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Introduction

Notation

IFq = finite field of q elements.

An elliptic curve IE is given by a Weierstraß equa-
tion over IFq or Q

y2 = x3 + Ax + B

(if gcd(q,6) = 1).

A ! B and B " A (I. M. Vinogradov)

#

A = O(B) (E. Landau)

Main Facts

• Hasse–Weil bound: |#IE(IFq) − q − 1| ≤ 2q1/2

• IE(IFq) is an Abelian group, with a special “point
at infinity” O as the neutral element.
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Some Questions

• What are possible group structures which can
be represented by elliptic curves?

• Is it typical for IE to be have a large exponent
eq(IE) ( =the size of the largest cyclic subgroup
of IE(IFq))?

• How often a “random” curve IE is cyclic?

• What is a typical arithmetic structure of #IE(IFq)?

• How many N ∈ [q−2q1/2+1, q+2q1/2+1] are
taken as cardinalities #IE(IFq)?
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What is a “random” curve?

Typically we consider “statistical” results in the
following situations:

• The field IFq is fixed, the curve IE runs through
all elliptic curves over IFq (or over some natural
classes of curves).

• The field IFq and the curve IE are both fixed,
we consider IE(IFqn) in the extension fields

• The curve IE is defined over Q (and fixed). We
consider reductions IE(IFp) modulo consecutive
primes p

Remark: They are described in the increasing or-
der of hardness.
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Group Structure of IE(IFq) and
Arithmetic Properties of #IE(IFq)

. . . are closely related. E.g. the question about
the size of gcd(#IE(IFq), q − 1) appears very fre-
quently.

Some Motivation

The following questions are of mathematical in-
terest and also have various cryptographic appli-
cations.

Florian Hess, Tanja Lange, Joe Silverman, I.S.,
1999–2004:

Bounds on the discrepancy of many pseudorandom
number generators on elliptic curves are nontrivial
only if the exponent

eq(IE) ≥ q1/2+ε.
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Complex Multiplication

If IE is an elliptic curve over an algebraic num-
ber field, IK then endomorphism ring EndIK(IE) of
IE over IK, contains a copy of the integers corre-
sponding to the morphisms x (→ nx for each n ∈ ZZ.
If EndIK(IE) is strictly bigger than ZZ, we say IE has
complex multiplication (CM) for in that case, it is
a classical result that the ring is isomorphic to an
order in an imaginary quadratic field. Otherwise,
we say IE is a non-CM curve.

Many of the questions about elliptic curves fall
naturally into these two categories, the CM case
and the non-CM case.

Typically, the CM case is the easier since there is
an additional structure.
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Group Structure of IE(IFq)

Classical Results

IE(IFq) is

• either cyclic

• or isomorphic to a product of two cyclic groups
ZZ/M × ZZ/L with L|M = eq(IE).

Max Deuring, 1941:

All values N ∈ [q−2q1/2+1, q+2q1/2+1], except for
a small number of explicitly described exceptions,
are taken as cardinalities #IE(IFq) (for q = p there
is no exception).

Note: About q2 Weierstraß equations, about 4q1/2

possible values for N .
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More Precise Results

Michael Tsfasman; Filipe Voloch; Hans-George Rück,
1988:

Roughly speaking, with only few fully described
exceptions, for any L and M with

L | gcd(M, q − 1)

and such that LM can be realised as a cardinality
of an elliptic curve over IFq, there is also IE for
which

IE(IFq) ∼= ZZ/LZZ × ZZ/MZZ.
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Hendrik Lenstra, 1987:

• For any N ∈ [p − 2p1/2 + 1, p + 2p1/2 + 1], the
probability that #IE(IFp) = N for a random
curve IE is O

(
p−1/2 log p(log log p)2

)
.

• For any, but at most two values, in the half
interval N ∈ [p − p1/2 + 1, p + p1/2 + 1], the
probability that #IE(IFp) = N for a random
curve IE is at least cp−1/2(log p)−1 for an ab-
solute constant c > 0.

Under the ERH, there are no exceptions and
the bound becomes cp−1/2(log log p)−1.

Moral: Cardinalities are uniformly distributed, more
or less.

Question: Study the distribution of group struc-
tures. It is not expected to be uniform.
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Exponent eq(IE)

Clearly

• if IE(IFq) is cyclic, then eq(IE) = #IE(IFq) ∼ q

— as good as it gets;

• if IE(IFq) is isomorphic to a product of two
cyclic groups ZZ/M × ZZ/L with L|M , then

eq(IE) = M ≥ #IE(IFq)1/2 ∼ q1/2

. . . falls below the threshold q1/2+ε.

Better Bounds?
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Rene Schoof, 1991:

If IE (defined over Q) has no complex multiplica-
tion then

• for all primes

ep(IE) " p1/2 log p

log log p

. . . still below the threshold p1/2+ε.

• under the ERH, for infinitely many primes,

ep(IE) ! p7/8 log p.

If IE : y2 = x3−x then IE has complex multiplication
over ZZ[i]. On the other hand, ep(IE) = k ∼ p1/2

for every prime p of the form p = k2 + 1.
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Bill Duke, 2003:
For almost all primes p (i.e., for all but o(π(x))
primes p ≤ x) and all curves IE over IFp

ep(IE) ≥ p3/4−ε

. . . comfortably above the p1/2+ε threshold!!

Kevin Ford and I.S., 2005:

• The above bound is tight.

• A similar bound for Jacobians of curves of genus
g ≥ 2.

Even Better Bounds?

The bounds on the discrepancy of many sequences
from elliptic curves attain their full strength when
ep(IE) is of order close to q.
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Question: Is it typical for eq(IE) to be close to q?

Bill Duke, 2003:
For any curve IE (defined over Q) and almost all
primes p

ep(IE) ≥ p1−ε

unconditionally if E has complex multiplication and
under the ERH, otherwise.

I.S., 2003:
For any prime p and almost all curves IE (defined
over IFp)

ep(IE) ≥ p1−ε.
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Florian Luca and I.S., 2004:

Let IE be an ordinary curve defined over IFq. Then

• for almost all integers n,

eqn(IE) ≥ qn−2n(logn)−1/6
.

• for all integers n,

eqn(IE) ≥ qn/2+c(q)n/ logn
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The proofs are based of some deep facts of the
theory of Diophantine Approximations

• Subspace Theorem;

• Lower bounds of linear forms of p-adic loga-
rithms;

• Upper bounds on the number of zeros of linear
recurrence sequences.

Essentially the proof of the first bound follows the
ideas of P. Corvaja and U. Zannier, 2004.

It also gives a subexponential upper bound on

d(qn) = gcd(#IE(IFqn), qn − 1)

which also appears in the estimate of the com-
plexity of the structure finding algorithm of Victor
Miller, 1984-2004.
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Florian Luca, James McKee and I.S., 2004:

Let IE be an ordinary curve defined over IFq. Then
for infinitely many integers n,

eqn(IE) ! qn exp
(
−nc/ log logn

)
.

for some c > 0 depending only on q.

The proof is based on:

• studying the degree d(r) of the extension of IFq

generated by points of r-torsion groups (i.e.
groups of points P on IE in the algebraic clo-
sure IFq with rP = O) for distinct primes r;

• a modification of a result of Adleman–Pomerance–
Rumely (1983) on constructing integers n which
have exponentially many divisors of the form
r − 1, where r is prime.
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How do we proceed?

Combine the following facts:

• Weil Pairing: If IE(IFq) ∼= ZZ/M ×ZZ/L with L|M ,
then L|q − 1.

• Hendrik Lenstra, 1987: For any N , the prob-
ability that #IE(IFq) = N for a random curve
IE is O

(
q−1/2 log q(log log q)2

)
.

Thus all values of N ∈ [q −2q1/2, q +2q1/2] are
taken about the same number of times.

The question about eq(IE) is now reduced to study-
ing how often N ∈ [q−2q1/2+1, q +2q1/2+1] has
a large common divisor with q − 1.
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Is Cyclicity Typical?

• Fix the field — Vary the curve:

Sergei Vlăduţ, 1999:
At least 75% of elliptic curves over IFq are
cyclic, but not 100%.

• Fix the curve over IFq: — Vary the extension:
Sergei Vlăduţ, 1999:
Over every finite there is a curve IE such that
IE(IFqn) is cyclic for a positive proportion of n.

• Fix the curve over Q: — Vary the prime:

Related to the Lang–Trotter Conjecture!

Alina Cojocaru, Ram Murty, Bill Duke, 2001-
2006: (a series of results)

– under the ERH the set of primes for which
IE(IFp) is cyclic is of positive density (de-
pending on IE);

– the smallest prime for which IE(IFp) is cyclic
is not too large.
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Finding the Group Structure

Victor Miller, 1984-2004:
There is a probabilistic algorithm which runs in
time (log q)O(1) + time to factor

d(q) = gcd(#IE(IFq), q − 1)

John Friedlander, Carl Pomerance and I.S., 2005:
Typically d(q) is easy to factor: the expected time
is (log q)1+o(1).

David Kohel and I.S., 2001:
Deterministic algorithm which runs in time q1/2+o(1)

(in fact it produces a set of generators).

The result is based on the extension of Bombieri’s
bound of exponential sums

∑

P∈H
exp

(
2π

√
−1Tr (f(P )) /p

)
= O(q1/2)

for any subgroup H ∈ IE(IFq) and any function f

which is not constant on IE.
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Arithmetic Structure of #IE(IFq)

Primality

The Holy Grail is to prove at least one out of the
following claims (also very important for elliptic
curve cryptography):

• For every q, there are sufficiently many curves
IE over IFq, such that #IE(IFq) is prime;

• for a curve IE over IFq, #IE(IFqn)/#IE(IFq) is
prime for infinitely many integers n;

• for a curve IE over Q without torsion points,
#IE(IFp) is prime for infinitely many primes p.

Out of reach!

One of the obstacles is the lack of the results
about primes in short intervals.
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Large and Small Prime Divisors of
#IE(IFq)

Question: What if we ask for curves such that
#IE(IFq) does not have a large prime divisor?

Hendrik Lenstra, 1987: For the rigorous analysis
of the elliptic curve factorisation we need to show
that there are sufficiently many curves over IFp for
which #IE(IFp) is smooth. — Still unknown!

Hendrik Lenstra, Jonathan Pila and Carl Pomer-
ance, 1993:
The current knowledge is enough to analyze rig-
orously the hyperelliptic smoothness test (larger
intervals . . . ).

Question: What if we only ask for curves such
that #IE(IFq) has a large prime divisor?

Glyn Harman, 2005:
There is a positive proportion of integers n in the
middle part of the Hasse–Weil interval n ∈ [q +
1− q1/2, q +1+ q1/2] with the largest prime divisor
P (n) ≥ n0.74
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Number of Prime Divisors

S. A. Miri and V. K. Murty, 2001:
Alina Cojocaru, 2005:
Under the ERH, for any non-CM elliptic curve IE
over Q, one has an analogue of the Turán–Kubilius
inequality:

∑

p≤x

(ω (#IE(IFp)) − log log p)2 = O(π(x) log logx)

where, as usual, π(x) = #{p ≤ x}.

Yu-Ru Liu, 2004:
For CM curves, a similar result is obtained uncon-
ditionally.
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S. A. Miri and V. K. Murty, 2001: Alina Cojo-
caru, 2005:
Jörn Steuding & Annegret Weng, 2005:
Jorge Jimnez & Henryk Iwaniec, 2006:
There are at least C(IE)x/(logx)2 primes p ≤ x

such that

• Ω(#IE(IFp)) ≤ 9, if IE is a non-CM curve,

• ω(#IE(IFp)) ≤ 6, if IE is a non-CM curve,

• ω(#IE(IFp)) ≤ 2, if IE is a CM curve.
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CM Discriminants

For a curve IE defined over IFp we put t = #E(IFp)−
p − 1 and write

t2 − 4p = −r2s

where s is squarefree. Then either −s or −4s is
the discriminant of the endomorphism ring of IE,
or CM discriminant.

Florian Luca and I.S., 2004:

• The discriminant is usually large for a “ran-
dom” curve;

• All curves modulo p define 2p1/2+O(p1/3) dis-
tinct discriminants.

In particular, the last bound is based on an im-
provement of a result of Cutter–Granville–Tucker.
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Cryptographic Applications

Embedding Degree and MOV At-
tack

Alfred Menezes, Tatsuaki Okamoto and Scott Van-
stone, 1993:
MOV constructs an embedding of a fixed cyclic
subgroup of order L of IE(IFp) into the multiplica-
tive group IF∗

pk provided L|pk − 1.

Number Field Sieve: discrete logarithm in IF∗
pk

can be found in time Lpk

(
1/3, (64/9)1/3

)
where,

as usual,

Lm(α, β) = exp
(
(β + o(1))(logm)α(log logm)1−α

)
.

The smallest k with

#IE(IFp)|pk − 1

is called the embedding degree.

If the embedding degree of IE(IFp) = o
(
(log p)2

)

then the discrete logarithm on IE(IFp) can be
solved in subexponential time po(1).
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R. Balasubramanian and N. Koblitz, 1998:
For almost all primes p and almost all elliptic curves
over IFp of prime cardinality the embedding degree
is large.

E.g. for a “random” prime p ∈ [x/2, x] and a ran-
dom curve modulo p of prime cardinality ,

Pr{embedding degree ≤ (log p)2} ≤ x−1+o(1).

Florian Luca and I.S., 2004:
For all primes p and almost all elliptic curves over
IFp of arbitrary cardinality the embedding degree
is large:

Let K = (log p)O(1). For a randomly chosen curve

Pr{embedding degree ≤ K} ≤ p−1/(4κ+6)+o(1),

where

κ =
logK

log2 p
.

For K = (log p)2 the RHS is p−1/14+o(1).
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The proof is based on

• studying N ∈ [p+1−2p1/2, p+1+2p1/2] with
N |pk − 1, for some k ≤ K;

• Lenstra’s bound on the number of curves with
IE(IFp) = N .

For H ≥ h ≥ 1 and K ≥ 1, we let N(p, K, H, h) be
the number of integers N ∈ [H − h, H + h] with
N | (pk − 1) for some k ≤ K.

For logH . logh . log p and logK = O(log2 p),

N(p, K, H, h) ≤ h1−1/(2κ+3)+o(1),

where

κ =
logK

log2 p
.

Also, similar results about the probability that

• P (#IE(IFp))|pk − 1 for k ≤ K;

• #IE(IFp)|
∏K

k=1(p
k − 1).
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Scarcity of Pairing Friendly Fields

For several other cryptographic applications of the
Tate or Weil pairing on elliptic one need elliptic
curves IE with small embedding degree.

Supersingular curves give IE(IFq) = q + 1 thus are
natural candidates. However, one can also suspect
that supersingular curves have some cryptographic
weaknesses and thus ask for constructions gener-
ating ordinary curves.

Let

Φk(X) =
k∏

j=0
gcd(j,k)=1

(X − exp(2π
√
−1j/k))

be the kth cyclotomic polynomial.

IE with #IE(IFq) = q + 1 − t is of embedding degree k

#

q + 1 − t|Φk(q)

#

q + 1 − t|Φk(t − 1)
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Typically, such constructions work into two steps:

Step 1 Choose a prime ', integers k ≥ 2 and t,
and a prime power q such that

|t| ≤ 2q1/2, t /= 0,1,2,

' | q + 1 − t, ' | Φk(q).
(1)

(based on black magic or luck).

Step 2 Construct an elliptic curve IE over IFq with
#IE(IFq) = q + 1 − t.

k should be reasonable small (e.g., k = 2,3,4,6),
while the ratio log '/ log q should be as large as
possible, preferably close to 1.

Unfortunately, there is no efficient algorithm for
Step 2, except for the case when the t2−4q has a
very small square-free part; that is, when

t2 − 4q = −r2s (2)

with some integers r and s, where s is a small
square-free positive integer. In this case either −s

or −4s is the fundamental discriminant of the CM
field of IE.
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Let Qk(x, y, z) be the number of prime powers q ≤ x

for which there exist prime ' ≥ y and t satisfy-
ing (1) and (2) with a square-free s ≤ z.

Florian Luca and I.S., 2006:
For any fixed k and real x, y and z the following
bound holds

Qk(x, y, z) ≤ x3/2+o(1)y−1z1/2

as x → ∞.

In particular, if z = xo(1), which is the only prac-
tically interesting case anyway, we see that unless
y ≤ x1/2 there are very few finite fields suitable for
pairing based cryptography.

In other words, unless the common request of
the primality of the cardinality of the curve is re-
laxed to the request for this cardinality to have
a large prime divisor (e.g., a prime divisor ' with
log '/ log q ≥ 1/2), the suitable fields are very rare.
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Heuristic on MNT curves

Atsuko Miyaji, Masaki Nakabayashi and Shunzou
Takano, 2001:
MNT algorithm to produce elliptic curves satis-
fying the condition (1) with k = 3,4,6, and the
condition (2) for a given value of s.

Florian Luca and I.S., 2005:
Heuristic estimates on the number of elliptic curves
which can be produced by MNT.

It seems that they produce only finitely many suit-
able curves (still this can be enough for practical
needs of elliptic curve cryptography).
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Our arguments are based on a combination of the
following observations:

• MNT gives a parametric family of curves whose
parameter runs through a solution of a Pell
equation u2 − 3sv2 = −8 (for k = 6, and simi-
lar for k = 3,4).

• Consecutive solutions (uj, vj) of a Pell equation
grow exponentially, as at least scj and most
probably as ecs1/2j for some constant c > 0.

• The probability of a random integer n to be
prime is 1/ logn.

• MNT curves should satisfy two independent
primality conditions (on the field size and on
the cardinality of the curve).
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Therefore, the expected total number of MNT

curves for every s is bounded, by the order of mag-
nitude, by

∞∑

j=1

1

(log scj)2
!

1

log s

∞∑

j=1

1

j2
!

1

log s
.

or even by

∞∑

j=1

1

(log ecs1/2j)2
!

1

s

∞∑

j=1

1

j2
!

1

s
.

Probably the total number of all MNT curves of
prime cardinalities (over all finite fields) and of
bounded CM discriminant, is bounded by an abso-
lute constant.

Apparently the number of all MNT curves of prime
cardinalities with CM discriminant up to z, is at
most zo(1).

Similar heuristic shows that MNT produces suffi-
ciently many curves whose cardinality has a large
prime divisor.
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Generating Pseudorandom Points on
Elliptic Curves

Fix a point G ∈ IE(IFp) of order t

• EC Linear Congruential Generator, EC-LCG:

For the “initial value” U0 ∈ IE(IFq), consider
the sequence:

Uk = G ⊕ Uk−1 = kG ⊕ U0, k = 1,2, . . . .

Introduced and studied by:

Sean Hallgren, 1994: EC-LCG

Also by
Gong, Berson, Stinson, 2001:
Beelen, Doumen, 2002:
El Mahassni, Hess, I.S., 2001-2003:

• EC Power Generator, EC-PG:

For an integer e ≥ 2, consider the sequence
(with W0 = G),

Wk = eWk−1 = ekG, k = 1,2, . . . ,

Introduced and studied by:

Tanja Lange, I.S., 2003:
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• EC Naor-Reingold Generator, EC-NRG:

Given an integer vector a = (a1, . . . ak), con-
sider the sequence:

Fa(n) = aν1
1 . . . a

νk
k G, n = 1,2, . . . ,

where n = ν1 . . . νk is the bit representation of
n, 0 ≤ n ≤ 2k − 1.

Introduced and studied by:

Bill Banks, Frances Griffin, Daniel Lieman, Joe
Silverman, I.S., 1999-2001:

Example: Let G ∈ IE(IFp) be of order t = 19,
k = 4 and a = (2,5,3,4). Then,

Fa(0) = 20503040G = G,

Fa(1) = 20503041G = 4G,

Fa(2) = 20503140G = 3G,

Fa(3) = 20503141G = 12G,

. . . . . .

Fa(11) = 21503141G = 24G = 5G,

. . . . . .

Fa(15) = 21513141G = 120G = 6G,
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They all have analogues in the group IF∗

q

Florian Hess, Tanja Lange, I.S., 2001–2004:

Theorem:

If G is of order t ≥ p1/2+ε then
EC-LCG, EC-PG, EC-NRG

are reasonably well distributed

Conjecture:

The above sequences are very well distributed

Proof ingredients:

• Bounds of exponential sums

David Kohel, I.S., 2000:
∑

P∈H
exp (2πif(P )/p) = O(p1/2)

for any subgroup H ∈ IE(IFp) and any function
f which is not constant on IE.

• Results about not vanishing some functions
over IE


