculus algorithms

- A general algorithmic approach to solve:
 - Factoring problems
 - Discrete logarithms in finite fields
- Two main subcases:
 - Number field sieve (factoring and DL in medium to large char.)
 - Function field sieve (DL in small to medium char.)

Previously known complexity results

Complexity usually expressed as:

$$L_{\mathbf{Q}}(\alpha, \mathbf{c}) = \exp((\mathbf{c} + o(1))(\log \mathbf{Q})^{\alpha}(\log \log \mathbf{Q})^{1-\alpha}).$$

- Two extreme (well known) cases:
 - \mathbb{F}_p , with p a large prime. NFS yields a

$$L_{\rho}\left(\frac{1}{3},\left(\frac{64}{9}\right)^{1/3}\right)$$
 complexity.

• \mathbb{F}_{p^n} , with fixed (small) p. FFS yields a

$$L_{\rho^n}\left(\frac{1}{3},\left(\frac{32}{9}\right)^{1/3}\right)$$
 complexity.

In between, the best known result was L(1/2).
 (Adleman-Demarrais)

New results for DLOG in \mathbb{F}_Q

- Assume $Q = p^n$
- Eurocrypt 2006: Revisit the FFS
 - For p up to $L_Q(1/3)$
 - Works without function fields
 - Basic simplest case: $p = L_Q(1/3)$
- Crypto 2006: Revisit the NFS
 - Works for p from $L_Q(1/3)$ up to Q
 - With an individual logarithm phase
 - Basic simplest case: $p = L_Q(2/3)$
- Put together: $L_Q(1/3)$ complexity for all finite fields

Overall strategy

- As in any index calculus approach, setup followed by:
 - Sieving
 - Linear algebra using SGE and Lanczos or Wiedemann
 - Individual logarithms

Basic case (Setup)

- Assume $p = L_Q(1/3, c)$
- Thus:

$$n = \frac{1}{c} \left(\frac{\log Q}{\log \log Q} \right)^{2/3}.$$

- Choose two univariate polynomials f_1 and f_2 with degrees d_1 and d_2 and $d_1 d_2 \ge n$.
- Such that $\operatorname{Res}(y f_1(x), x f_2(y))$ has: an irreducible factor of degree n (modulo p).

Basic case (Setup/Sieving)

- Irreducible factor: $I_x(x)$ or $I_y(y)$
- ullet Two definitions of the (same) finite field \mathbb{F}_{p^n}
- Both x and y have well defined images α and β in \mathbb{F}_{p^n} .

Take elements of the form:

$$\alpha\beta + \mathbf{a}\alpha + \mathbf{b}\beta + \mathbf{c}$$
 or $\mathbf{a}\alpha + \beta + \mathbf{b}$

- In this expression, replace β by $f_1(\alpha)$
- Or replace α by $f_2(\beta)$

Basic case (Sieving)

Yields an equation:

$$h_1(\alpha) = h_2(\beta).$$

- Where h_1 (resp. h_2) has degree $d_1 + 1$ (resp. $d_2 + 1$)
- Good case:
 - h₁ and h₂ split into linear factors
- Multiplicative equality (up to a constant in \mathbb{F}_p)
 - Between terms $\alpha + \mathfrak{a}$ and $\beta + \mathfrak{b}$.

Example: $\mathbb{F}_{65537^{25}}$

- Take $f_1(x) = x^5 + x + 3$ and $f_2(y) = -y^5 y 1$
- Then:

$$I_x(x) = x^{25} + 5x^{21} + 15x^{20} + 10x^{17} + 60x^{16} + 90x^{15} + 10x^{13} + 90x^{12} + 270x^{11} + 270x^{10} + 5x^9 + 60x^8 + 270x^7 + 540x^6 + 407x^5 + 15x^4 + 90x^3 + 270x^2 + 407x + 247$$

$$I_y(y) = y^{25} + 5y^{21} + 5y^{20} + 10y^{17} + 20y^{16} + 10y^{15} + 10y^{13} + 30y^{12} + 30y^{11} + 10y^{10} + 5y^9 + 20y^8 + 30y^7 + 20y^6 + 7y^5 + 5y^4 + 10y^3 + 10y^2 + 7y - 1$$

Example: $\mathbb{F}_{65537^{25}}$

- Take the element $\beta + 2\alpha 20496$
- It can be written as:

$$\begin{array}{l} \alpha^5 + 3\alpha - 20493 = \\ (\alpha + 2445) \cdot (\alpha + 9593) \cdot (\alpha + 31166) \cdot (\alpha + 39260) \cdot (\alpha + 48610) \end{array}$$

Or as:

$$-2\beta^5 - \beta - 20498 = -2(\beta + 1946) \cdot (\beta + 17129) \cdot (\beta + 18727) \cdot (\beta + 43449) \cdot (\beta + 49823)$$

• Linear equation between terms $\log(\alpha + \mathfrak{a})$ and $\log(\beta + \mathfrak{b})$ modulo $(p^n - 1)/(p - 1)$

Example: $\mathbb{F}_{65537^{25}}$ (Linear algebra)

• Cardinality of $\mathbb{F}^*_{65537^{25}}$:

 $65536 \cdot 3571 \cdot 37693451 \cdot 137055701 \cdot 10853705894563968937051 \cdot P_{247}$

• We compute the linear algebra modulo $q_0 = (p^n - 1)/(65536 \cdot 3571)$, finding:

95805410880093234842298898214533393829434304594545362348 24840375483524017353229706334323184929723853320944439485 and

46495712756925209185601240503381083970050573012881700517 18556686238431642289730613529631676496393555258546887691

the logarithms of $\alpha + 1$ and β in base α .

Complexity analysis

- Linear system in 2p unknowns
- For each candidate, the (heuristic) probability of success is:

$$\frac{1}{(d_1+1)!}\cdot \frac{1}{(d_2+1)!}$$

Expected number of candidates (sieving time):

$$2p(d_1+1)! \cdot (d_2+1)!$$

• Time for solving the sparse linear system:

$$O((d_1+d_2)p^2)$$

Complexity analysis

- With $d_1 \approx d_2 \approx \sqrt{n}$
- The complexities written as $L_Q(1/3)$ become:
 - Linear algebra:

$$O((d_1+d_2)p^2)=L_Q(1/3,2c)$$

Sieving:

$$2p(d_1+1)!\cdot (d_2+1)!=L_Q\left(\frac{1}{3},c+\frac{2}{3\sqrt{c}}\right)$$

Important constraint, size of sieving space:

$$p^3 = L_Q(1/3, 3c)$$

Complexity analysis

The algorithm is valid when:

$$3c \ge c + \frac{2}{3\sqrt{c}}$$
 or $c \ge (1/3)^{2/3}$

- Complexity: $L_Q(1/3, c + \max(c, \frac{2}{3\sqrt{c}}))$
- Minimum at $c = (1/3)^{2/3}$, complexity $L_Q(1/3, 3^{1/3})$

Individual logarithm: example in $\mathbb{F}_{65537^{25}}$

Logarithm to find:

$$\lambda = \sum_{i=0}^{24} (\lfloor \pi \cdot 65537^{i+1} \rfloor \mod 65537) \alpha^i = 41667 \alpha^{24} + \dots + 9279.$$

• First step, write $\lambda = 9828 \cdot N/D$ with:

$$\begin{array}{lll} N & = & (\alpha + 20471) \cdot (\alpha + 25396) \cdot (\alpha + 34766) \cdot \\ & & (\alpha + 54898) \cdot (\alpha^2 + 29819\alpha + 6546) \cdot (\alpha^2 + 44017\alpha + 38392) \cdot \\ & & (\alpha^2 + 54060\alpha + 4880) \cdot (\alpha^3 + 23811\alpha^2 + 6384\alpha + 3243) \\ D & = & (\alpha + 18919) \cdot (\alpha + 31146) \cdot (\alpha + 38885) \cdot \\ & & (\alpha + 53302) \cdot (\alpha^2 + 52365\alpha + 2605) \cdot \\ & & (\alpha^3 + 29795\alpha^2 + 54653\alpha + 7616) \cdot \\ & & (\alpha^3 + 57354\alpha^2 + 37421\alpha + 53988) \end{array}$$

Second step, compute each log. by descent

Starting the descent

Take element:

$$(1493 \alpha + 1)\beta - (40653 \alpha^2 + 26561 \alpha + 44820)$$

Equal to:

$$1493 \,\alpha^6 + \alpha^5 - 39160 \,\alpha^2 - 22081 \,\alpha - 44817 = \\ 1493 \cdot (\alpha + 1964) \cdot (\alpha^2 + 2977\alpha + 33882) \cdot (\alpha^3 + 23811\alpha^2 + 6384\alpha + 3243)$$

And also to:

$$\begin{array}{l} 24884\,\beta^{10} + 48275\,\beta^{6} + 10792\,\beta^{5} + 23391\,\beta^{2} + 9300\,\beta + 6625 = \\ 24884\cdot(\beta + 14197)\cdot(\beta + 14995)\cdot(\beta + 25133)\cdot(\beta + 56789)\cdot\\ (\beta^{2} + 14732\beta + 57516)\cdot(\beta^{2} + 20454\beta + 37544)\cdot(\beta^{2} + 50311\beta + 36703) \end{array}$$

The descent ... continued

Take element:

21022
$$\alpha\beta + \alpha + 17943 \beta + 65126$$

Equal to:

$$21022\,\alpha^{6}+17943\,\alpha^{5}+21022\,\alpha^{2}+15473\,\alpha+53418=\\21022\cdot(\alpha+19091)\cdot(\alpha+36728)\cdot(\alpha+38567)\cdot(\alpha+38593)\\\cdot(\alpha+56621)\cdot(\alpha+64596)$$

And also to:

$$\begin{array}{l} 44515\,\beta^6 - \beta^5 + 44515\,\beta^2 + 62457\,\beta + 65125 = \\ 44515\cdot(\beta + 148)\cdot(\beta + 1344)\cdot(\beta + 15752)\cdot(\beta + 47579) \\ \cdot(\beta^2 + 50311\beta + 36703) \end{array}$$

Function Field Sieve

Individual logarithm: example in $\mathbb{F}_{65537^{25}}$

Finally:

4053736945052440744587988507271545773377910517074639935754736 348185260902857777282008537164926838353644893694741284146999

is the logarithm of λ in basis 3α .

General case (smaller values of p)

- Family of algorithms, parametrized by D
- Sieve over elements of the form:

$$f(\alpha)\beta + g(\alpha),$$

where f and g are polynomials of degree D (f unitary).

Similar analysis, optimal choice d₁ ≈ Dd₂

Complexity of the general case when $p = L_Q(1/3)$

Complexity for $p = o(L_Q(1/3))$

- Here D is no longer a constant
- Instead take:

$$D = (2/3)^{2/3} \frac{\log(Q)^{1/3} \log \log^{2/3}(Q)}{\log(p)}$$

- With this choice:
 - Sieve space: $p^{(2D)} = L_Q(1/3, (32/9)^{1/3})$
 - Smoothness base size: $p^D = L_Q(1/3, (4/9)^{1/3})$
 - Smoothness probability: $\exp(-2\sqrt{(n/D)}\log(2\sqrt{(n/D)}))) = L_Q(1/3, -(4/9)^{1/3})$
- Everything lines up correctly on total complexity:

$$L_{\rm Q}(1/3,(32/9)^{1/3})$$

Possible Extensions of FFS

- Use of Galois group to speed-up computations
- Very useful for $\mathbb{F}_{2^{nm}}$
- \bullet Also practical in other cases such as $\mathbb{F}_{370801^{30}}$
- Often need the description with function fields

Basic variation $p = L_{p^n}(2/3, c)$: setup

Function Field Sieve

Number Field Sieve

- Finite field \mathbb{F}_{p^n} with $p = L_{p^n}(2/3, c)$ and c near $2 \cdot (1/3)^{1/3}$
- Choose polynomial f_1 of degree n
 - irreducible over \mathbb{F}_p
 - very small coefficients
- Choose second polynomial $|f_2 = f_1 + p|$
- $K_1 \simeq \mathbb{Q}[X]/(f_1(X)) \cong \mathbb{Q}[\theta_1]$ and $K_2 \cong \mathbb{Q}[X]/(f_2(X)) \cong \mathbb{Q}[\theta_2]$
- Note: $f_1 \equiv f_2 \mod p$, so we have commutative diagram:

Basic variation $p = L_{p^n}(2/3, c)$: sieving/linear algebra

- Factor bases \mathcal{F}_1 and \mathcal{F}_2 of degree 1 ideals of small norm
- Choose smoothness bound B and a sieve limit S
- Pairs (a, b) of coprime integers, $|a| \leq S$ and $|b| \leq S$

$$No(a - b\theta_1)$$
 and $No(a - b\theta_2)$ *B*-smooth

- Add logarithmic maps to take into account h(K_i) ≠ 1 and unit groups
- Obtain linear equation between "logarithms of ideals" in the smoothness bases
- Solve linear system

Practical optimisation: Galois extensions

- p is inert in K_1 , so isomorphism $\operatorname{Gal}(K_1/\mathbb{Q}) \simeq \operatorname{Gal}(\mathbb{F}_Q/\mathbb{F}_p)$
- Thus: K₁ has to be a cyclic number field of degree n
- Partition factor base \mathcal{F}_1 in n parts $\mathcal{F}_{1,k}$ with $k = 1, \dots, n$

$$(a-b\theta_1)=\prod_{k=1}^n\prod_{\mathfrak{p}_i\in\mathcal{F}_{1,1}}\psi^k(\mathfrak{p}_i)^{\mathbf{e}_{i,k}}$$

with
$$Gal(K_1/\mathbb{Q}) = \langle \psi \rangle$$

- Choose ψ such $\log_g \phi_1(\psi(\delta_i))) = p \log_g \phi_1(\delta_i)$ with $\mathfrak{p}_i = \langle \delta_i \rangle$
- Effectively divides factor base size by n

Basic variation $p = L_{p^n}(2/3, c)$: individual DLOG

- Adapted variation of special q-descent procedure
- Represent \mathbb{F}_{p^n} as $\mathbb{F}_p[t]/(f_1(t))$
- Assume we want to compute $\log_t y$ with $y \in \mathbb{F}_{p^n}$
- Search for element $z = y^i t^j$ for some $i, j \in \mathbb{N}$ with
 - Iifting $z \in K_1$, norm factors into primes smaller than some bound $B_1 \in L_{p^n}(2/3, 1/3^{1/3})$,
 - 2 only degree one prime ideals in the factorisation of (z)
 - **3** E.g.: the norm of the lift of z should be squarefree
- Remark: probability of squarefree smoothness is about $6/\pi^2$ probability of smoothness

Basic variation $p = L_{p^n}(2/3, c)$: individual DLOG

Factor principal ideal generated by z as

$$(z) = \prod_{p_i \in \mathcal{F}_1} \mathfrak{p}_i^{e_i} \prod_j \mathfrak{q}_j^{e_j}$$

- Ideals q_j not contained in \mathcal{F}_1 , so need to compute DLOGs
- For each q_i, perform special-q_i descent:
 - **③** Sieve over pairs (a, b) such that $q_j | (a b\theta_1)$ and

$$No(a - b\theta_1)/No(\mathfrak{q}_j)$$
 and $No(a - b\theta_2)$ B_2 -smooth $B_2 < B_1$

- Pactor $(a b\theta_1)$ and $(a b\theta_2)$ to obtain new special q_i 's
- Repeat until bound $B_k < B \Rightarrow DLOGs$ of all q_j known
- Remark: special q_j in both number fields K_1 and K_2

Practical Optimisation for individual logarithms

• Instead of factoring $\langle z \rangle$, first write z as

$$\frac{\sum a_i t^i}{\sum b_i t^i}$$

with a_i and b_i are of the order of \sqrt{p} .

Use LLL to find short vector in lattice L

• Expect LLL finds short vector of norm \sqrt{p}

Example on 120 digits

- Adaptation of J. & Lercier's implementation for \mathbb{F}_p
- Finite field \mathbb{F}_{p^3} with $p = \lfloor 10^{39}\pi \rfloor + 2622$

$$p = 3141592653589793238462643383279502886819$$

- Group order p³ − 1 has 110-bit factor I
- Definition of number fields K₁ and K₂ by

$$f_1(X) = X^3 + X^2 - 2X - 1$$
 and $f_2(X) = f_1(X) + p$,

Specifics of number fields K_1 and K_2

• $\mathbb{Q}[\theta_1]$ is a cubic cyclic number field with Galois group

$$\operatorname{Aut}(\mathbb{Q}[\theta_1]) = \{\theta_1 \mapsto \theta_1, \theta_1 \mapsto \theta_1^2 - 2, \theta_1 \mapsto -\theta_1^2 - \theta_1 + 1\}$$

K₁ has class number 1 and System of fundamental units

$$u_1 = \theta_1 + 1$$
 and $u_2 = \theta_1^2 + \theta_1 - 1$

• $\mathbb{Q}[\theta_2]$ has signature (1,1), so only need single Schirokauer logarithmic map λ

Factor bases and sieving

- Smoothness bases with 1 000 000 prime ideals
 - in the $\mathbb{Q}[\theta_1]$ side, we include 899 999 prime ideals, but only 300 000 are meaningful due to the Galois action,
 - in the $\mathbb{Q}[\theta_2]$ side, we include 700 000 prime ideals.
- Lattice sieving: only algebraic integers $a + b\theta_2$ divisible by prime ideal in $\mathbb{Q}[\theta_2]$
- Norms to be smoothed in $\mathbb{Q}[\theta_2]$ are 150 bit integers
- Norms in $\mathbb{Q}[\theta_1]$ are 110 bit integers
- Sieving took 12 days on a 1.15 GHz 16-processors HP AlphaServer GS1280

Linear algebra

- Compute the kernel of a 1 163 482 × 793 188 matrix
- Coefficients mostly equal modulo ℓ to ± 1 , $\pm p$ or $\pm p^2$
- \bullet SGE: 450 246 \times 445 097 matrix with 44 544 016 non null entries
- Lanczos's algorithm: about one week
- $h(K_1) = 1$, check DLOGs of generators of ideals in \mathcal{F}_1

$$(t^2+t+1)^{(p^3-1)/I} = G^{294066886450155961127467122432171}, \ (t-3)^{(p^3-1)/I} = G^{364224563635095380733340123490719}, \ (3t-1)^{(p^3-1)/I} = G^{468876587747396380675723502928257},$$

where $G = g^{(p^3-1)/1159268202574177739715462155841484I}$ and g = -2t + 1.

Individual DLOGs

- Challenge $\gamma = \sum_{i=0}^{2} (\lfloor \pi \times p^{i+1} \rfloor \mod p) t^{i}$
- Using Pollard-Rho, computed DLOG modulo $(p^3 1)/I$,

3889538915890151897584592293694118467753499109961221460457697271386147286910282477328.

To obtain a complete result, we expressed

$$\gamma = \frac{-90987980355959529347\,t^2 - 114443008248522156910\,t + 154493664373341271998}{94912764441570771406\,t^2 - 120055569809711861965\,t - 81959619964446352567},$$

- Numerator and denominator are both smooth in $\mathbb{Q}[\theta_1]$
- Three level tree with 80 special-q ideals
- Recovered DLOG modulo I, namely 110781190155780903592153105706975
- Each special-q sieving took 10 minutes for a total of 14 hours

Complexity analysis of the basic algorithm

Input:

$$n = \frac{1}{c} \cdot \left(\frac{\log Q}{\log \log Q} \right)^{1/3}, \quad p = \exp \left(c \cdot \log^{2/3} Q \cdot \log^{1/3} \log Q \right).$$

Parameters:

$$S = B = \exp\left(c' \cdot \log^{1/3} Q \cdot \log^{2/3} \log Q\right),$$

for some constant c'.

- Number to smooth: $p \cdot B^{2n+o(1)} = L_0(2/3, c + 2c'/c)$
- Prob. of smoothness: $L_O(1/3, -(1/3) \cdot (c/c' + 2/c))$
- Complexity minimized at:

$$c' = (1/3) \cdot (c/c' + 2/c)$$

Complexity analysis continued

Thus:

$$c'=rac{1}{3}\left(rac{1}{c}+\sqrt{3c+c^{-2}}
ight).$$

and heuristic complexity $L_q(1/3, 2c')$ depends on c

- Minimum when $c = c_0 = 2 \cdot (1/3)^{1/3}$, where $c' = 2 \cdot (1/3)^{2/3}$.
- At minimum, complexity:

$$L_{\rm Q}(1/3,(64/9)^{1/3})$$

Variation for smaller p

- Polynomial setup same as in basic case
- Main problem: sieving space is not large enough, due to larger n
- ⇒ cannot collect enough relations
- Solution: sieve over elements of larger degree than 1

$$\sum_{i=0}^{t} a_i \theta_1^i \quad \text{and} \quad \sum_{i=0}^{t} a_i \theta_2^i$$

- Bound on norm: $(n+t)^{n+t}B_a{}^nB_f{}^t$ with
 - B_a is an upper bound on the absolute values of the a_i
 - B_f a similar bound on the coefficients of f_1 (resp. f_2)

Variation for larger p

- Main problem: coefficients in f₂ too large
- Our requirement, f₁ and f₂ with smaller coefficients and GCD of deg. n over F_p
- Idea: construct $f_1(x)$ of degree n and $f_2(x)$ of degree > n with small coefficients such that:

$$f_1(x) \nmid f_2(x)$$
 over \mathbb{Q}

- Choose constant W and construct $f_1(x) = f_0(x + W)$, largest coefficient at least W^n
- Use LLL to reduce the lattice

Need vector with coefficients smaller than Wⁿ so

$$2^{(D+1)/4}p^{n/(D+1)} \le W^n$$

Complexity of variations for $p = L_Q(2/3, c)$

• p can be written as $L_q(2/3,c)$ for a constant $c < c_0$

$$L_q(1/3, 2c')$$
 with $c' = \frac{4}{3} \left(\frac{3t}{4(t+1)} \right)^{1/3}$

sieve over elements of degree t with $3c^3t(t+1)^2 - 32 = 0$

• p can be written as $L_q(2/3, c)$ for a constant $c > c_0$

$$L_q(1/3, 2c')$$
 with $9c'^3 - \frac{6}{c}c'^2 + \frac{1}{c^2}c' - 8 = 0$

Complexity of variations for $p = L_Q(2/3, c)$

Complexity summary for all finite fields

- Three main zones:
 - For p up to $L_Q(1/3)$:

$$L_q(1/3, (32/9)^{1/3}) \simeq L_q(1/3, 1.526...)$$

• For *p* from $L_Q(1/3)$ to $L_Q(2/3)$:

$$L_q(1/3,(128/9)^{1/3})\simeq L_q(1/3,2.423...)$$

• For p above $L_Q(2/3)$:

$$L_q(1/3, (64/9)^{1/3}) \simeq L_q(1/3, 1.923...)$$

- Two transitions:
 - For FFS/NFS when $p = L_Q(1/3)$
 - For NFS when $p = L_0(2/3)$

Conclusion

- New, simple and practical variations of FFS and NFS
- FFS sieving short and easy to write
- ullet Can simply adapt existing implementations of NFS for \mathbb{F}_{p}

#digits	When	Who	GIPS years	Method
130	Jun. 2005	J-L	1.2	NFS
184	Sep. 2005	J-L	1.6	FFS
101	Jun. 2005	L-V	0.4	Tori
121	Oct. 2005	J-L	$\simeq 0$	FFS
168	Nov. 2005	J-L	0.1	FFS
120	Feb. 2006	J-L-S-V	1.2	NFS
	130 184 101 121 168	130 Jun. 2005 184 Sep. 2005 101 Jun. 2005 121 Oct. 2005 168 Nov. 2005	130 Jun. 2005 J-L 184 Sep. 2005 J-L 101 Jun. 2005 L-V 121 Oct. 2005 J-L 168 Nov. 2005 J-L	130 Jun. 2005 J-L 1.2 184 Sep. 2005 J-L 1.6 101 Jun. 2005 L-V 0.4 121 Oct. 2005 J-L ≃ 0 168 Nov. 2005 J-L 0.1