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Phase-Space Approach to Motion Estimation and Autofocus Introduction and Model

Spotlight-mode Synthetic Aperture Radar (SAR) Imaging
Radar system emits probing signals f (t) and records echoes D(s, t) (slow time s of the
SAR platform displacement, fast time t of the probing signal)

X-band Regime

I |~rp(s)− ~ρ I | ≈ 10 km

I Central wavelength λ0 = 3cm

I Bandwidth B=622 MHz

I V = 70m/s

I(~ρ I) =

∫ S(a)

−S(a)

ds

∫
dt D(s, t)f

(
t − τ(s, ~ρ I)

)
=

∫ ωo +πB

ωo−πB

dω

2π

∫ S(a)

−S(a)

ds f̂ (ω)D̂(s, ω)e−iωτ(s,~ρI )

where τ(s, ~ρ I) = 2|~rp(s)− ~ρ I |/c is the roundtrip travel time
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Phase-Space Approach to Motion Estimation and Autofocus Introduction and Model

Autofocus

I In practice, resolution always lost due to imperfect knowledge of the flight path
I Due to high frequency regime, a very small error in travel time can corrupt image
I Large bandwidth systems have potential for cm resolution but not without autofocus

I Previous Work:
I Phase Gradient Autofocus (PGA): Jakowatz 1993
I Contrast Metric Methods (Morrison 2007, etc)
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Phase-Space Approach to Motion Estimation and Autofocus Introduction and Model

Motion Estimation
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Similarly, motion of targets with sufficiently large reflectivity leads to poor image
resolution

I Slow target motion yields similar results as platform perturbations

I Fast target motion smears image entirely

”Imaging Moving Targets from Scattered Waves”, Cheney and Borden, IP 2008; Jen Jao
”Theory of SAR Imaging of a Moving Target”, IEEE Trans Geosci and Rem Sens 2001.
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Phase-Space Approach to Motion Estimation and Autofocus Introduction and Model

Phase-Space Methods

Motivation for our approach

I High frequency regime results in highly oscillatory integrals

I In phase-space, small phase shifts can be determined robustly

I Use Wigner transform and ambiguity function because position of
peaks relate to target motion and platform perturbations

I Use properly segmented “sub-apertures” of our data

Earlier work on phase space methods by Barbarosa (1992), Munson (2002)
and others.
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Phase-Space Approach to Motion Estimation and Autofocus Introduction and Model

Data Model

I Suppose a single point target ~ρ(s) moves in imaging plane with velocity ~u(s)

I Assume target location is known at some time s
I Assume velocity ~u(s) is constant over small sub-aperture

I Suppose measured flight trajectory is ~rp(s) while actual trajectory is ~rp(s) + ~µ(s)

I Assume single scattering (Born) approximation of solution to wave equation

I Regime: High frequency, relatively low bandwidth, long distance (λ0 � L)

I Under these assumptions, the data model is:

Dr (s, t) =
(ωo/c)2

(4π|~rp(s)− ~ρ(s)|)2
f (t − (τ(s, ~ρ(s))− τ(s, ~ρo)))) (1)

where we offset the travel time by a reference point ~ρo in the imaging plane. The model
of the range compressed data in the frequency domain is

D̂r (s, ω) ≈ ω2
o

c2

∣∣∣f̂B (0)
∣∣∣2 1[ωo ,πB](ω)

(4π|~rp(s)− ~ρ(s)|)2
exp {iω [τ(s, ~ρ(s))− τ(s, ~ρo)]} . (2)

where
τ(s, ~ρ(s)) = 2|~rp(s) + ~µ(s)− ~ρ(s)|/c
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Phase-Space Approach to Motion Estimation and Autofocus Introduction and Model

Wigner Transform and Ambiguity Function of Data

I The Wigner transform of the data of a point target moving with
velocity |~u| ≤ V is

W(s,Ω, ω,T ) =

∫ Ω̃

−Ω̃

dω̃

∫ S̃

−S̃

ds̃ D̂r

(
s +

s̃

2
, ω +

ω̃

2

)
D̂r

(
s − s̃

2
, ω − ω̃

2

)
e i s̃Ω−iω̃T

where Ω̃ = 2πB − 2|ω − ωo | and S̃ = a
2V

.

I The ambiguity function of the data is

A(s,Ω, s̃,T ) =

∫ ωo +πB

ωo−πB

dω

∫ S

−S

ds D̂r

(
s + s +

s̃

2
, ω

)
D̂r

(
s + s − s̃

2
, ω

)
e isΩ−iωT

where S = a
2V

.
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Phase-Space Approach to Motion Estimation and Autofocus Introduction and Model

Choice of these phase-space methods

I Wigner transform
I Windowed Fourier Transform of offset in data

I Ambiguity function
I Windowed cross-correlation transform

I Both transform two dimensional functions to four dimensional
functions. However, we choose ω and s̃ to maximize the windowing,
so result is two dimensional function for each time s

I For small enough sub-apertures, both are products of sinc functions
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Phase-Space Approach to Motion Estimation and Autofocus Motion Estimation

Phase-Space Transforms for Motion Estimation (~µ(s) ≡ 0)
Result1: Under conditions on the size of the aperture that restrict the size of the Fresnel
number a2/(λ0L) so we can linearize phases

W(s,Ω, ωo ,T ) ∼ sinc{πB [T −∆τ(s)]} sinc

{
4πa

λo

[
Ωc

2ωo V
− Φ(s)

]}
A
(

s,Ω,
a

2V
,T
)
∼ sinc

{
πBa

c

[
cT

a
+ Φ(s)

]}
sinc

[
aΩ

2V
+

πa2Φ⊥(s)

λo |~rp(s)− ~ρ(s)|

]
,

where ~m(s) and ~t(s) are the unit vectors

~m(s) =
~rp(s)− ~ρ
|~rp(s)− ~ρ|

, ~t(s) =
~r′p(s)

V

and P(s) = I − ~m(s)~m(s)T is the projection matrix orthogonal to ~m(s)

∆τ(s) = τ(s, ~ρ(s))− τ(s, ~ρo ) and Φ(s) =
~u

V
· ~m(s)−~t(s) · (~m(s)− ~mo (s)) .

Φ⊥(s) =

∣∣∣∣P(s)

(
~t(s)−

~u

V

)∣∣∣∣2− |~rp(s)− ~ρ(s)|
[ ∣∣Po (s)~t(s)

∣∣2
|~rp(s)− ~ρo |

−
~t′(s)

V
· (~m(s)− ~mo (s))

]
,

1L. Borcea, T. Callaghan, G. Papanicolaou, Synthetic Aperture Radar
Imaging with Motion Estimation and Autofocus, To appear in Inverse Problems.
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Phase-Space Approach to Motion Estimation and Autofocus Motion Estimation

Complementary Phase Information for Motion Estimation

Wigner Transform

I By selecting the peaks in the Wigner transform (ΩW(s),TW(s)) we can extract
the estimate:

~u

V
· ~m(s) =

c ΩW(s)

2ωoV
+~t(s) · ~m(s) + O

(
λo

a

)
I Orthogonal estimate can be derived from peaks of Wigner transform, but requires

a numerical differentiation

Ambiguity Function

I By selecting the peaks in the ambiguity function (ΩA(s),TA(s)) we can extract

an estimate of the velocity in an orthogonal direction
∣∣P(s)

(
~t(s)− ~u

V

)∣∣2 and of
~u
V
· ~m(s) but with worse resolution than Wigner estimate.

The Wigner transform estimate of ~u
V · ~m(s) and the ambiguity function estimate

of
∣∣∣P(s)

(
~t(s)− ~u

V

)∣∣∣2 are complementary estimates that can be combined to

form an estimate of ~u(s).
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Phase-Space Approach to Motion Estimation and Autofocus Motion Estimation

Motion Estimation on Single Subaperture of Single Target
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Phase-Space Approach to Motion Estimation and Autofocus Autofocus

Autofocus

I(ρI) =

∫ S

−S
ds

∫ ωo +πB

ωo−πB

dω

2π
D̂r (s, ω)e−

2iω
c (|~rp (s)−~ρI |−|~rp (s)−~ρo |)

Through similar approximation of phases by a second degree polynomial in s and the same
constraints as before:

I(ρI ) ∼
∫ ωo +πB

ωo−πB
dω exp

{
2iω

c

(
|~rp − ~ρ| − |~rp − ~ρI | + ϕ0

)}∫ S

−S
ds exp

{
2iωsV

c

[
~t · (~m− ~mI ) + ϕ1

]

+
iωo (sV )2

c

[
~t′

V
· (~m− ~mI ) +

∣∣P~t∣∣2
|~rp − ~ρ|

−
∣∣PI~t∣∣2
|~rp − ~ρI? |

+ ϕ2

]}
,

The focusing of I(ρI) is determined by the phases

ϕo = ~m · ~µ, ϕ1 = ~m ·
~µ′

V
+~t ·

P~µ
|~rp − ~ρ|

, ϕ2 = ~m ·
~µ′′

V 2
+

2
(
~t + ~µ′

V

)
|~rp − ~ρ|

·
P~µ′

V
.

Autofocus process consists in applying the correction ~µAF (s) =
[
ϕo + sV ϕ1 + (sV )2

2
ϕ2

]
~m to

the SAR platform trajectory and forming the image

IAF (ρI) =

∫ S

−S
ds

∫ ωo +πB

ωo−πB

dω

2π
D̂r (s, ω)e

− 2iω
c

(
|~rp (s)+~µAF (s)−~ρI |−|~rp (s)−~ρo |

)
.
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Phase-Space Approach to Motion Estimation and Autofocus Autofocus

Phase-Space Transforms for Autofocus (~u(s) ≡ 0)

Result: Under conditions on the size of the aperture that restrict the size of the
Fresnel number a2/(λ0L)

W(s = 0,Ω, ωo ,T ) ∼ sinc
{
πB
[
T + δTW

]}
sinc

{
4πac(Ω + δΩW )

2λo Vωo

}
A
(

s = 0,Ω,
a

2V
,T
)
∼ sinc

{
πB(T + δTA)

}
sinc

[
a(Ω + δΩA)

2V

]
where

δTW =
2~µ · ~m

c
,

cδΩW

2Vωo
= ~m ·

~µ′

V
+~t ·

P~µ
|~rp − ~ρ|

.

and

δTA = −
a

V

δΩW

ωo
and

δΩA

ωo
=

Va

c

2
(
~t− ~u

V

)
|~rp − ~ρ|

·
P~µ′

V
+
~µ′′

V 2
· ~m

 .
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Phase-Space Approach to Motion Estimation and Autofocus Autofocus

Complementary Phase Information for Autofocus
Wigner Transform

I By selecting the peaks in the Wigner transform (ΩW(s),TW(s)) we can extract
the estimate:

ϕo(s) = −c

2
TW(s) + O

( c

B

)
, ϕ1(s) = − λo

4πV
ΩW(s) + O

(
λo

a

)
.

Ambiguity Function

I By selecting the peaks in the ambiguity function (ΩA(s),TA(s)) we can extract
the estimate:

ϕ1(s) =
c

2a
TA(s) + O

( c

aB

)
, ϕ2(s) = − λo

2πaV
ΩA(s) + O

(
λo

a2

)
.

Similarly, we get a redundant estimate of ϕ1, with worse resolution, because

c

aB
∼ λo

a

ωo

B
� λo

a
.

The ambiguity function is useful for the estimation of ϕ2, and thus complements
the Wigner transform in the autofocus process.
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Phase-Space Approach to Motion Estimation and Autofocus Autofocus

Extending Single Scatterer Model
We can extend this approach to situations where the data consists of

I Motion Estimation: Cluster of targets moving together

I Autofocus: Cluster of stationary targets

by computing the centroid of Wigner transform and ambiguity function
instead of picking the peak
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But what about more general scenes with several stationary targets and
possibly multiple targets moving in different directions that you wish to
track?
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Phase-Space Approach to Motion Estimation and Autofocus Autofocus

Autofocus for a Single Scatterer Image
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Phase-Space Approach to Motion Estimation and Autofocus Autofocus

Autofocus over 1 km aperture (10o) with Complex Scene
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(b) Autofocused
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Motion Estimation and Imaging of Complex Scenes Separation of Moving and Stationary Target Data

Can we separate stationary target data from moving target
data?
Phase-space method works autofocus for stationary targets and motion estimation where
all targets move with same velocity. In general we have more complex scenes. Ideally, we
could decompose the data into stationary plus moving.

= +

This motivates using a data pre-processing step to separate data:

I Robust PCA: Low Rank + Sparse Decomposition

I Geometric travel-time transformation and data filtering

After separation, we can apply existing algorithms individually for motion estimation and

autofocus.
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Motion Estimation and Imaging of Complex Scenes Separation of Moving and Stationary Target Data

Multiple Scatterer Model
Assuming Born (single scattering) approximation, we get superposition of traces

Dr (s, t) =
M∑

m=1

Rmf (t − (τ(s, ~ρm(s))− τ(s, ~ρo ))) +
N∑

n=1

Rnf (t − (τ(s, ~ρn)− τ(s, ~ρo )))

where ~ρm(s) and ~ρn denote the m-th moving target and the n-th stationary target respectively.
Rm,Rn absorb the reflectivity and other amplitude terms.
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Motion Estimation and Imaging of Complex Scenes Separation of Moving and Stationary Target Data

Robust Principle Component Analysis (RPCA)

Goal: Decompose D(s, t) = Dn(s, t) + Dm(s, t) = stationary data + moving data.
Idea: Think of D(s, t) as a matrix M. Decompose into low rank L plus sparse S

I Traces from stationary targets ≈ columns in M.
Structure ≈ low rank part L of M.

I The remainder, S = M − L ≈ trace from moving target.
Structure ≈ full rank, but sparse.

The RPCA method2 does such decompositions of matrices, into a low rank part L and a
sparse part S , by solving the following convex optimization problem:

minimize ||L||∗ + λ||S ||1
subject to L + S = M.

Here || · ||∗ is the nuclear norm, i.e. the sum of the singular values, and || · ||1 is the

matrix 1-norm. The Lagrange multiplier λ has the optimal value of 1/
√

dim(M).

2Candes, E.J. and Li, X. and Ma, Y. and Wright, J., Robust principal
component analysis?, Journal of ACM 58(1), 1-37, 2009
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Motion Estimation and Imaging of Complex Scenes Separation of Moving and Stationary Target Data

RPCA Separation: 3 scatterers
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Figure: Dr (s, t) = L + S from RPCA. Fails to work because stationary targets are
not low rank in this domain due to high frequency and hyperbolic responses.
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Motion Estimation and Imaging of Complex Scenes Separation of Moving and Stationary Target Data

Geometric travel-time transformation and data filtering
Idea: Since the stationary targets can be imaged reasonably well, even in the presence
of the platform trajectory perturbations, we can use the preliminary images in our data
processing step.

1. Estimate locations
of stationary targets
from preliminary

image
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2. Apply a geometrical transformation to D(s, t), using travel times from the estimated
platform location to one target at a time in the image,

D~̂ρ` (s, t) = Dr

(
s, t +

(
τ(s, ~̂ρ`)− τ(s, ~ρo )

))
=

M∑
m=1

f (t − (τ(s, ~ρm(s))− τ(s, ~̂ρ`))) +
N∑

n 6=`
f (t − (τ(s, ~ρn)− τ(s, ~̂ρ`)))

+f
(

t − τ(s, ~ρ`)− τ(s, ~̂ρ`)
)

When ~̂ρ` = ~ρ`, this transformation removes the slow time dependence of the trace of the
echo from that particular target.
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Motion Estimation and Imaging of Complex Scenes Separation of Moving and Stationary Target Data

Geometric travel-time transformation and data filtering

3. Remove this trace from the rest of the data using a filter. One technique, which
has been successful in seismic imaging3, amounts in this case to taking an
approximation to the derivative in slow time of the transformed data

[QD~̂ρ` ](s, t) = D~̂ρ`(s, t)− 1

|I (h)|

∫
I (h)

D~̂ρ`(s + h, t)dh

where I (h) is a small interval of length |I (h)|.
4. Repeat for each estimated stationary target location

3Borcea, L., Gonzalez del Cueto, F., Papanicolaou, G., Tsogka, C., Filtering
deterministic layering effects in imaging SIAM Multiscale Model. Simul., Vol 7, No 3,
2009, pp. 1267-1301.
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Motion Estimation and Imaging of Complex Scenes Separation of Moving and Stationary Target Data

Geometric travel-time transformation and data filtering
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Figure: Filtering of a stationary scatterer. Left: Original trace. Middle:
Transformed trace. Right: Filtered trace by slow time derivative. Notice that the
stationary trace has been eliminated while the moving target trace remains.
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Travel-time transformation and Filtering Separation
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Figure: Before and after filtering of the data from a 10 stationary scatterer scene
with a single moving target with velocity 28 m/s. Top/Bottom=Before/After.
Right column is in dB scale
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Motion Estimation and Imaging
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Figure: Motion estimation results for scene with 10 stationary scatterers and 1
moving target after annihilation. Left is the path and error. Right is the image of
the moving target computed with estimated motion. It is displaced from (0, 0)
because of small error in velocity estimation.
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Challenges

1. Inaccurate location estimates of stationary scatterers. Sensitivity
analysis for this is work in progress.

2. Numerous applications of filter for scenes with numerous strong
stationary scatterers degrade moving target signal. This is due to
numerical differentiation of a function with limited sampling in slow
time.

3. Slow moving targets
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Optimization Methods in Motion Estimation

Velocity Search Optimization
Phase-space velocity estimation method struggles with too many stationary
targets and multiple moving targets. Another approach to finding the velocity of
the moving target is to search for the velocity ~uI that will correspond to “rotating
and straightening” the traces so that those from the moving target become
essentially independent of the slow time s.

D~uI

r (s, t) = Dr

(
s, t +

(
τ(s, ~ρI )− τ(s, ~ρo)

))
, τ(s, ~ρI ) =

2

c

(
|~rp(s)− (~ρo + ~uI s)|

)
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Velocity Search Optimization

To motivate the choice of objective functions, we can model the phase of the pulse compressed

data from a single moving target ~ρ(s) as D̂~ρ(0)(s, ω) ∼ e
2iω

c
φ(s) where

φ(s) = s
(
V~t(0)− ~u

)
· ~m(0) +

s2V 2

2


∣∣∣P(0)

(
~t(0)− ~u

V

)∣∣∣2
|~rp(0)− ~ρ(0)|

−
~n(0) · ~m(0)

R


Note that by choosing to transform the data with respect to ~ρ(0), we remove the travel time
dependence.
Thus ~u · ~m(0) affects the slope and ~u ·~t(0) affects the curvature of the echoes.

I Motion in the direction of ~mo has a stronger effect, so instead of searching for both
components of ~uI = (uI

x , u
I
y ), we search first for ~uI in the direction of mo , the projection

of ~mo on the x − y plane.

I Search for component of the velocity in the direction to , where ~to is the unit vector
tangent to the platform trajectory at the center of the aperture, and in the flight plane.
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Objective functions

1. Apply filter to suppress the stationary targets.

2. Search for ν∗ = arg maxν f (ν; ~mo) where

f (ν; ~mo) =

∣∣∣∣∣
∣∣∣∣∣∑

s

|[QD]νmo (s, t)|

∣∣∣∣∣
∣∣∣∣∣

p

for some p norm for p ≥ 2. Finds the velocity that “straightens” the moving
target trace.

3. Search for ξ∗ = arg minξ g(ξ;~to , ν
∗) where

g(ξ;~to , ν
∗) =

∑
s,t

∣∣∣[Q2[QD]ν
∗mo +ξto ](s, t)

∣∣∣
where Q2 denotes applying the annihilation filter twice. This approximates the
second derivative in slow-time which should be zero when curvature is removed.
The 1-norm is used to mitigate the effects of the imperfectly filtered stationary
targets.
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Results
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Figure: 50 stationary scatterer image with one moving target at 28 m/s.
Comparison of data, data rotated by true velocity, filtered data, filtered data
rotated by true velocity, filtered data rotated by optimal velocity in ~mo direction,
and filtered data rotated by optimal velocity.
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Results
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Figure: Left objective function f (ν; ~mo) and g(ξ;~to , ν
∗). Right: estimated target

path and error.
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Summary and Future Work

Summary

I Peaks (centroids) in phase-space of calibrated sub-apertures of the
echoes correspond to motion of interest in data (target motion or
platform perturbations). In progress: Coordinate information over
multiple overlapping apertures.

I Wigner transform and ambiguity function give complementary
information. Issues: Computational complexity. Tradeoffs between
aperture size, resolution and SNR.

I Pre-processing of data to separate moving targets from stationary
targets to decouple motion estimation and autofocus problems. The
travel time based filtering seems to work best at present. Much more
to do here.
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