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INTRODUCTION: CHALLENGES FOR AUTOFOCUS 

Objective:  

 ISAR Imaging of moving objects from stationary or moving platforms 

 Spotlight SAR with ultra-high resolution  

 

Desired: 

 Super resolved images of sparse objects/scenes via compressed sensing 

 Here, the emphasis is not on data reduction, but on high quality images 

 

Problem: 

 Translational and rotational motion of object not known 

 Trajectory of radar platform not known 

 

Roadmap to solution: 

 Use CS and subspace techniques for the retrieval of phase histories and correct 
motion/rotation estimation 
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INTRODUCTION: CHALLENGES FOR AUTOFOCUS  
Problem statement in a two-dimensional geometry 

 Object moves along a not perfectly  
known trajectory 

 Object rotates in a not perfectly known 
way 

 Based on the radar echoes, image this 
object and improve the motion 
estimate! 

 Could a 'sparse reflectivity' (with some 
'prominent' point like scatterers) help? 

b(T) 
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INTRODUCTION: CHALLENGES FOR AUTOFOCUS  
Relations between translational and rotational history 

 In real applications, the orientation history may be coupled to the 
translational history  (for instance, the length axis of ground 
moving vehicles will normally be orientated tangentially to the 
path).  

 For airplanes the situation is a little more complicated since the 
velocity of the wind has to be taken into account. For this type of 
target the geometry should be extended to the third dimension, as 
well as for ships.  

 Though the motion of space objects is very smooth and the signals 
are nearly free from clutter, difficult situations occur e.g. for space 
objects shortly before immersing into the atmosphere. 
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TIRA  

• Analysis of space debris 

• Imaging of space objects 

1. FRAUNHOFER RADAR FOR SPACE OBSERVATION 
         TIRA: Tracking and Imaging Radar 

Space Shuttle at a 
distance > 650 km 

TIRA system 



© Fraunhofer FHR 

L band  
tracking radar 

Frequency 1.33 GHz 

Pulse power 1.5 MW 

NERCS range 1 pulse 

2 cm 1,000 km 

40 cm 10,000 km 

Ku band  
imaging radar 

Frequency 16.7 
GHz 

Pulse power 10  kW 

Bandwidth 1.6 GHz 

Resolution 9.4 cm 

Antenna 

Dish antenna 34 m 

Cassegrain system 

Moving mass 240 t 

1. FRAUNHOFER RADAR FOR SPACE OBSERVATION 
         TIRA: Tracking and Imaging Radar 
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Demonstration of surveillance with multifunction 
phased-array radar 

> 30 % brel 

+- 45 deg 

2. FRAUNHOFER MULTIFUNCTION SAR/MTI RADAR 
 PAMIR (Phased Array Multifunction Imaging Radar) 

 Stripmap, spotlight and sliding spotlight 
SAR 

 High resolution interferometric SAR 

 Ground moving target indication (GMTI) 

 GMT imaging (ISAR) 

 Bistatic SAR 
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PAMIR: HIGH RESOLUTION SAR INTERFEROMETRY IN URBAN AREAS 

DEM of Karlsruhe 
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 Bistatic SAR opens (in 
contrary to the monostatic 
case) the possibility to 
image in a forward looking 
geometry 

 Interesting application for 
looking through dense 
clouds – also at night - and 
recognize the runway 

 Problem: Flight geometry 
has to be suitable 

BISTATIC FORWARD LOOKING SAR 
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BISTATIC FORWARD LOOKING SAR  
EXPERIMENTAL VERIFICATION (TerraSAR-X / PAMIR) 

I. Walterscheid et al: “Bistatic Spaceborne-Airborne Forward-looking SAR“,  EUSAR 2010, Aachen 



PAMIR: Ground 
moving target 
indication & 
tracking via Scan-
MTI and Space-
Time Adaptive 
Processing (STAP) 
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Gallery  Range  

ISAR-Image 
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3. FRAUNHOFER MM-WAVE RADAR COBRA 
Ultra high resolution imaging at 220 GHz (Turntable)  

ISAR-Imaging at 220 GHz, 8 GHz Bandwidth (1,7 cm resolution), range 170 m 
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NEAR RANGE MINIATURIZED SAR 
(1,5 kg) AT 94 GHz  
SUMATRA-94 (FHR) 
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AN EXAMPLE OF CS APPLIED TO RADAR IMAGING 
ISAR imaging with CS applied to cross-range (TIRA) 

N_range=1024, N_azim=1697 
1.737.728 samples! 

N_range=1024, N_azim=70 
matched filter 

N_range=1024, N_azim=70 
compressed sensing 

Reduction factor 25! 
Joachim H.G. Ender, On compressive sensing applied to radar, Signal 
Processing, Volume 90, Issue 5, May 2010, Pages 1402-1414 
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50 frequencies: reduction factor 20! 

COMPRESSIVE RADAR 
Hypothetic radar systems with CS for range compression 
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Circular aperture, randomly chosen 
element positions with uniform 
distribution 

Radius 6.3 l

Number elements (M) 40 

Number of elements for 
Nyquist array 

500 

Number of targets (S) 5 

Surveillance area |u| <= 0.5 

Raster spacing in 
directional plane 

0.25 
beamwidths 

Number of grid points 2000 

SNR 30 dB 

Element distribution of CS array 

COMPRESSIVE RADAR 
Example: DOA estimation using a thinned array - simulation 
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Conventional beamformer Compressive Sensing 

COMPRESSIVE RADAR 
Example: DOA estimation of five flying airplanes (simulation) 
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COMPRESSIVE RADAR 
Sparsity of radar tasks, applicability of CS 

Radar task Scene spars ity  Acquis ition 
spars ity  

Remarks  Applic
ability  

Airspace 
surveillance 

Only a few targets Thinned array Wide transmit 
beam 

+++ 

MTI, also 
airborne 

Only a few targets Thinned sampling 
in slow time 

Clutter 
suppression 
before 

++ 

Range profiles  of 
isolated vehicles  

Only a few 
dominant scatterers 

RF frequency band 
thinned to a few 
distinct frequencies 

If necessary, 
preceding clutter 
suppression 

+ 

ISAR for isolated 
vehicles  

Only a few 
dominant scatterers 

Thinning of RF 
frequencies and/or 
pulses 

If necessary, 
preceding clutter 
suppression 

++ 

SAR, basic mode Generally not sparse - Image compr. - 

SAR tomography  Only a few 
elevation angles 
with reflections 

Across track array, 
number of tracks 

Calibration? +++ 
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COMPRESSIVE RADAR 
Sparsity of radar tasks, applicability of CS 

Radar task Scene spars ity  Acquis ition 
spars ity  

Remarks  Applic
ability  

MIMO SAR/ISAR Single scatterers Limited number of 
Tx/Rx units 

Putting together 
MN images 

++ 

ATR A few features + 
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SIGNAL MODEL FOR ISAR 
Geometric relations in two dimensions 

Body 
coordinate 

system 

Radar 
coordinate 

system 

LOS unit vector (body coordinates) 

 Translational motion history 

 Rotational motion history 

Path 

Known from radar 
direction finding 

A priori inf. 
from path 
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 Range history for a specific 
scatterer 

SIGNAL MODEL 
Geometric relations in two dimensions 

Notation 

if the far field condition is fulfilled 

Slow time 

LOS vector in body 
coordinates Range history of 

origin 
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SIGNAL MODEL 
Equivalent transformations 

 The new range histories are 

 describe the same body in shifted and rotated coordinates. The new range 
histories are equivalent to the old. 

 If the body coordinate system is shifted by a vector             and then  
rotated by an angle            the new coordinates are 

 So the transformations 
Due to rotation of 

the new origin 

Constant rotation 
angle offset 
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SIGNAL MODEL 
Continuous formulation 

 Elementary signal 

 

 Superposition 

 

 Noisy measurement 
 

 Motion 
compen- 
sation: 

Reflectivity 

Estimate of range history 

Noise 

Wave 
number 
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A CLASSICAL IMAGING METHOD: POLAR REFORMATTING 
Variable substitution to spatial frequency vectors 

 For perfect motion compensation the signal is written as 

 

 

 Variable substitution 

 

 

 

 

 

 

 Reconstruction of            by a simple inverse Fourier-transform 

Fourier term 
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A CLASSICAL IMAGING METHOD: POLAR REFORMATTING 
Illustration for only one scatterer 

 Point spread function = Fourier 
transform of the indicator function of 
the k-set 
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A CLASSICAL IMAGING METHOD: POLAR REFORMATTING  
No noise, perfect motion compensation   
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A CLASSICAL IMAGING METHOD: POLAR REFORMATTING  
A remark on the reformatted data    

 If the motion 
compensation is perfect, 
each of the vectors of 
samples in shifted 
subsets are elements of 
the same subspace 

 This is not true if the 
motion compensation is 
imperfect! 

 Deformation of the k-
space 
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No errors 

Range error 
(linear) 

Rotation error 
(linear) 

EFFECT OF MOTION ERRORS 
Distortion of the k-domain 
data 
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SIGNAL MODEL FOR SPARSE RECONSTRUCTION 
Discretization in time and wavenumber 

 Wavenumbers used for 
measurement 

 Pulse transmit times 

 Resulting k-set 

 Signal matrix (P x Q) at 
measurement points 

 

 Written as large M=P Q - 
dimensional vector 
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 Analogue for noiseless superposition, noisy 
measurements,  and noise: 
 

 The subscript 'mc' will always indicate 
motion compensated data, 'pr' stands for 
polar re-formatted



 Re-written  
signal model



SIGNAL MODEL FOR SPARSE RECONSTRUCTION 
Discretization in time and wavenumber 
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 N representative points    in the scene are chosen, where 
scatterers may be present with N>M. 

 

 The signals now are written as 

 

 

 The reflectivity is called L-sparse’, 
if maximum L of the coefficients 
are unequal to zero. 

SIGNAL MODEL FOR SPARSE RECONSTRUCTION  
Discretization in the position - image grid 

 Sensing matrix 
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 In the context of imaging a moving, rotating object, the sensing matrix is 
strongly dependent on the motion parameters.  

 Remember: By using the data in the motion compensated form, the signal 
in the continuous description is 

 

 Restricted isometry or nullspace properties will be difficult to investigate. 

 In the T-domain, the signal will have a certain Doppler-bandwidth, 
determined by the angular velocity and the extension of the scene. The 
image pixel spacing in cross-range should be related to this. 

 In the polar reformatted domain the signal is given by the Fourier terms 

 

  
and the image grid has to be related to the 2dim Nyquist rate, maybe 
supersampled by a certain degree. 
 

 

SIGNAL MODEL FOR SPARSE RECONSTRUCTION  
Properties of the sensing matrix 
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SPARSE RECONSTRUCTION 
l1-minimization 

 Method A: Minimization of the cost function 

 Method B: Minimization of the cost function under constraints 

 Both solutions can be obtained by the SPGL1 algorithm, see 

Ewout van den Berg and Michael P. Friedlander. SPGL1: A solver for large-scale 
sparse reconstruction. program code, Jun 2007. 
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SPARSE RECONSTRUCTION WITH PERFECT MOTION COMPENSATION 
 

Sim07 
N =  2401 
M = 150 
L = 12 
sigma_noise = -25 dB 

Matched filter Sparse reconstruction 
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SPARSE RECONSTRUCTION WITH IMPERFECT MOTION COMPENSATION 
 Example for matched filter and CS reconstruction 

Matched filter Sparse reconstruction 

Sim07 
N =  2401 
M = 150 
L = 12 
sigma_noise = -25 dB 
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AUTOFOCUS WITH SPARSE RECONSTRUCTION 
Problem formulation and approaches 

Problem: 

 Translational and rotational motion, described by a parameter vector        
are not perfectly known. An a prior estimation is available. 

 Based on the radar data, find an improved estimate      which makes 
possible a high quality imaging!  

Remark 

 The sensing matrix will be  
dependent on     . 

 For motion compensation,  
also the data depend on    . 

 For matched filtering 
the result is independent 
on the transformation.  
For CS: not! 

 

'..' stands for subscripts! 
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AUTOFOCUS WITH SPARSE RECONSTRUCTION 
Approaches 

 Method A: Minimization of the cost function 

 Method B: Minimization of the cost function under constraints 
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AUTOFOCUS WITH SPARSE RECONSTRUCTION 
Problem formulation and approaches 

 Both approaches look mathematically elegant! 

 It has been proven in the cited article that the reconstruction of the correct phases 
is possible by an iterative method. 

 But:  

 for larger motion errors and large aspect angle change it may fail. 

 only the phases are corrected, a recovery of range and aspect history is not 
performed -> the images become sharp, but distorted. 

 Method C: The "three step procedure" 

1. Range history estimation 

2. Partial image alignment 

3. Phase retrieval  

We propose a third method: 
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AUTOFOCUS WITH SPARSE RECONSTRUCTION 
1. Average range history estimation 

Range profiles after first 
motion compensation 

 The range center of gravity is tracked 
over the time. 

 A smoothed version is used as first 
range history estimation. 

 If an angular track is available, a 
priori information on the rotation 
can be implemented into the first 
rotation estimate. 

 Experimental praxis shows that this is 
by far not sufficient to achieve a 
sharp image! 
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AUTOFOCUS WITH SPARSE RECONSTRUCTION 
2. Partial image alignment 
 



KX

KY

K

K

 The first stage motion compensated 
data are partitioned into segments, 
where the temporal / angular 
intervals are small enough to avoid 
range / crossrange migration larger 
than a classical resolution cell 

 The segments may overlap 

 For each segment a sparse 
representation is found by l1 
minimization 

 To take into account the different 
resolutions in range and cross-
range, the k-set has to be rotated 
to its main axes, as well as the 
image grid. 

k range 

k crossrange 
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AUTOFOCUS WITH SPARSE RECONSTRUCTION 
2. Partial image alignment -> movie of patial images 

Matched filter Sparse reconstruction 

 Sparse reconstruction is working very well also for short time segments. 
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AUTOFOCUS WITH SPARSE RECONSTRUCTION 
2. Partial image alignment -> Images processed for two center times 

 This equation holds for all related prominent points in the images. 
Rotation, shift and cross range scaling can be estimated by MMS fit. 

 So, information about the error of translational and rotational motion 
between the two points of time can be gained by aligning the two 
images, if a constant velocity error history and a constant angular 
velocity error is assumed. 

 Putting together these information for adjacent pairs, an estimate of 
these histories can be obtained.  

 

 

Scaling cross range Shifting Turning 
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T

R

T

R

T

R

T

R

AUTOFOCUS WITH SPARSE RECONSTRUCTION 
2. Partial image alignment -> Putting together the estimated values 

Illustration for R 

Superposed and interpolated range error estimate 

Similar for 
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AUTOFOCUS WITH SPARSE RECONSTRUCTION 
3. Phase retrieval -> Principle 

 

 The approach with sparse reconstruction via l1 minimization is superior to 
classical methods, if the scene itself is sparse: 

 Sparse reconstruction yields a much better basis to analyze the 
measured raw data in comparison to the reconstructed data based on 
the estimated sparse scene. 

 This comparison serves as a bases for the elimination of phase errors. 

 Here, we are not only interested in a phase correction (like for the phase 
gradient algorithm) but also in the improved reconstruction of range and 
rotation estimation errors 

 The prediction of data for a subsequent data segment based on the 
estimated sparse scene is superior to classical methods. 
 

 

  see the next but one viewgraph 
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AUTOFOCUS WITH SPARSE RECONSTRUCTION 
3. Phase retrieval -> Principle 

 

KX

KY
Sparse reconstruction 

Related model 
phase fronts 

Base segment 

Expanded phase 
fronts 

True phase fronts of 
adjacent segment 
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 The reconstructed image from data segment p is used to predict the data for 
segment p+1 

CS predictor 

MF predictor 

Correlation 
between data 
segments 

AUTOFOCUS WITH SPARSE RECONSTRUCTION 
3. Phase retrieval -> Correlation between predicted and measured data 
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AUTOFOCUS WITH SPARSE RECONSTRUCTION 
3. Phase retrieval -> Phase correction after alignment – the idea  

 

 The model 

 The measurement 
 

 So both, model and measurement are elements of an L-dimensional 
subspace, the coefficients are equal, only the vectors spanning the 
subspace are different. 

 Since the deformed signals are not known, the reconstruction is 
performed with the model for the sensing matrix: 

 

 

 

 We can express the measurements also via the model sensing matrix: 
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AUTOFOCUS WITH SPARSE RECONSTRUCTION 
3. Phase retrieval -> Phase correction after alignment – the idea  

 

 Though the true coefficient vector is L-sparse, the estimated vector will 
normally be not  L-sparse, since the model does not fit the reality 
perfectly. 

 Nevertheless, we can expect that â is not too far away from the true a if 
the error is small enough (Theorems for this robustness exist). 

 Search the P indices for the coefficients  in â with the largest magnitudes. 

 To each of these (hopefully) there corresponds a scatterer with non-zero 
component in a. 

 For each of these indices, calculate 

 

 The signal        which is 'most similar' to        will have the slowest variation 
in the differential phase. 

 A low pass filter can separate this pair and increases the SNR. 
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AUTOFOCUS WITH SPARSE RECONSTRUCTION 
3. Phase retrieval -> Phase correction after alignment – the idea  

 

 

 

 

 The difference phase can be evaluated to 

 

 

 

 with 

 

 

 

 
 

 If these two functions are known, range and orientation error can be 
computed and compensated (up to an equivalent transformation) 

 Extraction similar to the phase gradient method, but 3D. 

 

 

 

equivalent transformation remaining range error 

geometry matrix close to I 

independent on scatterer 
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AUTOFOCUS WITH SPARSE RECONSTRUCTION 
3. Phase retrieval -> simulated example 

CS image 
without 
motion 

errors 

CS image 
with 

motion 
errors 

CS image 
after AF 

 The procedure of phase retrieval has to be 
iterated 
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AUTOFOCUS WITH SPARSE RECONSTRUCTION 
3. Phase retrieval -> Example for spotlight SAR 

 Evolution of the l1 norm 

CS image 
without 
motion 

errors 

CS image 
with 

motion 
errors 

CS image 
after AF 
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SUMMARY AND OUTLOOK 
 

 We presented an investigation on autofocus using CS methods 

 Sparse representation for a sparse reflecting body yields 

 an improved prediction of the data without distortion 

 a basis for autofocus by comparing the prediction with the 
measurements 

 To cover a large angular sector, a three-step method is preferable: 

 Coarse estimation of the range history 

 Alignment of partial images 

 Phase retrieval with improved estimation of range and rotation 
motion 

 What has to be done ... 

 Analysis of the performance over a large simulation basis 

 Comparison to other methods 

 Derivation of theorems (?) 



© Fraunhofer FHR 

S
e
ei

ng the world

w
ith radar eyes


