
SAR Imaging of Dynamic Scenes
IPAM SAR Workshop

Brett Borden, Naval Postgraduate School
Margaret Cheney, Rensselaer Polytechnic Institute

7 February, 2012



Introduction

I Need
I All weather, day/night, sensor system
I Situational awareness
I Extend moving target indicator radar (MTI) to scene reconstruction

I Problem
I Synthetic aperture radar images assume rigid scenes
I Moving image elements are mis-located, distorted, or not imaged at

all
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Radar pulse illumination (high range resolution)

I Spherical pulse radiates at speed c
I Echo from all reflectors in arc returns to radar at the same time
I Radar collects energy as function of time:

E(t) ∼
∫
ρ(r)B(r)δ
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Image from stationary radar

I A (stationary) radar has no knowledge of angular position within
the beam

I Best image is arcs “painted” by range intensity values



Spotlight SAR



SAR imaging of stationary scenes
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Examples

Train off the track Ship off its wake



Example
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Image from Sandia National Laboratories



Past approaches

I Don’t fix it, exploit it!
I Phase history analysis
I Sub-aperture images to isolate motion
I Ground moving target indicator (GMTI), Space-time adaptive

processing (STAP), etc...
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The radar problem: What does radar data look like?

I The echo signal at radar receiver

srec(t) = sscatt(t) + n(t)

I EM radiation decays as R−1, energy as R−2, and radar echo
energy as R−4. Signal energy is proportional to field energy.

I Echo signals compete with system noise n(t) (and are often
swamped by it).

I “Raw” radar data is usually the result of significant signal
processing.
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Correlation reception

I Usually, the received signal is compared to the ideal echo signal
model

sscatt(t) =
∫∫

ρ(τ, ν)sinc(t − τ)eiν(t−τ) dτ dν

where ρ(τ, ν) is the reflectivity of a point isotropic scatterer at
distance R = cτ/2 and radial velocity Ṙ = νλ/2.

I Output of correlation receiver is

η(τ, ν) =

∫
srec(t)s∗inc(t − τ)e−iν(t−τ) dt

I Local maxima of |η(τ, ν)|2 define target’s range and radial velocity.
I The parameters τ and ν define a two-dimensional search space

appropriate to single pulses.
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Ambiguity function

I If the ideal scattering model is the actual model, the substitution
for srec(t) = sscatt(t) + n(t) yields

η(τ, ν) =

∫∫
ρ(τ ′, ν′)χ(τ − τ ′; ν − ν′)dτ ′ dν′ + correlation noise︸ ︷︷ ︸

small

(up to a phase factor in the integrand)
I The kernel here is the radar ambiguity function:

χ(τ ; ν) =

∫
sinc(t − 1

2τ)s
∗
inc(t + 1

2τ)e
iνt dt

I χ(τ ; ν) characterizes the radar’s ability to estimate R and Ṙ
I “Radar data" usually means

η(τ, ν) =

∫∫
ρ(τ ′, ν′)χ(τ − τ ′; ν − ν′)dτ ′ dν′



Ambiguity function

I If the ideal scattering model is the actual model, the substitution
for srec(t) = sscatt(t) + n(t) yields

η(τ, ν) =

∫∫
ρ(τ ′, ν′)χ(τ − τ ′; ν − ν′)dτ ′ dν′ + correlation noise︸ ︷︷ ︸

small

(up to a phase factor in the integrand)
I The kernel here is the radar ambiguity function:

χ(τ ; ν) =

∫
sinc(t − 1

2τ)s
∗
inc(t + 1

2τ)e
iνt dt

I χ(τ ; ν) characterizes the radar’s ability to estimate R and Ṙ
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SAR imaging

I Coordinate change from radar-centric to geo-centric coordinates
r. If γ(θ) denotes radar flight path, then

d → γ(θ)− r
χ(τ ; ν)→ χθ(τ(r); ν(r))

⇒ η(τ, ν)→ ηθ(τ(r), ν(r)) =
∫∫

ρ(r ′)χθ(2(r − r ′)/c;0)dx ′ dy′

I The image is formed as

I(r) =
∫
ηθ(τ(r), ν(r))dθ

=

∫∫∫
ρ(r ′)χθ(2d̂ · (r − r ′)/c;0)dx ′ dy′ dθ
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Imaging via filtered adjoint

I SAR correlates echo field with model at each step of the data
collection process. What if we wait until the end?

I Point scattering model:

s(θ)
scatt(t) = s(θ)

inc (t − τθ)e
iν(t−τθ)

where τθ,r = 2|γ(θ)− r|/c
I If s(θ)

rec (t) denotes scattered field measurements along γ(θ) then

I(r) =
∫∫

s(θ)
scatt(t

′)s(θ)∗
rec (t′)dt′ dθ

= · · ·

=

∫∫∫
ρ(r ′)χθ(2d̂ · (r − r ′)/c,0)dx ′ dy′ dθ

(same result)
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Revised scattering model

I The two parameter model can be modified to include any
image-dependent parameters.

I Target-specific velocities:

τθ → τθ,r,v = 2|γ(θ)− r − vt|/c
ρ(r)→ ρv(r)

χθ(τ(r), ν(r))→ χθ(τ(r, v); ν(r, v))

I Moving point scattering model:

s(θ,r,v)
scatt (t) = s(θ)

inc (t − τθ,r,v)e
iν(t−τθ,r,v)
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Extended image generation

I (Hyper) image as:

I(r; v) =
∫∫

s(θ,r,v)
scatt (t′)s(θ)∗

rec (t′)dt′ dθ

I Define the imaging kernel

K(r, r ′, v, v′) ≡
∫

s(θ)
inc (t−τθ,r,v)e

iν(t−τθ,r,v)s(θ)∗
inc (t′−τθ,r′,v′)e−iν(t′−τθ,r′,v′ ) dθ

I Can show (slow mover approximation)

K(r, r ′, v, v′) = · · · =
∫
χθ(2d̂ · (r − r ′)/c,2d̂ · (v − v′)/λ)dθ

I(r; v) =
∫∫
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Implementation: Choice of sinc(t)?

I “Impulse radar” uses

sinc(t) ∼ δ(t) and so χ(τ, ν) ∼ δ(τ)

⇒ May not be the best choice (especially for slow movers).
I Same appears to be true for high Doppler resolution waveforms

(for which χ(τ, ν) ∼ δ(ν))
I Ideally, we want

K(r, r ′, v, v′) = δ(r − r ′, v − v′)

I But new (extended) imaging kernel is no longer even guaranteed
to be shift-invariant.

I Design depends on sinc(t) as well as on sensor geometry γ(θ)
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Other applications: “Start-Stop’ error

I Scheme allows for straightforward introduction of a variety of
complex imaging configurations

I Start-stop accuracy?

Figure: Error as a function of squint and resolution for a target traveling
100km/hr in the direction opposite to the platform velocity (8 km/sec).
(X-band illumination.)



Other applications: Multistatic imaging

Figure: The geometry (not to scale) for a linear array 11 transmitters and a
single receiver and the corresponding combined point-spread function.



Future work

I Understand K(r, r ′, v, v′)
I Choice of sinc(t) vs. γ(θ)
I Nature of its shift-variance.
I Expect that K will also characterize effects of non-uniqueness of

solutions.

I Extend to accelerating image elements
I Can other target-specific parameters be introduced?

ρv(r)→ ρv(r, θ, . . .)

I What about multiple scattering?
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