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A basic problem for elliptic curves

The elliptic curve construction problem
Given

n — an integer

q — a prime power

find (if possible) an elliptic curve E/Fq with #E(Fq) = n.

Most of this talk:
Generalizations and variants of this problem.
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The elliptic curve existence problem

‘If possible’ part is easy (Deuring, Honda-Tate, Waterhouse).

Set t = q + 1− n, and say q is a power of prime p.

The values of t coming from elliptic curves:

Every t with (t , q) = 1 and t2 < 4q.

If q is not a square: Z ∩ {0,±
√

2q,±
√

3q}.
If q is a square: ±2

√
q,

±√q (if p 6≡ 1 mod 3),

0 (if p 6≡ 1 mod 4).
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Solutions to the elliptic curve construction problem

The naïve solution
Given q and n,

1 Make sure n is an allowed value.
2 Pick an elliptic curve E/Fq at random.
3 Check whether #E(Fq) = n.
4 Repeat steps 2 and 3 until successful.

Run time is Õ(q/
√

4q − t2).

Average run time is Õ(
√

q).
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Less-naïve solutions

The CM method (for ordinary curves)
Given q and an allowable n,

1 Compute the Hilbert class polynomial f ∈ Z[x ] of the
discriminant ∆ := t2 − 4q.

2 Find a root j of f over Fq.
3 Compute the E ’s having this root as j-invariant.

Running time is Õ(|∆|), average running time is Õ(q).

Combined solution

If |∆| > q2/3 use naïve method, otherwise use CM method.

Running time is Õ(q2/3).
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The Bröker-Stevenhagen approach

Bröker-Stevenhagen: Change question to get better answer.

Problem
Given n > 0, find a q and an E/Fq with #E(Fq) = n.

Expect to be able to choose q so that

∆ := t2 − 4q = f 2∆0

for a fundamental discriminant ∆0 of size O(log2 n).

Compute Hilbert class polynomial for ∆0 instead of for ∆.
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Generalizations to higher genus

Want to generalize the construction problem to higher genus.
But what was the question, exactly?

Problem
Given n and q, find a genus-1 curve E/Fq with

#E(Fq) = n.
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Generalizations to higher genus

Want to generalize the construction problem to higher genus.
But what was the question, exactly?

Problem
Given n and q, find a genus-1 curve E/Fq with

Weil polynomial of E/Fq = x2 − tx + q, where t = q + 1− n.
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Generalizations to higher genus

Want to generalize the construction problem to higher genus.
But what was the question, exactly?

Problem
Given n and q, find a genus-1 curve E/Fq with

Weil polynomial of E/Fq = x2 − tx + q, where t = q + 1− n.

None of these possibilities gets any easier for higher genus!
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The naïve method for higher genus

Average running times for naïve methods

Time to find C with specified value of. . .

genus #C(Fq) #(Jac C)(Fq) Weil polynomial

1 q1/2 q1/2 q1/2

2 q1/2 q3/2 q3/2

3 q1/2 q5/2 q3
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The genus-2 CM method

Kristin Lauter spoke about the genus-2 CM method.

To estimate complexity, we need to know how big the Igusa
class polynomials will be.

Degree ∼ minus class number of reflex field
∼ Õ(q3/2) in general

As in EC case, degree is like complexity of naïve method.
Size of coefficients — Õ(q3)?? — just makes things worse.

Can we do a Bröker-Stevenhagen trick?
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Genus-2 Bröker-Stevenhagen

Given n, there are ∼ n1/4 possible q’s, each near
√

n.
For each q, at most five f = x4 + ax3 + bx2 + aqx + q2.

K O R = Z[π, π]

K + O+ R+ = Z[π + π]

Q Z Z

∆−O = NK +/Q(discO/O+)

∆+
O = discO+/Z

∆−R = (b + 2q)2 − 4a2q

∆+
R = a2 − 4b + 8q

Degree of Igusa polynomials grows like h−(K ) ∼ (
√

∆−O∆+
O).

Want large square factor in ∆−R∆+
R .
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Heuristics for genus-2 Bröker-Stevenhagen

(From discussions with Lauter and Stevenhagen.)

View ∆+
R∆−R as a random integer ∼ q3 ≈ n3/2.

What is largest square factor we expect in n1/4 such integers?

Answer: f 2, where f ≈ n1/4.

Expect ∆+
O∆−O ∼ n. Degree of Igusa polynomials ∼

√
n.

If coefficients > n1/4 bits long, should use naïve method!
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Easier open problems?

The elliptic curve construction problem is hard.

Generalizing to higher genus just made it harder.

What about trying to generalize something easier?

For instance, the elliptic curve existence problem.
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The genus-2 existence problem

Problem

Suppose f = x4 + ax3 + bx2 + aqx + q2 is the Weil polynomial
of an isogeny class of abelian surfaces. Does there exist a
Jacobian with this Weil polynomial?

To best of my knowledge, first posed in print by Rück (1990).

Note
The Honda-Tate theorem gives a simple criterion for deciding
whether a polynomial is a Weil polynomial of an isogeny class.
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Key to the genus-2 existence problem

A result of Weil

An abelian surface over k is a Jacobian if and only if it has an
irreducible principal polarization.

Weil over finite fields
An abelian surface over Fq is a Jacobian of a curve over Fq if
and only if it has a geometrically irreducible principal
polarization.
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Solution to the genus-2 existence problem

Recent solution (H.-Nart-Ritzenthaler), using Adleman-Huang,
H., Lauter-Serre, Maisner, McGuire-Voloch, Rück, . . .

Suppose we’re given a Weil polynomial of an isogeny class of
abelian surfaces.

f = x4 + ax3 + bx2 + aqx + q2

If the surfaces are not simple, write

f = (x2 − sx + q)(x2 − tx + q) with |s| ≥ |t |.
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Non-existence of genus-2 split Jacobians

p-rank Condition on p, q Conditions on s, t

— — |s − t | = 1
2 — s = t and 4q − t2 ∈ {3, 4, 7}

q = 2 |s| = |t | = 1 and s 6= t
1 q = � s2 = 4q and s − t squarefree

p > 3 s2 6= t2

p = 3 and q 6= � s2 = t2 = 3q
0 p = 3 and q = � s − t not divisible by 3

√
q

p = 2 s2 − t2 not divisible by 2q
q = 2 or q = 3 s = t
q = 4 or q = 9 s2 = t2 = 4q

Conditions that ensure no Jacobians in split isogeny class
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Non-existence of genus-2 simple Jacobians

p-rank Condition on p, q Conditions on a, b

a2 − b = q and b < 0
— — and all prime divisors

of b are 1 mod 3
2 — a = 0 and b = 1− 2q

p > 2 a = 0 and b = 2− 2q
p ≡ 11 mod 12 and q = � a = 0 and b = −q

0 p = 3 and q = � a = 0 and b = −q
p = 2 and q 6= � a = 0 and b = −q
q = 2 or q = 3 a = 0 and b = −2q

Conditions that ensure no Jacobians in simple isogeny class
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The genus-3 existence problem

Problem
Suppose f is the Weil polynomial of an isogeny class of abelian
threefolds. Is there a Jacobian with this Weil polynomial?

A result of Oort and Ueno, after Hoyt

An abelian threefold over k is a Jacobian if and only if it has an
irreducible principal polarization.

But. . .
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A complication over finite fields

Jacobians over Fq have geom. irreducible princ. pols, but. . .
A threefold with such a polarization over Fq is either a Jacobian
or a quadratic twist of a Jacobian over Fq.

Why?
If C is a nonhyperelliptic genus-3 curve over k , then

Aut Jac C ∼= {±1} × Aut C

H1(Gk , Aut Jac C) ↔ H1(Gk , {±1})× H1(Gk , Aut C)

{twists of Jac C} ↔ {quad. extensions of k }× {twists of C}

The upshot: Jacobians have more twists than do curves.
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A half-open problem

Problem
Given a principally-polarized abelian threefold over a field k,
determine whether or not it is a Jacobian over k.

A related question
How does one ‘give’ a principally-polarized abelian threefold?
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Two solutions, in progress

Steve Meagher (Groningen)

Explicit weight-18 modular form χ18 on A3,4. Divide by 36th

power of 0th theta-null to get a modular function. Quadratic
character of its value gives answer.

Christophe Ritzenthaler (Luminy)

Construct quadric in P3 from geometric data. Quadratic
character of its determinant gives answer.
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Can we use these solutions?

Given: Weil polynomial of isogeny class of abelian threefolds.

Say the threefolds are ordinary and absolutely simple.

Can understand the isogeny class, including polarizations, in
terms of ‘Deligne modules’.

Problem
Can the Meagher or Ritzenthaler approaches be combined with
the Deligne module description to determine whether there are
Jacobians in the isogeny class?
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Something completely different. . .

I’ll end with a few lattice questions inspired by a completely
different topic.

Coding theorists ask:
How many points can a genus-g curve over Fq have?

Definition

Nq(g) = max{#C(Fq) : C is a genus-g curve over Fq}

Problem (silly, but open!)
For fixed q, is Nq(g) an increasing function of g?
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Tables of van der Geer and van der Vlugt

g \ q 2 4 8 16 32 64

1 5 9 14 25 44 81
2 6 10 18 33 53 97
3 7 14 24 38 64 113
4 8 15 25 45 71–74 129
5 9 17 29–30 49–53 83–85 132–145
6 10 20 33–35 65 86–96 161
7 10 21–22 34–38 63–69 98–107 177
8 11 21–24 35–42 62–75 97–118 169–193
9 12 26 45 72–81 108–128 209

10 13 27 42–49 81–87 113–139 225

A portion of the van der Geer-van der Vlugt tables of Nq(g).
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From curves to Hermitian forms (w/Kristin Lauter)

Can show:
Given a genus-7 curve C/F4 with 22 points, get matrix M:

3× 3,

entries in O−7 = Z[(1 +
√
−7)/2],

Hermitian,

positive definite,

determinant 3.

There’s a Hermitian space over O−7 associated to M.

For every vector of squared-length n > 0 in this space, get a
degree-n map C → E to an elliptic curve with 8 points.

Observation
If M has a vector of squared-length 2, then C doesn’t exist!
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Computing with Hermitian matrices

With a small amount of computation, we can show:

Lemma
Every positive definite Hermitian M ∈ M3(O−7) of determinant
3 has a vector of squared length 1 or 2.

Problem
Given an imaginary quadratic PID O and a determinant d ∈ Z,
find a sharp upper bound on length of short vectors in
n-dimensional Hermitian spaces of determinant d over O.

Can deal with small 3× 3 cases and very small 4× 4 cases.
Can deal with case when determinant is norm from O.
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The end

Fin
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