
© The Aerospace Corporation 2009 

Ground Moving Target Indication (GMTI) 
with Synthetic Aperture Radar (SAR) 

Nick Marechal 
The Aerospace Corp. 
February 6, 2012 

Material from May 2009 IEEE Presentation        
Approved by Office of Technical Relations OTR20090227100430      



Aerospace Staff  
Signal Processing Contributions 

• Richard Dickinson 
• Grant Karamyan 

 

One of eight image  
channels 

Mover revealed in  
Clutter Suppressed Imagery 

Mover  phase as a function  
of slow time 

 
 



Ground Moving Targets in SAR Imagery 
Outline  

• Nominal Moving Target Phase Equations 
 

• Measured Moving Target Phase Examples 
 

• Space Time Adaptive Processing (STAP) Review 
 

• STAP applied to 8 channel SAR image data (element 
space, phase centers) 
– Single 3 sec coherent integration full azimuth resolution 
– Ten 0.3 second coherent integration times, results in SAR 

movie of moving vehicle 
  

 
 



• Image of corner reflector (single look)  

Corner Reflector 
Azimuth-Doppler IPR 

Corner Reflector 
Azimuth Phase 

(unwrap phase of FFT 
of IPR)  

Corner Reflector 
Azimuth-Amplitude 
(amp of FFT of IPR) 

Airborne X-band Image Example 
Azimuth Impulse Response (IPR) and Residual Phase Error Shown 

aircraft data 



Ground Moving Target Indication (GMTI) 

      
Moving Point Target Phase Characteristics   

 
  Go To Paper on Moving Target Phase   
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Quadratic Phase (polar format processing) 

azimuth samples 
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Phase Target 1 Phase Target 5 

azimuth samples 

Phase Target 6 

azimuth samples 

Q = - 4563 deg  GPS prediction 

Q ~ - 4000 deg  observed above   

No GPS data for prediction 

Q ~  8000 deg  observed above   

Q =  1627 deg  GPS prediction* 

Q ~  1500 deg  observed above   
*GPS derived acceleration set = 0  

Quadratic Phase &  
Nonzero Doppler Rate 

• Quadratic phase defocuses Doppler/azimuth IPR 

• Formula for quadratic expressed for polar format 
processed data 

• Target energy can be focused by phase 
compensation 

• Stationary Targets do not exhibit 1000’s deg of 
phase  Note: CDP = 2.71 sec. 

aircraft data 



Quadratic Phase: target range acceleration & cross range velocity, … 
 

Cubic Phase: target cross range acceleration & non-constant range acceleration 
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Moving Target Phase: Aircraft Data 
Observations 

Stationary targets do not have these phase signatures 

aircraft data 



GMTI 

• Show examples of common processing of multiple 
channel radar data into image and moving target 
products 
– Long coherent dwell (e.g., 2 to 3 seconds) 
– Subdivision of dwell into short coherent processing intervals 

(e.g., 10 CPIs each 0.2 seconds duration)    

• Data observations and discussions  
– MTI with and without clutter suppression  
– Target range acceleration and cross range velocity provides 

phase characteristics not shared stationary targets 
• Energy migration through freq bins, intrinsically more degrees 

of freedom to match signal, signal processing implications 
• Also hedge against false alarms 



Space-Time Adaptive Processing (STAP) 
Formulated for SAR Imagery 
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Note: Missing wavelength factor in steering vector definition corrected 
above on February 10, 2012. 



Element Space: 1 and 2 of 8 Clutter Images 
1 and 2 of 8 channels/images shown  

single look complex 

image 1 image 2 

aircraft data 



R-1 Applied - Clutter Suppression Apparent 
 1 and 2 of 8 channels/images shown  

steering vector not applied     

image 1 image 2 

aircraft data 



R-1 Applied - Clutter Suppression Apparent 
 1 and 2 of 8 channels/images shown  

steering vector not (yet) applied  

moving 
target 
energy 

observed 

image 1 image 2 

aircraft data 



Digital Beam Steer to  Upper Part of Image 

az
im

ut
h  

range 

Application of beam 
steering vector shown 
Complex-valued beam steering 
vector components are  
complex sinusoids a phase 
which is linear with antenna 
element index 

Analogous to discrete Fourier 
transform  
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Note: Missing wavelength factor in steering vector definition corrected 
above on February 10, 2012. 



Digital Beam Steer to Center Part of Image 

az
im

ut
h  

range 

Application of beam 
steering vector shown 
Complex-valued beam steering 
vector components are  
complex sinusoids a phase 
which is linear with antenna 
element index 

Analogous to discrete Fourier 
transform  

 

 

 

  

aircraft data 
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Note: Missing wavelength factor in steering vector definition corrected 
above on February 10, 2012. 



Digital Beam Steer to  Lower Part of Image 

az
im

ut
h  

range 

Application of beam 
steering vector shown 
Complex-valued beam steering 
vector components are  
complex sinusoids a phase 
which is linear with antenna 
element index 

Analogous to discrete Fourier 
transform  

 

 

 

  

aircraft data 
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Note: Missing wavelength factor in steering vector definition corrected 
above on February 10, 2012. 



Left image 
shows area of 
interest outlined 
in green.  

Right image is a 
zoom into region 
of interest. 

Image formed 
with 2.7 seconds 
of radar dwell 
time. 
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clutter image 

aircraft data 



Left image 
shows area of 
interest outlined 
in green.  

Right image 
results from 
clutter. 
suppression 
processing 
(STAP) reveals 
two movers. 
Note energy is 
spread over 
many Doppler 
cells. 

Multiple 
channels 
necessary for 
clutter 
suppression. 
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clutter suppressed 

aircraft data 



Left image 
shows area of 
interest outlined 
in green. 

Yellow arrows 
point to Doppler 
shifted location 
of targets.  

Red arrows 
point to actual 
target location 
as determined 
by radar 
processing 
algorithm 
(STAP).  
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Target actual 
locations 

Target Doppler 
positions 

clutter suppressed 

aircraft data 



Phase Characteristics 
Clutter Suppressed Output 

Nominal Element Space 
Adaptive Processing (STAP) 

8 channels 

No quadratic phase compensation 

Quadratic Phase Frequently 
Observed in Aircraft Data 

clutter suppressed - channels combined 
            time  2.7 sec. 

aircraft data 



Space-Time Adaptive Processing (STAP) 
Target Signal Loss 
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STAP SINR Loss  
 8 antenna element aircraft data 
CNR per channel approx 18 dB 



Space-Time Adaptive Processing (STAP)  
Clutter Loss (Suppression) 
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STAP Clutter Suppression  
 8 element aircraft data   

CNR per channel approx 18 dB 



Analysis: Relation Between Space Time Adaptive 
Processing (STAP) and Eigen Image Decomposition 
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Inverse covariance applied to image stack results in eigen image 
vector sum as above 

Moving target energy in eigen images, helps explain why targets are 
observed in suppressed imagery, following application of inverse 
covariance matrix to image stack 

Optimal adaptive processor (STAP) is expressed as weighted sum 
of eigen images, as given above (applies to element & beam space) 



Analysis: Optimal Adaptive Processor is Weighted Sum of Eigen-Images 
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Relation Between Space Time Adaptive Processing 
(STAP) and Eigen Image Decomposition 

aircraft data 



Eigenvalues of R 
5.9598164 
0.46193165 
0.31020248 
0.28341122 
0.26182939 
0.25569636 
0.24116470 
0.22594751 

Eigenvalues of R 
7.6169138 
0.12200656 
0.081824081 
0.051896852 
0.042732919 
0.030645195 
0.027344463 
0.026636630 

Bright Uniform Clutter Beam Edge 

ratio 
largest/smallest 
eigenvalues = 286 

ratio 
largest/smallest 
eigenvalues = 26 

Greater range of variability of eigenvalues observed for bright clutter 

Observation: Variability of Eigenvalues with CNR  

aircraft data 



Summary Space-Time Adaptive Processing 
(STAP) Formulated for SAR Imagery 
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Last Example: Show Moving Target Quadratic 
Phase Causes Target Energy to Migrate 
Through Doppler/Azimuth Cells  
 
Single Coherent Data Collection Period (2.7 sec.) Divided into 13 
Time Intervals  
 
For each time interval 8 channels are processed via STAP and 
Displayed as a Time Sequenced Movie of 13 Images (azimuth 
resolution more coarse by factor of 13) 
 
Note that SAR image formation applied to the full data collection 
period, then subdividing the data, mitigates moving target 
migration through range bins 
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range 

aircraft data aircraft data 
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Moving Target Observed in 
Clutter Suppressed Imagery 
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Moving Target Observed in 
Clutter Suppressed Imagery 
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Moving Target Observed in 
Clutter Suppressed Imagery 
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Moving Target Observed in 
Clutter Suppressed Imagery 
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Moving Target Observed in 
Clutter Suppressed Imagery 
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Moving Target Observed in 
Clutter Suppressed Imagery 
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Moving Target Observed in 
Clutter Suppressed Imagery 
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Moving Target Observed in 
Clutter Suppressed Imagery 
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Moving Target Observed in 
Clutter Suppressed Imagery 
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Moving Target Observed in 
Clutter Suppressed Imagery 
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Moving Target Observed in 
Clutter Suppressed Imagery 
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Moving Target Observed in 
Clutter Suppressed Imagery 
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13 

Moving Target Observed in 
Clutter Suppressed Imagery 



Ground Moving Targets in SAR Imagery 
Summary  

• Nominal Moving Target Phase Equations 
– Uncompensated motion leads to quadratic, cubic, .. phase 

• Measured Moving Target Phase Examples 
– Cross range motion causes phase characteristics not 

displayed by stationary targets 

• Space Time Adaptive Processing (STAP) Review 
– SINR, SINR loss, clutter suppression 

• STAP applied to 8 channel SAR image data (element 
space, phase centers) 
– Single 2.7 sec coherent processing interval (CPI) 
– Thirteen, 2.7/13 = 0.2077 sec. CPIs, results in SAR movie of 

moving vehicle, target migration through Doppler cells 
observed 

  

 



Appreciation 

• UCLA’s Institute for Pure and Applied Mathematics 
• Margaret Cheney 
• The Aerospace Corporation 
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Backup Charts 



azimuth index 

dB
 

Single element beam pattern Beam pattern 8 element sum 

PRF span PRF span 
dB

 

( )
 discretes large excluding computedmax     max(b),  b

bb(y)log 10  B(y)

azimuth  y  range,       x ,y)(x,  b(y)

using estimatedpattern  BeamAzimuth 
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Antenna Patterns: Aircraft Data 

Observe: azimuth beamwidth narrows 
following  summation of data from each 

azimuth element (channel)   
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