## SAR Imaging of Dynamic Scenes IPAM SAR Workshop

#### Brett Borden, Naval Postgraduate School Margaret Cheney, Rensselaer Polytechnic Institute

7 February, 2012





▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のので

### Introduction

#### Need

#### All weather, day/night, sensor system

- Situational awareness
- ▶ Extend moving target indicator radar (MTI) to scene reconstruction
- Problem
  - Synthetic aperture radar images assume rigid scenes
  - Moving image elements are mis-located, distorted, or not imaged at all

### Introduction

#### Need

- All weather, day/night, sensor system
- Situational awareness
- ▶ Extend moving target indicator radar (MTI) to scene reconstruction
- Problem
  - Synthetic aperture radar images assume rigid scenes
  - Moving image elements are mis-located, distorted, or not imaged at all

#### Need

- All weather, day/night, sensor system
- Situational awareness
- ► Extend moving target indicator radar (MTI) to scene reconstruction
- Problem
  - Synthetic aperture radar images assume rigid scenes
  - Moving image elements are mis-located, distorted, or not imaged at all

#### Need

- All weather, day/night, sensor system
- Situational awareness
- ► Extend moving target indicator radar (MTI) to scene reconstruction
- Problem
  - Synthetic aperture radar images assume rigid scenes
  - Moving image elements are mis-located, distorted, or not imaged at all

#### Need

- All weather, day/night, sensor system
- Situational awareness
- ► Extend moving target indicator radar (MTI) to scene reconstruction
- Problem
  - Synthetic aperture radar images assume rigid scenes
  - Moving image elements are mis-located, distorted, or not imaged at all

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @

### Radar pulse illumination (high range resolution)



#### Spherical pulse radiates at speed c

- Echo from all reflectors in arc returns to radar at the same time
- Radar collects energy as function of time:

$$\mathcal{E}(t) \sim \int 
ho(\mathbf{r}) B(\mathbf{r}) \delta\left(t - 2\sqrt{h^2 + d^2}/c\right) \, \mathrm{d}A$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

### Radar pulse illumination (high range resolution)



- Spherical pulse radiates at speed c
- Echo from all reflectors in arc returns to radar at the same time
- Radar collects energy as function of time:

$$\mathcal{E}(t) \sim \int \rho(\mathbf{r}) B(\mathbf{r}) \delta\left(t - 2\sqrt{h^2 + d^2}/c\right) \, \mathrm{d}A$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

### Radar pulse illumination (high range resolution)



- Spherical pulse radiates at speed c
- Echo from all reflectors in arc returns to radar at the same time
- Radar collects energy as function of time:

$$\mathcal{E}(t) \sim \int 
ho(oldsymbol{r}) B(oldsymbol{r}) \delta\left(t - 2\sqrt{h^2 + d^2}/c
ight) \, \mathrm{d}A$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

### Image from stationary radar



- A (stationary) radar has no knowledge of angular position within the beam
- Best image is arcs "painted" by range intensity values

## Spotlight SAR



## SAR imaging of stationary scenes



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ●臣 - のへの

## SAR imaging of stationary scenes



▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

## SAR imaging of stationary scenes



▲□▶ ▲圖▶ ▲園▶ ▲園▶ 三国 - 釣A@

## SAR imaging of dynamic scenes



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ●臣 - のへの

## SAR imaging of dynamic scenes



◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ● ● ● ●

## SAR imaging of dynamic scenes



・ロト・(四ト・(日下・(日下・))

## Examples



Train off the track

Ship off its wake

イロト イロト イヨト イヨト 三日

# Example



Image from Sandia National Laboratories

#### Don't fix it, exploit it!

- Phase history analysis
- Sub-aperture images to isolate motion
- ► Ground moving target indicator (GMTI), Space-time adaptive processing (STAP), etc...

- Don't fix it, exploit it!
- Phase history analysis
- Sub-aperture images to isolate motion
- ► Ground moving target indicator (GMTI), Space-time adaptive processing (STAP), etc...

- Don't fix it, exploit it!
- Phase history analysis
- Sub-aperture images to isolate motion
- ► Ground moving target indicator (GMTI), Space-time adaptive processing (STAP), etc...

- Don't fix it, exploit it!
- Phase history analysis
- Sub-aperture images to isolate motion
- ► Ground moving target indicator (GMTI), Space-time adaptive processing (STAP), etc...

#### ▶ The echo signal at radar receiver

$$\mathbf{s}_{\rm rec}(t) = \mathbf{s}_{\rm scatt}(t) + n(t)$$

- ▶ EM radiation decays as *R*<sup>-1</sup>, energy as *R*<sup>-2</sup>, and radar echo energy as *R*<sup>-4</sup>. Signal energy is proportional to field energy.
- ▶ Echo signals compete with system noise *n*(*t*) (and are often swamped by it).
- "Raw" radar data is usually the result of significant signal processing.

The echo signal at radar receiver

$$s_{\rm rec}(t) = s_{\rm scatt}(t) + n(t)$$

- EM radiation decays as  $R^{-1}$ , energy as  $R^{-2}$ , and radar echo energy as  $R^{-4}$ . Signal energy is proportional to field energy.
- Echo signals compete with system noise n(t) (and are often swamped by it).
- "Raw" radar data is usually the result of significant signal processing.

▶ The echo signal at radar receiver

$$s_{\rm rec}(t) = s_{\rm scatt}(t) + n(t)$$

- EM radiation decays as  $R^{-1}$ , energy as  $R^{-2}$ , and radar echo energy as  $R^{-4}$ . Signal energy is proportional to field energy.
- ▶ Echo signals compete with system noise *n*(*t*) (and are often swamped by it).
- "Raw" radar data is usually the result of significant signal processing.

The echo signal at radar receiver

$$s_{\rm rec}(t) = s_{\rm scatt}(t) + n(t)$$

- EM radiation decays as  $R^{-1}$ , energy as  $R^{-2}$ , and radar echo energy as  $R^{-4}$ . Signal energy is proportional to field energy.
- ▶ Echo signals compete with system noise *n*(*t*) (and are often swamped by it).
- "Raw" radar data is usually the result of significant signal processing.

 Usually, the received signal is compared to the ideal echo signal model

$$\mathbf{s}_{\text{scatt}}(t) = \iint \rho(\tau, \nu) \mathbf{s}_{\text{inc}}(t-\tau) e^{i\nu(t-\tau)} \, \mathrm{d}\tau \, \mathrm{d}\nu$$

where  $\rho(\tau, \nu)$  is the reflectivity of a point isotropic scatterer at distance  $R = c\tau/2$  and radial velocity  $\dot{R} = \nu\lambda/2$ .

Output of correlation receiver is

$$\eta(\tau,\nu) = \int s_{\rm rec}(t) s_{\rm inc}^*(t-\tau) e^{-i\nu(t-\tau)} dt$$

- ▶ Local maxima of  $|\eta(\tau,\nu)|^2$  define target's range and radial velocity.
- The parameters  $\tau$  and  $\nu$  define a two-dimensional search space *appropriate to single pulses.*

 Usually, the received signal is compared to the ideal echo signal model

$$\mathbf{s}_{\text{scatt}}(t) = \iint \rho(\tau, \nu) \mathbf{s}_{\text{inc}}(t-\tau) e^{i\nu(t-\tau)} \, \mathrm{d}\tau \, \mathrm{d}\nu$$

where  $\rho(\tau, \nu)$  is the reflectivity of a point isotropic scatterer at distance  $R = c\tau/2$  and radial velocity  $\dot{R} = \nu\lambda/2$ .

Output of correlation receiver is

$$\eta(\tau,\nu) = \int s_{\rm rec}(t) s_{\rm inc}^*(t-\tau) e^{-i\nu(t-\tau)} dt$$

- ▶ Local maxima of  $|\eta(\tau,\nu)|^2$  define target's range and radial velocity.
- The parameters  $\tau$  and  $\nu$  define a two-dimensional search space *appropriate to single pulses.*

 Usually, the received signal is compared to the ideal echo signal model

$$\mathbf{s}_{\text{scatt}}(t) = \iint \rho(\tau, \nu) \mathbf{s}_{\text{inc}}(t-\tau) e^{i\nu(t-\tau)} \, \mathrm{d}\tau \, \mathrm{d}\nu$$

where  $\rho(\tau, \nu)$  is the reflectivity of a point isotropic scatterer at distance  $R = c\tau/2$  and radial velocity  $\dot{R} = \nu\lambda/2$ .

Output of correlation receiver is

$$\eta(\tau,\nu) = \int s_{\rm rec}(t) s_{\rm inc}^*(t-\tau) e^{-i\nu(t-\tau)} dt$$

- ▶ Local maxima of  $|\eta(\tau, \nu)|^2$  define target's range and radial velocity.
- The parameters  $\tau$  and  $\nu$  define a two-dimensional search space *appropriate to single pulses.*

 Usually, the received signal is compared to the ideal echo signal model

$$\mathbf{s}_{\text{scatt}}(t) = \iint \rho(\tau, \nu) \mathbf{s}_{\text{inc}}(t-\tau) e^{i\nu(t-\tau)} \, \mathrm{d}\tau \, \mathrm{d}\nu$$

where  $\rho(\tau, \nu)$  is the reflectivity of a point isotropic scatterer at distance  $R = c\tau/2$  and radial velocity  $\dot{R} = \nu\lambda/2$ .

Output of correlation receiver is

$$\eta(\tau,\nu) = \int s_{\rm rec}(t) s_{\rm inc}^*(t-\tau) e^{-i\nu(t-\tau)} dt$$

▶ Local maxima of  $|\eta(\tau, \nu)|^2$  define target's range and radial velocity.

• The parameters  $\tau$  and  $\nu$  define a two-dimensional search space *appropriate to single pulses.* 

• If the ideal scattering model is the actual model, the substitution for  $s_{rec}(t) = s_{scatt}(t) + n(t)$  yields

$$\eta(\tau,\nu) = \iint \rho(\tau',\nu')\chi(\tau-\tau';\nu-\nu') \,\mathrm{d}\tau' \,\mathrm{d}\nu' + \underbrace{\mathrm{correlation \ noise}}_{\mathrm{small}}$$

#### (up to a phase factor in the integrand)

▶ The kernel here is the *radar* ambiguity function:

$$\chi(\tau;\nu) = \int s_{\rm inc}(t-\frac{1}{2}\tau)s_{\rm inc}^*(t+\frac{1}{2}\tau)e^{i\nu t}\,\mathrm{d}t$$

χ(τ; ν) characterizes the radar's ability to estimate *R* and *R* "Radar data" usually means

$$\eta(\tau,\nu) = \iint \rho(\tau',\nu')\chi(\tau-\tau';\nu-\nu') \,\mathrm{d}\tau' \,\mathrm{d}\nu$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• If the ideal scattering model is the actual model, the substitution for  $s_{rec}(t) = s_{scatt}(t) + n(t)$  yields

$$\eta(\tau,\nu) = \iint \rho(\tau',\nu')\chi(\tau-\tau';\nu-\nu') \,\mathrm{d}\tau' \,\mathrm{d}\nu' + \underbrace{\mathrm{correlation\ noise}}_{\mathrm{small}}$$

(up to a phase factor in the integrand)

• The kernel here is the *radar ambiguity function:* 

$$\chi(\tau;\nu) = \int \mathbf{s}_{\rm inc}(t-\frac{1}{2}\tau)\mathbf{s}_{\rm inc}^*(t+\frac{1}{2}\tau)e^{i\nu t}\,\mathrm{d}t$$

χ(τ; ν) characterizes the radar's ability to estimate *R* and *R* "Radar data" usually means

$$\eta(\tau,\nu) = \iint \rho(\tau',\nu')\chi(\tau-\tau';\nu-\nu') \,\mathrm{d}\tau' \,\mathrm{d}\nu$$

• If the ideal scattering model is the actual model, the substitution for  $s_{rec}(t) = s_{scatt}(t) + n(t)$  yields

$$\eta(\tau,\nu) = \iint \rho(\tau',\nu')\chi(\tau-\tau';\nu-\nu') \,\mathrm{d}\tau' \,\mathrm{d}\nu' + \underbrace{\mathrm{correlation \ noise}}_{\mathrm{small}}$$

(up to a phase factor in the integrand)

• The kernel here is the *radar ambiguity function*:

$$\chi(\tau;\nu) = \int \mathbf{s}_{\rm inc}(t-\frac{1}{2}\tau)\mathbf{s}_{\rm inc}^*(t+\frac{1}{2}\tau)e^{i\nu t}\,\mathrm{d}t$$

χ(τ; ν) characterizes the radar's ability to estimate *R* and *R* "Radar data" usually means

$$\eta(\tau,\nu) = \iint \rho(\tau',\nu')\chi(\tau-\tau';\nu-\nu') \,\mathrm{d}\tau' \,\mathrm{d}\nu'$$

・ロト・(型ト・(ヨト・(ヨト)) ヨー うへつ

• If the ideal scattering model is the actual model, the substitution for  $s_{rec}(t) = s_{scatt}(t) + n(t)$  yields

$$\eta(\tau,\nu) = \iint \rho(\tau',\nu')\chi(\tau-\tau';\nu-\nu') \,\mathrm{d}\tau' \,\mathrm{d}\nu' + \underbrace{\mathrm{correlation \ noise}}_{\mathrm{small}}$$

(up to a phase factor in the integrand)

• The kernel here is the *radar ambiguity function*:

$$\chi(\tau;\nu) = \int \mathbf{s}_{\rm inc}(t-\frac{1}{2}\tau)\mathbf{s}_{\rm inc}^*(t+\frac{1}{2}\tau)e^{i\nu t}\,\mathrm{d}t$$

χ(τ; ν) characterizes the radar's ability to estimate *R* and *R*"Radar data" usually means

$$\eta(\tau,\nu) = \iint \rho(\tau',\nu')\chi(\tau-\tau';\nu-\nu') \,\mathrm{d}\tau' \,\mathrm{d}\nu'$$

・ロト・(型ト・(ヨト・(ヨト)) ヨー うへつ

### SAR imaging

• Coordinate change from radar-centric to geo-centric coordinates r. If  $\gamma(\theta)$  denotes radar flight path, then

$$oldsymbol{d} 
ightarrow oldsymbol{\gamma}( heta) - oldsymbol{r} \ \chi( au;
u) 
ightarrow \chi_ heta( au(oldsymbol{r});
u(oldsymbol{r})) \ \Rightarrow \ \eta( au,
u) 
ightarrow \eta_ heta( au(oldsymbol{r}),
u(oldsymbol{r})) = \iint 
ho(oldsymbol{r}')\chi_ heta(2(oldsymbol{r}-oldsymbol{r}')/c;0) \, \mathrm{d}oldsymbol{x}' \, \mathrm{d}oldsymbol{y}' \ \end{array}$$

▶ The image is formed as

$$\begin{split} I(\boldsymbol{r}) &= \int \eta_{\theta}(\tau(\boldsymbol{r}), \nu(\boldsymbol{r})) \, \mathrm{d}\theta \\ &= \iiint \rho(\boldsymbol{r}') \chi_{\theta}(2\hat{\boldsymbol{d}} \cdot (\boldsymbol{r} - \boldsymbol{r}')/c; 0) \, \mathrm{d}x' \, \mathrm{d}y' \, \mathrm{d}\theta \end{split}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

### SAR imaging

• Coordinate change from radar-centric to geo-centric coordinates r. If  $\gamma(\theta)$  denotes radar flight path, then

$$\begin{split} \boldsymbol{d} &\to \boldsymbol{\gamma}(\theta) - \boldsymbol{r} \\ \chi(\tau; \nu) &\to \chi_{\theta}(\tau(\boldsymbol{r}); \nu(\boldsymbol{r})) \end{split}$$
$$\Rightarrow \ \eta(\tau, \nu) &\to \eta_{\theta}(\tau(\boldsymbol{r}), \nu(\boldsymbol{r})) = \iint \rho(\boldsymbol{r}') \chi_{\theta}(2(r - r')/c; 0) \, \mathrm{d}\boldsymbol{x}' \, \mathrm{d}\boldsymbol{y}' \end{split}$$

The image is formed as

$$\begin{split} I(\boldsymbol{r}) &= \int \eta_{\theta}(\tau(\boldsymbol{r}), \nu(\boldsymbol{r})) \, \mathrm{d}\theta \\ &= \iiint \rho(\boldsymbol{r}') \chi_{\theta}(2\hat{\boldsymbol{d}} \cdot (\boldsymbol{r} - \boldsymbol{r}')/c; 0) \, \mathrm{d}x' \, \mathrm{d}y' \, \mathrm{d}\theta \end{split}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

## Imaging via filtered adjoint

- SAR correlates echo field with model at each step of the data collection process. What if we wait until the end?
- Point scattering model:

$$s_{\text{scatt}}^{(\theta)}(t) = s_{\text{inc}}^{(\theta)}(t - \tau_{\theta}) \mathrm{e}^{\mathrm{i}\nu(t - \tau_{\theta})}$$

where  $\tau_{\theta, \mathbf{r}} = 2|\boldsymbol{\gamma}(\theta) - \boldsymbol{r}|/c$ 

▶ If  $s_{rec}^{(\theta)}(t)$  denotes scattered field measurements along  $\gamma(\theta)$  then

$$\begin{split} f(\mathbf{r}) &= \iint s_{\text{scatt}}^{(\theta)}(t') s_{\text{rec}}^{(\theta)*}(t') \, \mathrm{d}t' \, \mathrm{d}\theta \\ &= \cdots \\ &= \iiint \rho(\mathbf{r}') \chi_{\theta} (2\hat{\mathbf{d}} \cdot (\mathbf{r} - \mathbf{r}')/c, 0) \, \mathrm{d}x' \, \mathrm{d}y' \, \mathrm{d}\theta \end{split}$$

(same result)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

### Imaging via filtered adjoint

- SAR correlates echo field with model at each step of the data collection process. What if we wait until the end?
- Point scattering model:

$$s_{\text{scatt}}^{( heta)}(t) = s_{\text{inc}}^{( heta)}(t - au_{ heta}) \mathrm{e}^{\mathrm{i}
u(t - au_{ heta})}$$

where  $au_{ heta, \textbf{r}} = 2|oldsymbol{\gamma}( heta) - oldsymbol{r}|/c$ 

▶ If  $s_{rec}^{(\theta)}(t)$  denotes scattered field measurements along  $\gamma(\theta)$  then

$$\begin{split} f(\mathbf{r}) &= \iint s_{\text{scatt}}^{(\theta)}(t') s_{\text{rec}}^{(\theta)*}(t') \, \mathrm{d}t' \, \mathrm{d}\theta \\ &= \cdots \\ &= \iiint \rho(\mathbf{r}') \chi_{\theta} (2\hat{\mathbf{d}} \cdot (\mathbf{r} - \mathbf{r}')/c, 0) \, \mathrm{d}x' \, \mathrm{d}y' \, \mathrm{d}\theta \end{split}$$

(same result)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

### Imaging via filtered adjoint

- SAR correlates echo field with model at each step of the data collection process. What if we wait until the end?
- Point scattering model:

$$s_{\text{scatt}}^{( heta)}(t) = s_{\text{inc}}^{( heta)}(t - au_{ heta}) \mathrm{e}^{\mathrm{i}
u(t - au_{ heta})}$$

where  $au_{ heta, \textbf{r}} = 2|m{\gamma}( heta) - m{r}|/c$ 

▶ If  $s_{\text{rec}}^{(\theta)}(t)$  denotes scattered field measurements along  $\gamma(\theta)$  then

$$I(\mathbf{r}) = \iint \mathbf{s}_{\text{scatt}}^{(\theta)}(t') \mathbf{s}_{\text{rec}}^{(\theta)*}(t') \, \mathrm{d}t' \, \mathrm{d}\theta$$
  
= ...  
= 
$$\iiint \rho(\mathbf{r}') \chi_{\theta} (\hat{\mathbf{2d}} \cdot (\mathbf{r} - \mathbf{r}')/c, 0) \, \mathrm{d}x' \, \mathrm{d}y' \, \mathrm{d}\theta$$

(same result)

◆□ > < 個 > < 目 > < 目 > < 回 > < 回 > < 回 > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- The two parameter model can be modified to include any image-dependent parameters.
- ► Target-specific velocities:

$$egin{aligned} & au_{ heta,m{r},m{v}} = 2|m{\gamma}( heta) - m{r} - m{v}t|/m{c} \ & 
ho(m{r}) o 
ho_{m{v}}(m{r}) \ & \chi_{ heta}( au(m{r}), 
u(m{r})) o \chi_{ heta}( au(m{r},m{v});
u(m{r},m{v})) \end{aligned}$$

Moving point scattering model:

$$s_{\text{scatt}}^{(\theta, \boldsymbol{r}, \boldsymbol{v})}(t) = s_{\text{inc}}^{(\theta)}(t - \tau_{\theta, \boldsymbol{r}, \boldsymbol{v}}) \mathrm{e}^{\mathrm{i}\nu(t - \tau_{\theta, \boldsymbol{r}, \boldsymbol{v}})}$$

- The two parameter model can be modified to include any image-dependent parameters.
- Target-specific velocities:

$$egin{aligned} & au_{ heta,m{r},m{v}}=2|m{\gamma}( heta)-m{r}-m{v}t|/c \ & 
ho(m{r}) o 
ho_{m{v}}(m{r}) \ & \chi_{ heta}( au(m{r}),
u(m{r})) o \chi_{ heta}( au(m{r},m{v});
u(m{r},m{v})) \end{aligned}$$

Moving point scattering model:

$$s_{\text{scatt}}^{(\theta, \boldsymbol{r}, \boldsymbol{v})}(t) = s_{\text{inc}}^{(\theta)}(t - \tau_{\theta, \boldsymbol{r}, \boldsymbol{v}}) \mathrm{e}^{\mathrm{i}\nu(t - \tau_{\theta, \boldsymbol{r}, \boldsymbol{v}})}$$

- The two parameter model can be modified to include any image-dependent parameters.
- Target-specific velocities:

$$\begin{split} \tau_{\theta} &\to \tau_{\theta, \boldsymbol{r}, \boldsymbol{v}} = 2|\boldsymbol{\gamma}(\theta) - \boldsymbol{r} - \boldsymbol{v}t|/c\\ \rho(\boldsymbol{r}) &\to \rho_{\boldsymbol{v}}(\boldsymbol{r})\\ \chi_{\theta}(\tau(\boldsymbol{r}), \nu(\boldsymbol{r})) &\to \chi_{\theta}(\tau(\boldsymbol{r}, \boldsymbol{v}); \nu(\boldsymbol{r}, \boldsymbol{v})) \end{split}$$

Moving point scattering model:

$$s_{\text{scatt}}^{( heta, \textbf{r}, m{v})}(t) = s_{\text{inc}}^{( heta)}(t - au_{ heta, m{r}, m{v}}) \mathrm{e}^{\mathrm{i}
u(t - au_{ heta, m{r}, m{v}})}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

### Extended image generation

▶ (Hyper) image as:

$$I(\boldsymbol{r};\boldsymbol{v}) = \iint \boldsymbol{s}_{\text{scatt}}^{(\theta,\boldsymbol{r},\boldsymbol{v})}(t') \boldsymbol{s}_{\text{rec}}^{(\theta)*}(t') \, \mathrm{d}t' \, \mathrm{d}\theta$$

Define the imaging kernel

$$K(\boldsymbol{r},\boldsymbol{r}',\boldsymbol{v},\boldsymbol{v}') \equiv \int s_{\rm inc}^{(\theta)}(t-\tau_{\theta,\boldsymbol{r},\boldsymbol{v}}) \mathrm{e}^{\mathrm{i}\nu(t-\tau_{\theta,\boldsymbol{r},\boldsymbol{v}})} s_{\rm inc}^{(\theta)*}(t'-\tau_{\theta,\boldsymbol{r}',\boldsymbol{v}'}) \mathrm{e}^{-\mathrm{i}\nu(t'-\tau_{\theta,\boldsymbol{r}',\boldsymbol{v}'})} \,\mathrm{d}\theta$$

Can show (slow mover approximation)

$$\begin{split} \mathsf{K}(\boldsymbol{r},\boldsymbol{r}',\boldsymbol{v},\boldsymbol{v}') &= \cdots = \int \chi_{\theta}(2\hat{\boldsymbol{d}}\cdot(\boldsymbol{r}-\boldsymbol{r}')/c,2\hat{\boldsymbol{d}}\cdot(\boldsymbol{v}-\boldsymbol{v}')/\lambda)\,\mathrm{d}\theta\\ I(\boldsymbol{r};\boldsymbol{v}) &= \int \int \rho_{\boldsymbol{v}}(\boldsymbol{r}')\tilde{K}(\boldsymbol{r}-\boldsymbol{r}',\boldsymbol{v}-\boldsymbol{v}')\,\mathrm{d}x'\,\mathrm{d}y'\,\mathrm{d}v_x'\,\mathrm{d}v_y' \end{split}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

▶ (Hyper) image as:

$$I(\boldsymbol{r}; \boldsymbol{v}) = \iint \boldsymbol{s}_{ ext{scatt}}^{( heta, \boldsymbol{r}, \boldsymbol{v})}(t') \boldsymbol{s}_{ ext{rec}}^{( heta)*}(t') \, \mathrm{d}t' \, \mathrm{d} heta$$

#### Define the imaging kernel

$$K(\boldsymbol{r},\boldsymbol{r}',\boldsymbol{v},\boldsymbol{v}') \equiv \int s_{\rm inc}^{(\theta)}(t-\tau_{\theta,\boldsymbol{r},\boldsymbol{v}}) e^{i\nu(t-\tau_{\theta,\boldsymbol{r},\boldsymbol{v}})} s_{\rm inc}^{(\theta)*}(t'-\tau_{\theta,\boldsymbol{r}',\boldsymbol{v}'}) e^{-i\nu(t'-\tau_{\theta,\boldsymbol{r}',\boldsymbol{v}'})} d\theta$$

Can show (slow mover approximation)

$$\begin{split} \mathsf{K}(\boldsymbol{r},\boldsymbol{r}',\boldsymbol{v},\boldsymbol{v}') &= \cdots = \int \chi_{\theta}(2\hat{\boldsymbol{d}}\cdot(\boldsymbol{r}-\boldsymbol{r}')/c,2\hat{\boldsymbol{d}}\cdot(\boldsymbol{v}-\boldsymbol{v}')/\lambda)\,\mathrm{d}\theta\\ I(\boldsymbol{r};\boldsymbol{v}) &= \int \int \rho_{\boldsymbol{v}}(\boldsymbol{r}')\tilde{K}(\boldsymbol{r}-\boldsymbol{r}',\boldsymbol{v}-\boldsymbol{v}')\,\mathrm{d}x'\,\mathrm{d}y'\,\mathrm{d}v_x'\,\mathrm{d}v_y' \end{split}$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● ● ●

▶ (Hyper) image as:

$$I(\boldsymbol{r}; \boldsymbol{v}) = \iint \boldsymbol{s}_{\text{scatt}}^{(\theta, \boldsymbol{r}, \boldsymbol{v})}(t') \boldsymbol{s}_{\text{rec}}^{(\theta)*}(t') \, \mathrm{d}t' \, \mathrm{d}\theta$$

Define the imaging kernel

$$K(\boldsymbol{r},\boldsymbol{r}',\boldsymbol{v},\boldsymbol{v}') \equiv \int s_{\rm inc}^{(\theta)}(t-\tau_{\theta,\boldsymbol{r},\boldsymbol{v}}) \mathrm{e}^{\mathrm{i}\nu(t-\tau_{\theta,\boldsymbol{r},\boldsymbol{v}})} s_{\rm inc}^{(\theta)*}(t'-\tau_{\theta,\boldsymbol{r}',\boldsymbol{v}'}) \mathrm{e}^{-\mathrm{i}\nu(t'-\tau_{\theta,\boldsymbol{r}',\boldsymbol{v}'})} \,\mathrm{d}\theta$$

Can show (slow mover approximation)

$$\begin{split} \mathsf{K}(\boldsymbol{r},\boldsymbol{r}',\boldsymbol{v},\boldsymbol{v}') &= \cdots = \int \chi_{\theta}(2\hat{\boldsymbol{d}}\cdot(\boldsymbol{r}-\boldsymbol{r}')/c,2\hat{\boldsymbol{d}}\cdot(\boldsymbol{v}-\boldsymbol{v}')/\lambda)\,\mathrm{d}\theta\\ I(\boldsymbol{r};\boldsymbol{v}) &= \iint \rho_{\boldsymbol{v}}(\boldsymbol{r}')\tilde{K}(\boldsymbol{r}-\boldsymbol{r}',\boldsymbol{v}-\boldsymbol{v}')\,\mathrm{d}x'\,\mathrm{d}y'\,\mathrm{d}v_x'\,\mathrm{d}v_y' \end{split}$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ 二直 - のへで

$$s_{
m inc}(t) \sim \delta(t)$$
 and so  $\chi(\tau, \nu) \sim \delta(\tau)$ 

#### $\Rightarrow$ May not be the best choice (especially for slow movers).

- ► Same appears to be true for high Doppler resolution waveforms (for which  $\chi(\tau, \nu) \sim \delta(\nu)$ )
- ▶ Ideally, we want

$$K(\pmb{r},\pmb{r}',\pmb{v},\pmb{v}')=\delta(\pmb{r}-\pmb{r}',\pmb{v}-\pmb{v}')$$

But new (extended) imaging kernel is no longer even guaranteed to be shift-invariant.

$$s_{\text{inc}}(t) \sim \delta(t)$$
 and so  $\chi(\tau, \nu) \sim \delta(\tau)$ 

 $\Rightarrow$  May not be the best choice (especially for slow movers).

► Same appears to be true for high Doppler resolution waveforms (for which  $\chi(\tau, \nu) \sim \delta(\nu)$ )

▶ Ideally, we want

$$K(\boldsymbol{r},\boldsymbol{r}',\boldsymbol{\upsilon},\boldsymbol{\upsilon}')=\delta(\boldsymbol{r}-\boldsymbol{r}',\boldsymbol{\upsilon}-\boldsymbol{\upsilon}')$$

But new (extended) imaging kernel is no longer even guaranteed to be shift-invariant.

$$s_{\text{inc}}(t) \sim \delta(t)$$
 and so  $\chi(\tau, \nu) \sim \delta(\tau)$ 

 $\Rightarrow$  May not be the best choice (especially for slow movers).

- ► Same appears to be true for high Doppler resolution waveforms (for which  $\chi(\tau,\nu) \sim \delta(\nu)$ )
- ► Ideally, we want

$$K(\boldsymbol{r},\boldsymbol{r}',\boldsymbol{\upsilon},\boldsymbol{\upsilon}')=\delta(\boldsymbol{r}-\boldsymbol{r}',\boldsymbol{\upsilon}-\boldsymbol{\upsilon}')$$

But new (extended) imaging kernel is no longer even guaranteed to be shift-invariant.

$$s_{\text{inc}}(t) \sim \delta(t)$$
 and so  $\chi(\tau, \nu) \sim \delta(\tau)$ 

 $\Rightarrow$  May not be the best choice (especially for slow movers).

- ► Same appears to be true for high Doppler resolution waveforms (for which  $\chi(\tau, \nu) \sim \delta(\nu)$ )
- ► Ideally, we want

$$K(\boldsymbol{r},\boldsymbol{r}',\boldsymbol{v},\boldsymbol{v}')=\delta(\boldsymbol{r}-\boldsymbol{r}',\boldsymbol{v}-\boldsymbol{v}')$$

• But new (extended) imaging kernel is no longer even guaranteed to be shift-invariant.

$$s_{\text{inc}}(t) \sim \delta(t)$$
 and so  $\chi(\tau, \nu) \sim \delta(\tau)$ 

 $\Rightarrow$  May not be the best choice (especially for slow movers).

- ► Same appears to be true for high Doppler resolution waveforms (for which  $\chi(\tau, \nu) \sim \delta(\nu)$ )
- ► Ideally, we want

$$K(\boldsymbol{r},\boldsymbol{r}',\boldsymbol{v},\boldsymbol{v}')=\delta(\boldsymbol{r}-\boldsymbol{r}',\boldsymbol{v}-\boldsymbol{v}')$$

- But new (extended) imaging kernel is no longer even guaranteed to be shift-invariant.
- Design depends on  $s_{inc}(t)$  as well as on sensor geometry  $\gamma(\theta)$

## Other applications: "Start-Stop' error

- Scheme allows for straightforward introduction of a variety of complex imaging configurations
- Start-stop accuracy?



Figure: Error as a function of squint and resolution for a target traveling 100km/hr in the direction opposite to the platform velocity (8 km/sec). (X-band illumination.)

## Other applications: Multistatic imaging



Figure: The geometry (not to scale) for a linear array 11 transmitters and a single receiver and the corresponding combined point-spread function.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

### • Understand $K(\mathbf{r}, \mathbf{r}', \mathbf{v}, \mathbf{v}')$

- Choice of  $s_{inc}(t)$  vs.  $\gamma(\theta)$
- Nature of its shift-variance.
- Expect that *K* will also characterize effects of non-uniqueness of solutions.
- Extend to accelerating image elements
- Can other target-specific parameters be introduced?

$$\rho_{\boldsymbol{v}}(\boldsymbol{r}) \rightarrow \rho_{\boldsymbol{v}}(\boldsymbol{r}, \theta, \ldots)$$

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

- Understand  $K(\mathbf{r}, \mathbf{r}', \mathbf{v}, \mathbf{v}')$ 
  - Choice of  $s_{inc}(t)$  vs.  $\gamma(\theta)$
  - Nature of its shift-variance.
  - Expect that *K* will also characterize effects of non-uniqueness of solutions.
- Extend to accelerating image elements
- Can other target-specific parameters be introduced?

$$\rho_{\boldsymbol{v}}(\boldsymbol{r}) \rightarrow \rho_{\boldsymbol{v}}(\boldsymbol{r}, \theta, \ldots)$$

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

- Understand  $K(\mathbf{r}, \mathbf{r}', \mathbf{v}, \mathbf{v}')$ 
  - Choice of  $s_{inc}(t)$  vs.  $\gamma(\theta)$
  - Nature of its shift-variance.
  - Expect that *K* will also characterize effects of non-uniqueness of solutions.
- Extend to accelerating image elements
- Can other target-specific parameters be introduced?

$$\rho_{\boldsymbol{v}}(\boldsymbol{r}) \rightarrow \rho_{\boldsymbol{v}}(\boldsymbol{r}, \theta, \ldots)$$

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

- Understand  $K(\mathbf{r}, \mathbf{r}', \mathbf{v}, \mathbf{v}')$ 
  - Choice of  $s_{inc}(t)$  vs.  $\gamma(\theta)$
  - Nature of its shift-variance.
  - Expect that K will also characterize effects of non-uniqueness of solutions.
- Extend to accelerating image elements
- Can other target-specific parameters be introduced?

 $\rho_{\boldsymbol{v}}(\boldsymbol{r}) \rightarrow \rho_{\boldsymbol{v}}(\boldsymbol{r}, \theta, \ldots)$ 

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

- Understand  $K(\mathbf{r}, \mathbf{r}', \mathbf{v}, \mathbf{v}')$ 
  - Choice of  $s_{inc}(t)$  vs.  $\gamma(\theta)$
  - Nature of its shift-variance.
  - Expect that K will also characterize effects of non-uniqueness of solutions.
- Extend to accelerating image elements
- Can other target-specific parameters be introduced?

$$\rho_{\boldsymbol{v}}(\boldsymbol{r}) \rightarrow \rho_{\boldsymbol{v}}(\boldsymbol{r}, \theta, \ldots)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

- Understand  $K(\mathbf{r}, \mathbf{r}', \mathbf{v}, \mathbf{v}')$ 
  - Choice of  $s_{inc}(t)$  vs.  $\gamma(\theta)$
  - Nature of its shift-variance.
  - Expect that K will also characterize effects of non-uniqueness of solutions.
- Extend to accelerating image elements
- Can other target-specific parameters be introduced?

$$\rho_{\boldsymbol{v}}(\boldsymbol{r}) \rightarrow \rho_{\boldsymbol{v}}(\boldsymbol{r}, \theta, \ldots)$$

▲□▶▲□▶▲□▶▲□▶ □ ● ●