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Mover phase as a function
of slow time

One of eight image Mover revealed in
channels Clutter Suppressed Imagery



Ground Moving Targets in SAR Imagery
Outline

Nominal Moving Target Phase Equations
Measured Moving Target Phase Examples
Space Time Adaptive Processing (STAP) Review

STAP applied to 8 channel SAR image data (element
space, phase centers)
— Single 3 sec coherent integration full azimuth resolution

— Ten 0.3 second coherent integration times, results in SAR
movie of moving vehicle




Airborne X-band Image Example

Azimuth Impulse Response (IPR) and Residual Phase Error Shown

 Image of corner reflector (single look)

Corner Reflector
Azimuth-Doppler IPR

Corner Reflector
Azimuth Phase
(unwrap phase of FFT
of IPR)

Corner Reflector
Azimuth-Amplitude
(amp of FFT of IPR)




Ground Moving Target Indication (GMTI)

Moving Point Target Phase Characteristics

Go To Paper on Moving Target Phase




Quadratic Phase &

Quadratic Phase (polar format processing)

Nonzero Doppler Rate

» Quadratic phase defocuses Doppler/azimuth IPR Q=9O£ Ay . ] (degrees)

. 2
\Y} uyT+a-uxT

v = target velocity vector

a = target acceleration vector

u, =slant plane range unit vector
 Target energy can be focused by phase u, =slant plane azimuth unit vector
compensation T = coherent dwell period

Ay = nominal azimuth resolution

A = wavelength at mid band

» Formula for quadratic expressed for polar format
processed data

 Stationary Targets do not exhibit 1000’s deg of

phase Note: CDP = 2.71 sec.
Phase Target 1 Phase Target 5 Phase Target 6
E T ||||||||Et LB L R R L R R L R 1000__14_ ||||||| [rTrTTTTTT [BELRRRRY [LELLLARLY I [rrTTT
1000 £ S 4000 |- | 800 2
: - - 1 600 f =
a ] é— _é 2000 - 7 400 i_ _i
2 : 3 ol 1 200 =
= -2000 [ — 200 E =
-2000 [ - ] = =
5 - - -400 |— —
[T T AT S ST S N AT SO ST S S N SR '4000_1 IS v bl NARERREEE [Ty . . AT A RN ARRERRRRTI ARRREET) Tl
0 50 100 150 0 100 200 300 0 10 20 30 40 50
azimuth samples azimuth samples azimuth samples
Q =- 4563 deg GPS prediction No GPS data for prediction Q= 1627 deg GPS prediction*
Q ~ - 4000 deg observed above Q ~ 8000 deg observed above Q ~ 1500 deg observed above

*GPS derived acceleration set =0

aircraft data



Observations

Moving Target Phase: Aircraft Data
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Quadratic Phase: target range acceleration & cross range velocity, ...

Cubic Phase: target cross range acceleration & non-constant range acceleration

Stationary targets do not have these phase signatures

aircraft data



GMTI

Show examples of common processing of multiple

channel radar data into image and moving target

products

— Long coherent dwell (e.g., 2 to 3 seconds)

— Subdivision of dwell into short coherent processing intervals
(e.g., 10 CPlIs each 0.2 seconds duration)

Data observations and discussions

— MTI with and without clutter suppression

— Target range acceleration and cross range velocity provides
phase characteristics not shared stationary targets

* Energy migration through freq bins, intrinsically more degrees
of freedom to match signal, signal processing implications

* Also hedge against false alarms




Space-Time Adaptive Processing (STAP)
Formulated for SAR Imagery

Assume a system with N displaced along track antenna elements or N azimuth beams ( N channels)

c=0c(X,y)=] cl(x, y), G, (X, Y), ..., Sy x,y) ]T (stack or vector of images, one from each channel)

R=R.+R, (N by N clutter plus receiver noise covariance matrix)
w=[w;,W,,. ,w,] (channelsummation weights)
S=[S;,S,,..,Sy | (target steering vector, complex exponential of linear phase or azimuth beam weights)

S, =exp(1(2n/X)(n-1)(d/r)(u,-x) ) (nominalantenna elementspace representation, angle of arrival related)
d =dist between antenna elements,

r =range,

u, = unit vector defines direction along which the elements are located in 3D

2
ws
SINR(w) = ‘ R ‘ (signal - to - interference ratio, include consideration to clutter power)
w"Rw
optimalw= R™s (STAP weight vector for maximum SINR, estimate R from data, exclude movers)
max SINR(w)=SINR(R"s) = ‘ (R™s)"s ‘ (max SINR, application of Cauchy - Schwarz inequality)

STAP filter output =w"o=(R™s)"6=s"R™6  (for a given target steering vector hypothesis)
application of inverse covariance matrix to image stack apparently suppresses clutter
clutter suppressed image stack = (R'6)(x,y),  (for analysis, now apply hypothesis space of steering vectors)

Note: Missing wavelength factor in steering vector definition corrected
above on February 10, 2012.




Element Space: 1 and 2 of 8 Clutter Images

1 and 2 of 8 channels/images shown
single look complex

aircraft data



R-1 Applied - Clutter Suppression Apparent

1 and 2 of 8 channels/images shown
steering vector not applied

aircraft data



R-1 Applied - Clutter Suppression Apparent

1 and 2 of 8 channels/images shown
steering vector not (yet) applied

moving

target

energy
observed

image 1 image 2

aircraft data



Digital Beam Steer to Upper Part of Image

Application of beam
steering vector shown

Complex-valued beam steering
vector components are
complex sinusoids a phase
which is linear with antenna
element index

Analogous to discrete Fourier
transform

range

Note: Missing wavelength factor in steering vector definition corrected
above on February 10, 2012.

aircraft data



Digital Beam Steer to Center Part of Image

Application of beam
steering vector shown

Complex-valued beam steering
vector components are
complex sinusoids a phase
which is linear with antenna
element index

Analogous to discrete Fourier
transform

Note: Missing wavelength factor in steering vector definition corrected
above on February 10, 2012.

aircraft data



Digital Beam Steer to Lower Part of Image

Application of beam
steering vector shown

Complex-valued beam steering
vector components are
complex sinusoids a phase
which is linear with antenna
element index

Analogous to discrete Fourier
transform

Note: Missing wavelength factor in steering vector definition corrected
above on February 10, 2012.

aircraft data



clutter imag
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Left image
shows area of
interest outlined
in green.

Right image is a
zoom into region
of interest.

Image formed
with 2.7 seconds
of radar dwell
time.



Left image
shows area of
interest outlined
in green.

Right image
results from
Clutter.
suppression
processing
(STAP) reveals
two movers.
Note energy is
spread over
many Doppler
cells.

Multiple
channels
necessary for
clutter
suppression.



Left image
shows area of
interest outlined
in green.

Yellow arrows
point to Doppler
shifted location
of targets.

Red arrows
point to actual
target location
as determined
by radar
processing
algorithm
(STAP).

ppressed |
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clutter suppr
aircraft data

ok

essed - channels combined

Clutter Suppressed Output

Nominal Element Space
Adaptive Processing (STAP)

8 channels

No quadratic phase compensation

Quadratic Phase Frequently
Observed in Aircraft Data

—time 2.7s€C. ————»




Space-Time Adaptive Processing (STAP)
Target Signal Loss

P2

SINR(w) = LVV: Fjv‘v (signal - to - interference ratio, include consideration to clutter power)
optimalw= R™s (STAP weight vector for maximum SINR, estimate R from data, exclude movers)
max SINR(w)=SINR(R™"s) = ‘ (R*s)"s ‘ (max SINR, application of Cauchy - Schwarz inequality)

STAP filteroutput=w" 6 =(R™'s)"6=s"R™"6  (for a given target steering vector hypothesis)

max SNR = ‘ (R*s)"s ‘ (gives no consideration to clutter power)

SINR(R™"s) = L, SNR (SINR loss defined relative to SNR)

STAP SINR Loss

8 antenna element aircraft data
CNR per channel approx 18 dB

100 200 300

ST

steering vector phase change per channel (deg)




Space-Time Adaptive Processing (STAP)
Clutter Loss (Suppression)

ws|’ | | . .
SINR(w) = WRwW (signal - to - interference ratio, include consideration to clutter power)

w"Rw
optimalw= R's (STAP weight vector for maximum SINR, estimate R from data, exclude movers)
SINR(R™s) = L, SNR (SINR loss defined relative to SNR)

H H . H

CNR(W):WHRCW:W (RH Rn)W:WHRW 1

W'R, w W'R, w W'R, w
Re, =i, k=1,2,...,N (eigenvectors and eigenvalues )
CNR(w) <CNR(e,) (max CNR using eigenvector with max eigenvalue as channel summation weights)
CNR(R™s) = L, CNR(e,) (defines the clutter suppression, post channel summation, relative to max CNR)
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STAP Clutter Suppression 5

8 element aircraft data
CNR per channel approx 18 dB
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Analysis: Relation Between Space Time Adaptive
Processing (STAP) and Eigen Image Decomposition

R =N by N covariance matrix, N = number of channels
Re,=xre, k=1,2,...,N

R'e, =1."¢€,

c=0c(X,y)=] cl(x, y), c, X, ¥),..., SN (x,y) ]T (data/image vector)

o(X,y)= Z[ef (X, y) ]e, (eigenvector expansion, orthonormal basis)
k

el o(Xx,y)= eigen -image computed as kth eigenvector projected onto image vector, k=1,2,...., N.

ey . : :
w'e=(R™s)"6=s"R76= Z% (s"e,)  (adaptive processor & eigenvector expansion)
k k

Inverse covariance applied to image stack results in eigen image
vector sum as above

Moving target energy in eigen images, helps explain why targets are
observed in suppressed imagery, following application of inverse
covariance matrix to image stack

Optimal adaptive processor (STAP) is expressed as weighted sum
of eigen images, as given above (applies to element & beam space)




Relation Between Space Time Adaptive Processing
(STAP) and Eigen Image Decomposition

elox y) elox y) elox y) eox y)

A =7.6169 A =0.1220 ) =0.0818 A=0.0518

H

LSOy €o(y) er'o(y) eo(xy)

A =0.0427 A =0.0306 A =0.0273 A =0.0266

H
w"e=(R™s)"¢=s" R_16=ZM(SHek )
PR

Analysis: Optimal Adaptive Processor is Weighted Sum of Eigen-Images
aircraft data




Observation: Variability of Eigenvalues with CNR

Beam Edge

Bright Uniform Clutter

Eigenvalues of R

Eigenvalues of R

5.9598164 7.6169138

0.46193165 0.12200656
ratio 0.31020248 0.081824081 ratio
largest/smallest 0.28341122 0.051896852 largest/smallest
eigenvalues = 26 0.26182939 0.042732919 eigenvalues = 286

0.25569636 0.030645195

0.24116470 0.027344463

0.22594751 0.026636630

Greater range of variability of eigenvalues observed for bright clutter

aircraft data




Summary Space-Time Adaptive Processing
(STAP) Formulated for SAR Imagery

Assume a system with N displaced along track antenna elements or N azimuth beams ( N channels)

2
w''s
SINR(w) = ‘ R ‘ (signal - to - interference ratio, include consideration to clutter power)
w"Rw
optimalw= R™"s (STAP weight vector for maximum SINR, estimate R from data, exclude movers)
max SINR(w) =SINR(R™"s) = ‘ (R*s)"s ‘ (max SINR, application of Cauchy - Schwarz inequality)

STAP filteroutput=w"6=(R™'s)"6=s"R™"6  (for a given target steering vector hypothesis)
application of inverse covariance matrix to image stack apparently suppresses clutter
clutter suppressed image stack = (R "6)(X, y)

max SNR = ‘ (R;'s)"s ‘ (gives no consideration to clutter power)
SINR(R™s) = L, SNR (SINR loss defined relative to SNR)
CNR(W) = VVVVHH:\:IVV = WHV(VF:F;?V”V) = - V\\//VHH:nV\\//V 1
Re, =i, k=1,2,...,N (eigenvectors and eigenvalues )
CNR(w) <CNR(e,) (max CNR using eigenvector with max eigenvalue as channel summation weights)
CNR(R™s) = L, CNR(e,) (defines the clutter suppression, post channel summation, relative to max CNR)
R'e, =1."¢€,
o(X,y)= Z[eﬂ (X, y) ]e, (eigenvector expansion, orthonormal basis)
k

er o(X,y)= eigen -image computed as kth eigenvector projected onto image vector, k=1,2, ...., N.

H

e . . .

w'e=(R7s)"6=s"R'c= Z% (s"e, )  (adaptive processor & eigenvector expansion)
k k




Last Example: Show Moving Target Quadratic
Phase Causes Target Energy to Migrate
Through Doppler/Azimuth Cells

Single Coherent Data Collection Period (2.7 sec.) Divided into 13
Time Intervals

For each time interval 8 channels are processed via STAP and
Displayed as a Time Sequenced Movie of 13 Images (azimuth
resolution more coarse by factor of 13)

Note that SAR image formation applied to the full data collection
period, then subdividing the data, mitigates moving target
migration through range bins




Moving Target Observed In
Clutter Suppressed Imagery
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aircraft data




Moving Target Observed In
Clutter Suppressed Imagery

Doppler

Moving Target

Stationary Target

aircraft data
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Moving Target Observed In
Clutter Suppressed Imagery
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aircraft data



Moving Target Observed In
Clutter Suppressed Imagery
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Moving Target Observed In
Clutter Suppressed Imagery
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aircraft data



Moving Target Observed In
Clutter Suppressed Imagery
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Moving Target Observed In
Clutter Suppressed Imagery
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Moving Target Observed In
Clutter Suppressed Imagery
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Moving Target Observed In
Clutter Suppressed Imagery
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Moving Target Observed In
Clutter Suppressed Imagery
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Moving Target Observed In
Clutter Suppressed Imagery
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Moving Target Observed In
Clutter Suppressed Imagery
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Moving Target Observed In
Clutter Suppressed Imagery
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Ground Moving Targets in SAR Imagery
Summary

Nominal Moving Target Phase Equations
— Uncompensated motion leads to quadratic, cubic, .. phase

Measured Moving Target Phase Examples

— Cross range motion causes phase characteristics not
displayed by stationary targets

Space Time Adaptive Processing (STAP) Review

— SINR, SINR loss, clutter suppression

STAP applied to 8 channel SAR image data (element
space, phase centers)
— Single 2.7 sec coherent processing interval (CPI)

— Thirteen, 2.7/13 = 0.2077 sec. CPIs, results in SAR movie of
moving vehicle, target migration through Doppler cells
observed




Appreciation

 UCLA'’s Institute for Pure and Applied Mathematics
 Margaret Cheney
 The Aerospace Corporation
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Antenna Patterns: Aircraft Data

Single element beam pattern
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Azimuth Beam pattern estimated using
b(y)=Z|o(x, y)|2 ., X=range, y =azimuth

B(y) =1010g,, (b(Y)/D ey )
b, =max(b),
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Beam pattern 8 element sum
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max computed excluding large discretes
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Observe: azimuth beamwidth narrows

following summation of data from each

azimuth element (channel)
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