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Part. 1 The Least Action Principle
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How to “morph” a shape into another one of same mass
while minimizing the “effort” ?
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How to “morph” a shape into another one of same mass
while minimizing the “effort” ?

The “effort” of the best T defines a distance between the shapes
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The Least Action Principle

: o _
Axiom 1: There exists a function L(X X t) that describes the state
17 of a physical system

Short summary of the 15t chapter of Landau,Lifshitz Course of Theoretical Physics
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Hamilton,
Legendre,
Maupertuis

LEONHARD EULER 1707 -1783

Lagrange

The Least Action Principle

: o .
Axiom 1: There exists a function L(X X t) that describes the state
17 of a physical system
t2
Axiom 2: The movement (time 0
evolution) of the physical system L(X,X,t) dt

minimizes the following integral
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The Least Actidn Principle

: o _
Axiom 1: There exists a function L(X X t) that describes the state
17 of a physical system
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Axiom 2: The movement (time 0
evolution) of the physical system L(X,X,t) dt
minimizes the following integral
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The Least Action Principle

: : . o :
Axiom 1: There exists a function L(X X t) that describes the state
170 of a physical system

L

Axiom 2: The movement (time o
evolution) of the physical system L(X,X,t) dt

minimizes the following integral
1:1

Theorem 1. (Lagrange equation):

oL _d oL
ox dt ox
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The Least Action Principle

Axiom 1: There exists L Axiom 3:
Axiom 2: The movement minimizes Invariance w.r.t. change of
t Gallileo frame + hom. + isotrop. :
2 s
. X" X+t
L(X,X,t) dt Tt
tl

Theorem 1: (Lagrange equation):

oL _d oL
ox dt ox
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The Least Action Principle

Axiom 1: There exists L Axiom 3:
Axiom 2: The movement minimizes Invariance w.r.t. change of
t Gallileo frame + hom. + isotrop. :
2 s
. X' X+vt
L(X,X,t) dt Tt
Theorem 2:
tl
«OL | _
X— -L=cte
Theorem 1. (Lagrange equation): 8X

oL _d oL
ox dt ox
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The Least Action Principle

Axiom 1: There exists L
AXxiom 2: The movement minimizes

7

L(x,X,t) dt
4

Theorem 1: (Lagrange equation):

oL _d oL
ox dt ox

X

Axiom 3:
Invariance w.r.t. change of
Gallileo frame + hom. + isotrop. :

b

X X+vt
t*
Theorem 2:

aL-L:cte

o
aX Homogeneity of time —
Preservation of energy
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The Least Action Principle

Axiom 1: There exists L Axiom 3:
Axiom 2: The movement minimizes Invariance w.r.t. change of

t Gallileo frame + hom. + isotrop. :

2 s
. X' X+vt
L(X,X,t) dt Tt
t Theorem 2:
1

aL-L:cte

o
aX Homogeneity of time —
Preservation of energy

aL _ d aL Homogeneity of space —

Preservation of momentum

~ °
5X dt @X Isotropy of space —

Preservation of angular momentum
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The Least Action Principle

Axiom 1: There exists L Axiom 3:
Axiom 2: The movement minimizes Invariance w.r.t. change of
t Gallileo frame + hom. + isotrop. :
2 s
. X' X+vt
, —=
L(X,X,t) dt Tt
t Theorem 2:
1 Preserved quantities
“Integrals of Motion” ° 6L
Noeter’s theorem X - I_ — Cte

[
: . aX Homogeneity of time
Theorem 1: (Lagrange equation): Prese?vationyof energ;’

aL _ d @L Homogeneity of space —
~ @ o Preservation of momentum
ox dt ox

Isotropy of space —

Preservation of angular momentum
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The Least Action Principle

Axiom 1: There exists L Axiom 3:
Invariance w.r.t. change of

Axiom 2: The movementminimizes_.. L _ _
Gallileo frame + hom. + isotrop. :

Theorem 1: (Lagrange equation): X’ X+t
oL d oL vt
8X - dt a}'( Theorem 2:

Free particle: )‘(8L - L = cte

o
Theorem 3: v=cte (Newton’s law I) @X Homogeneity of time —
Preservation of energy

Homogeneity of space —
Preservation of momentum

Isotropy of space —

Preservation of angular momentum
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The Least Action Principle

Axiom 1: There exists L Axiom 3:
Invariance w.r.t. change of

Axiom 2: The movementminimizes_‘. L _ _
Gallileo frame + hom. + isotrop. :

Theorem 1: (Lagrange equation): X’ X+t
oL d oL vt
8X - dt a}'( Theorem 2:

Free particle: )‘(8L - L = cte

o
Theorem 3: v=cte (Newton’s law I) aX Homogeneity of time —
Preservation of energy

Expression of the Lagrangian:
Homogeneity of space —

— 1 2
L — /2 m v Preservation of momentum
Isotropy of space —

Preservation of angular momentum
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The Least Action Principle

Axiom 1: There exists L Axiom 3:

Invariance w.r.t. change of

Axiom 2: The movementminimizes_‘. L _ _
Gallileo frame + hom. + isotrop. :

Theorem 1: (Lagrange equation): X’ X+t
oL _d oL v
8X - dt a}'( Theorem 2:

X oL L = cte

o
Theorem 3: v=cte (Newton’s law I) aX Homogeneity of time —
Preservation of energy

Free particle:

Expression of the Lagrangian: v of
1 2 Homogeneity of space —
L - 2mV Preservation of momentum
Expression of the Energy:
Isotropy of space —

E=%myV? Preservation of angular momentum
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The Least Action Principle

Axiom 1: There exists L Axiom 3:
Axiom 2: The movement minimizesJ. L Invariance w.r.t. change of
Gallileo frame + hom. + isotrop. :
Theorem 1: (Lagrange equation): X’ X+t
oL d oL Tt
- o
0X dt ox Particle in a field:
Free particle: Expression of the Lagrangian:

L =% mv2—U(X)

Theorem 3: v=cte (Newton’s law I)

Expression of the Lagrangian:

L =% mvV?
Expression of the Energy:

E=1YmV?
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The Least Action Principle

Axiom 1: There exists L Axiom 3:
Axiom 2: The movement minimizes_‘. L Invariance w.r.t. change of
Gallileo frame + hom. + isotrop. :
Theorem 1: (Lagrange equation): X’ X+t
oL d oL Tt
- o
0X dt ox Particle in a field:
Free particle: Expression of the Lagrangian:

L =% mv2—U(X)
Expression of the Energy:
Expression of the Lagrangian: E=Vm V2 + U(X)

L =% mV?

Expression of the Energy:

E=1YmV?
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The Least Action Principle

Axiom 1: There exists L Axiom 3:

Invariance w.r.t. change of

Axiom 2: The movementminimizes_‘. L _ _
Gallileo frame + hom. + isotrop. :

Theorem 1: (Lagrange equation): X’ X+Vt
oL d oL v Tt
OX ) dt 8}'( Particle in a field:
Free particle: Expression of the Lagrangian:

L =% mv2—U(X)

Theorem 3: v =cte (Newton’s law I) _
Expression of the Energy:

Expression of the Lagrangian: E=¥om V2 + U(X)
L=¥m V2 Theorem 4.
. (L)
Expression of the Energy: mX = -VU (Newton’s law II)

E=1YmV?
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The Least Action Principle
(relativistic setting)

Axiom 1: There exists L Axiom 3:

Axiom 2: The movement minimizesj- L Invariance w.r.t. Lorentz change of
frame
Theorem 1: (Lagrange equation): X’ (X-Vt) ‘Y
oL d oL T (t—vx/cd) xy
~_ o
ox  dt ox v=1/V(1-=v2/c?
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The Least Action Principle
(relativistic setting — just for fun...)

Axiom 1: There exists L Axiom 3:
Axiom 2: The movement minimizesj- L Invariance w.r.t. Lorentz change of
frame

Theorem 1: (Lagrange equation): x’ (X-Vt) x Y
oL d oL T (t—vx/cd) xy
~ °
ox dt ox y=1/N(1-v2/c?)

Theorem 5:

E=%vymv?+mc?




The Least Action Principle
(quantum physics setting — just for fun...)

In quantum mechanics non just the | 4
extreme path contributes to the P(B,A)=|K(2,1)|
probability amplitude

K(B,A)= ) ¢[x(t)]

overall possible paths

where

i

$[x(t)]=Aexp |

Feynman's path integral formula

K(B,A):fi exp{%S[B,A]DX(t)')

I&zu’a,-






“Lagrange” point of view FI U I d S

| v, Ly —
et —— .
| 1 & 1A
L/ | o7 1d) e g
i




“Lagrange” point of view FI U I d S “Euler” point of view

p “nb particles per square”
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FI U I d S “Euler” point of view

Q1: how to compute the
acceleration of the particles
from v(x,y,t) ?

p(x,y,t) “nb particles per square”

v(X,y,t) speed of the particle under
2 “orid point” (X,y) at time t
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FI U I d S “Euler” point of view

Q1: how to compute the ‘ | ‘
acceleration of the particles
from v(x,y,t) ?

dv _ 3v v.\/V
dt at

Q2: incompressible fluids ?

7

sl dC, =7
AL
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v(X,y,t) speed of the particle under
2 “orid point” (X,y) at time t
I (rezia—

p(x,y,t) “nb particles per square”



FI U I d S “Euler” point of view

Q1: how to compute the
acceleration of the particles
from v(x,y,t) ?

dv _ ov, v.\/V
dt ot

Q2: incompressible fluids ?

/7 — ) s -
—? ""‘3-\1 il
-7 G =7 |
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S

k\, — 5 —> p(x,y,t) “nb particles per square”
\'? ‘_..ﬂ

v(X,y,t) speed of the particle under
2 “orid point” (X,y) at time t
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from v(x,y,t) ?

dv _ ov, v.\/V
dt ot

Q2: incompressible fluids ?

p(x,y,t) “nb particles per square”
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FI U I d S “Euler” point of view

Q1: how to compute the
acceleration of the particles
from v(x,y,t) ?

dv _ 9v, v.\/V
dt ot
Q2: incompressible fluids ?

div(v) =0

p(x,y,t) “nb particles per square”

what goes in =

what goes out v(X,y,t) speed of the particle under
“orid point” (X,y) at time t




FI U I d S “Euler” point of view

Q1: how to compute the
acceleration of the particles
from v(x,y,t) ?

dv _ 9v, v.\/V
dt ot
Q2: incompressible fluids ?

div(v) =0

Q3: mass preservation ?

p(x,y,t) “nb particles per square”

v(X,y,t) speed of the particle under
2 “orid point” (X,y) at time t
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FI U I d S “Euler” point of view

Q1: how to compute the | :
acceleration of the particles
from v(x,y,t) ?

d_v = 3_\/ +V' VV

dt ot

Q2: incompressible fluids ?

div(v) =0
Q3: mass preservation ?
d p =~ - -.:
g —-adivlpv) ?
e C = ) |
— X,y,t) “nb particl
(Continuity equation) ”Wk{ N 25 p(X,y,1) particles per square

i V(X,y,t) speed of the particle under
7 “orid point” (X,y) at time t
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Fluids

Start with Lagrange coordinates:
“particle trajectories™ X(t,X)

(p = cte)

t2
Minimize
Action: 172
tl

2
XX 1| dxdlt
at

Q

s.t. X satisfies mass preservation
(X is measure-preserving, more on
this later...)
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Fluids

Start with Lagrange coordinates: H
“particle trajectories”™ X(t,X)

(p = cte) T D
Minimize , ., J-J- 3X(t><) dxdt A.j

6{0):7(

S (s)

Action:

/%'U‘”t reseryl.
{ X S m)pomﬁ;/dﬁ}

o

1
4

s.t. X satisfies mass preservation
(X is measure-preserving, more on
this later...)
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Fluids

Start with Lagrange coordinates: H

6{0):7(

S (s)

“particle trajectories”™ X(t,X)

(p = cte) N\

Minimize /
Action: J. J- dth Z"

oL o6l -
_L AN $=o i
. : L — di '
s.t. X satisfies mass preservation :@VCH ¢(2¢7°*(6 =0 /J
(X is measure-preserving, more on | ,

this later...)
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Fluids

Start with Lagrange coordinates: H

6{0):)(

S (s)

“particle trajectories™ X(t,X)
(p = cte) N
Minimize /

Action: J‘ J- dth z"

A‘;_%_#(els))l :

te
tww@P=0 Vt
s.t. X satisfies mass preservation @ ‘H g{fa )= flb, =0 /J f(%vﬂv‘ﬂ [’,';)(f/*,]}d/l]:o |

3X(t X)

/%Wft reseryl.
{ X ) ufomﬁ;&]ﬁ}

(X Is measure-preserving, more on | ;;j )2
this later...) @. .’9_.\.,._’_\’.7 =-V E{J‘}M d e a;w
d.., Vi 2P ' wo«o’msw
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Fluids

Start with Lagrange coordinates: =m
“particle trajectories”™ X(t,X)

6{0):)(

S (s)

(o= cte) TN
Minimize A / \
Action: dth z° { ’%w’t - preseliag
” X' wonifeb) .S‘
] i_#(e(s))) -
ke
dw o Vt v
s.t. X satisfies mass preservation 3 ¢’¢(&¢= )= b, 0)=2 J f (%V*'v‘ﬂ [’/';)‘f/t‘,])dlljso |
(X Is measure-preserving, more on | 1 !
this later...) E‘l"‘“’“ J)S ! o’fm |
[ Floik “‘“’Wﬁ"é, |
Acceleration of the ST A 37 Chewin e
particle “under the grid” i e s |

I"'Lw—



Fluids

Start with Lagrange coordinates: =m
“particle trajectories”™ X(t,X)

6{0):)(

S (s)

(p = cte) | X
Minimize | / \
Action: dth z° { ’%w’t - preseliag
H X' wonifeb) .S‘
] i_#(e(s))) 8
te
div 47
s.t. X satisfies mass preservation 3 ‘H ¢(5¢=°ﬂ5¢ )z /J f (%V +/Vy) [’,';)‘f/?‘,])d”fo |
(X'Is measure-preserving, more on : 1R
this later...) @ :v+ - Efud‘m d e O,Uu
" v v =0 Floik lnlowrmw |
The “Lagrange multiplier” Eam ;"I}t-ﬁ;o; aBGEmnL 28 'SYCAW ek
for the constraint = pressure ; T T T T T T T T T T T b
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Fluids — Benamou Brenier

?
A
T
pl p2

Minimize tz
Apv) = (1) j p(x,0) [Iv(t,X)|[*dxdt

st.p(ty.)=ps 5 pl2)=p2 ; E = - div(pv)
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Fluids — Benamou Brenier

?
A
T
P1 P

Minimize t2
ApY) = (tty) p(X,t) ||V(t,X)||2dxdt Minimize C(T) =
jp Wl X — T(X) |2 dx

s.t. T is measure-preserving

st.p(ty.)=ps 5 pl2)=p2 ; E - div(pv)
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Optimal Transport
an elementary introduction
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Part. 2 Optimal Transport — Monge’s problem

- '

(X;p) (Y;v)

Two measures |, v such that J;?Ip(x) = Idv(x)
Y




Part. 2 Optimal Transport — Monge’s problem
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(X;p) (Y;v)

A map T is a transport map between u and v if
u(T1(B)) = v(B) for any Borel subset B of Y
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A map T is a transport map between u and v if
u(T1(B)) = v(B) for any Borel subset B




Part. 2 Optimal Transport — Monge’s problem

- n

(X;M) (Y;v)

A map T is a transport map between u and v if
u(T1(B)) = v(B) for any Borel subset B
(or v = T# the pushforward of p)




Part. 2 Optimal Transport — Monge’s problem

. m

(X;p) (Y;v)

Monge’s problem (1787):
Find a transport map T that minimizes C(T) = IX || X —T(X) ||? dux)
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Part. 2 Optimal Transport — Monge’s problem

Monge’s problem:

Find a transport map T that minimizes C(T) = IX || X = T(X) ||? dux)

* Difficult to study

* If u has an atom (isolated Dirac),
It can only be mapped to another Dirac
(T needs to be a map)




Part. 2 Optimal Transport — Kantorovich

Monge’s problem:

Find a transport map T that minimizes C(T) = IX || X = T(X) ||? dux)

Kantorovich’s problem (1942):

Find a measure y defined on X X Y
such that IX o dy(xy) = dv(y)
and | yiny dy(xy) = du(x)

that minimizes Hx vy || X=y[|? dyxy)
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:
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Part. 2 Optimal Transport — Kantorovich

Monge’s problem:

Find a transport map T that minimizes C(T) = IX || X = T(X) ||? dux)

Kantorovich’s problem:

Find a measure y defined on X X Y

such that I win x dY(X,)y) = dv(y)

and J'y iy dy(x,y) = dIJ(X) How much sand goes from x to y

Y(Xy)”

that minimizes Hx vy || X=y[|? dyxy)
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Part. 2 Optimal Transport — Kantorovich

Monge’s problem:

Find a transport map T that minimizes C(T) = IX || X = T(X) ||? dux)

Kantorovich’s problem:

Find a measure y defined on X X Y

such that I win x dY(X,)y) = dv(y)

and J'y iny dy(x,y) = dIJ(X) transported from x sums to “u(x)”

Everything that is

that minimizes Hx vy || X=y[|? dyxy)
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Part. 2 Optimal Transport — Kantorovich

Monge’s problem:

Find a transport map T that minimizes C(T) = IX || X = T(X) ||? dux)

Kantorovich’s problem:

Find a measure y defined on X X Y

such that IX n x dy(x.y) = dv(y)
and J'y .y dy(x,y) = le(X) transported to y sums to “v(y)”

Everything that is

that minimizes Hx vy || X=y[|? dyxy)
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Part. 2 Optimal Transport — Kantorovich

Transport plan — example 1/2 : translation of a segment
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Transport plan — example 1/2 : translation of a segment




Part. 2 Optimal Transport — Kantorovich

|

{
i

o~ ﬂ y‘—u e -
| 2

Transport plan — example 2/2 : spitting a segment




Part. 2 Optimal Transport — Duality




Part. 2 Optimal Transport — Duality

~

(y)ﬂ} P _

S (,utng-':'l---m
\( (X/‘/ﬁ) s S )

Duality is easier to understand with a discrete version
Then we’'ll go back to the continuous setting.
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Part. 2 Optimal Transport —
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Min <c, y>
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Consider L@,y = <c,y> - <¢,P;y-u>-<y,P,y-Vv>
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- y=>0
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Min <c, y>
- P,y=u
st. 1 P,y=v
- y=>0

Consider L@,y = <c,y> - <¢,P;y-u>-<y,P,y-Vv>

Remark: Sup[ LO,yW)]=<c,y>ifP;y=uand P,y =V
¢ € IR"
Y EIRT =+ otherwise

Consider now: Inf [ Sup[ L,y 1] = Inf[ <c,y> ]
20 0 CIRT >0
=Y yern Py =u
P,y=v
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Min <c, y>
- P,y=u
st. 1 P,y=v
- y=>0

Consider L@,y = <c,y> - <¢,P;y-u>-<y,P,y-Vv>

Remark: Sup[ LO,yW)]=<c,y>ifP;y=uand P,y =V
¢ € IR"
Y EIRT =+ otherwise

Consider now: Inf[ Sup[ L, y) 1] =Inf[ <c,y> ] (DMK)
=0 © CIRY >0
=Y yern Py =u
P,y=v
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, Y2
- Pyy=u
st. 1 P,y=v
- v=>0

Inf [ Sup[ <c,y>-<g, P, y-u>-<y,P,y-v>]]

o € IRM
Y20 € IR" Exchange Inf Sup

Sup| Inf[ <c, y> - <@, P, y-u>-<y,P,y-v>]]

¢ €IR™ y>0
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- Pry=u
S.1. 1 PzV:V
. vy>0

Sup[ Inf[ <y,c-Py'o =Pyl y >+ <u>+ <y,v>]]
¢ EIRM y>
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- P,y=u
st. 1 P,y=v
. vy>0

Sup| Inf[ < y,c-Pto— Pty >+ <g,u> + <y, v> 1]
¢ €IR™ y>0
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Part. 2 Optimal Transport — Kantorovich dual

Kantorovich’s problem:

Find a measure y defined on X X Y
such that fxm . dy(x.y) = du(x)
and | yiny dYOoy) = Av(x)

that minimizes -”X w Y [ X=y|[? dvxy)

Dual formulation of Kantorovich’s problem (Continuous):

Find two functions ¢ in L*(y) and vy in L(v)
Such that for all x,y, (X) + y(y) <% x =y ||?

that maximize IX (pdyp +IY ydv
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Part. 2 Optimal Transport — Kantorovich dual

Kantorovich’s problem:

Find a measure y defined on X x Y Your point of view:
Try to minimize transport cost

such that fxm . dy(x.y) = du(x)
and | yiny dy(xy) = dv(x)

that minimizes -”X w Y [ X=y|[? dvxy)

Dual formulation of Kantorovich’s problem:

Find two functions ¢ in LY(u) and y in L(v)
Such that for all x,y, @(X) + y(y) <% x -V |F

that maximize -..X (Pdy + IY ydv
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Part. 2 Optimal Transport — Kantorovich dual

Kantorovich’s problem:

Find a measure y defined on X x Y Your point of view:
Try to minimize transport cost

such that fxm . dy(x.y) = du(x)
and | yiny dy(xy) = dv(x)

that minimizes -”X w Y [ X=y|[? dvxy)

Dual formulation of Kantorovich’s problem:

Find two functions ¢ in LY(u) and y in L(v)
Such that for all x,y, @(X) + y(y) <% x -V |F

Point of view of a “transport company”:
that maximize _..X (Pdy + IY ydv Try to maximize transport price

I&zu’a,-



Part. 2 Optimal Transport — Kantorovich dual

Kantorovich’s problem:

Find a measure y defined on X x Y Your point of view:
Try to minimize transport cost

such that fxm . dy(x.y) = du(x)
and | yiny dy(xy) = dv(x)

that minimizes -”X w Y [ X=y|[? dvxy)

Dual formulation of Kantorovich’s problem:

Find two functions ¢ in LY(u) and y in L(v)
Such that for all x,y, @(X) + y(y) <% x -V |F

that maximize -..X O (X)du +IY Y(y)dv

What they charge for loading at x
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Part. 2 Optimal Transport — Kantorovich dual

Kantorovich’s problem:

Find a measure y defined on X x Y Your point of view:
Try to minimize transport cost

such that fxm . dy(x.y) = du(x)
and | yiny dy(xy) = dv(x)

that minimizes -”X w Y [ X=y|[? dvxy)

Dual formulation of Kantorovich’s problem:

Find two functions ¢ in LY(u) and y in L(v)
Such that for all x,y, @(X) + y(y) <% x -V |F

that maximize _..X O (X)du +IY Y(y)dv

What they charge for loading at x What they charge for unloading at y
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Part. 2 Optimal Transport — Kantorovich dual

Kantorovich’s problem:

Find a measure y defined on X x Y Your point of view:
Try to minimize transport cost

such that fxm . dy(x.y) = du(x)
and | yiny dy(xy) = dv(x)

that minimizes -”X w Y [ X=y|[? dvxy)

Price (loading + unloading) cannot
be greater than transport cost

Dual formulation of Kantorovich’s problem: (else you do the job yourself)

Find two functions ¢ in LY(u) and y in L(v)
Such that for all x,y, @(X) + y(y) <% x -V |F

that maximize _..X O (X)du +IY Y(y)dv

What they charge for loading at x What they charge for unloading at y

Iéw—



Part. 2 Optimal Transport — c-conjugate functions

Dual formulation of Kantorovich’s problem:

Find two functions ¢ in LY(4) and y in L(V)
Such that for all x,y, @(X) + w(y) <%l x -V |

that maximize |5, @(X)du + ], W(y)dv




Part. 2 Optimal Transport — c-conjugate functions

Dual formulation of Kantorovich’s problem:

Find two functions ¢ in LY(4) and y in L(V)
Such that for all x,y, @(X) + w(y) <%l x -V |

that maximize |5, @(X)du + ], W(y)dv

If we got two functions ¢ and y that satisfy the constraint

Then it is possible to obtain a better solution by replacing y with ¢¢ defined by:
Forall'y, °(y) = inf,;,x %2l x =y |- o(y)




Part. 2 Optimal Transport — c-conjugate functions

Dual formulation of Kantorovich’s problem:

Find two functions ¢ in LY(p) and vy in LY(v)
Such that for all x,y, @(X) + w(y) <%l x -V |

that maximize IX (P (x)dy +J‘Y (y)dv

If we got two functions ¢ and y that satisfy the constraint

Then it is possible to obtain a better solution by replacing y with ¢¢ defined by:
Forall'y, °(y) = inf,;,x %2l x =y |- o(y)

* @°is called the c-conjugate function of ¢
« If there is a function ¢ such that y = ¢°then v is said to be c-concave
* If y is c-concave, then y =y




Part. 2 Optimal Transport — c-conjugate functions

Dual formulation of Kantorovich’s problem:

Find a c-concave function y

that maximizes Ix Y(X)du +J‘Y WE(y)dv




Part. 2 Optimal Transport — c-conjugate functions

Dual formulation of Kantorovich’s problem:

Find a c-concave function y

that maximizes Ix Y(X)du +J‘Y WE(y)dv

v is called a “Kantorovich potential”




Part. 2 Optimal Transport — c-subdifferential

Dual formulation of Kantorovich’s problem:

Find a c-concave function y

that maximizes Ix Y(X)du +J‘Y WE(y)dv

v is called a “Kantorovich potential”

What about our initial problem ?




Part. 2 Optimal Transport — c-subdifferential

Dual formulation of Kantorovich’s problem:

Find a c-concave function y

that maximizes Ix Y(X)du +J‘Y WE(y)dv

v is called a “Kantorovich potential”

What about our initial problem ? (i.e., this is T() that we want to find ...)




Part. 2 Optimal Transport — c-subdifferential

Theorem 1.

V(x,y) € 00, VU(z) — Vyc(x,y) =0
where 0.4 = {(z,y)|o(x) + Y (y) = c(z,y)} denotes the so-called c-subdifferential of ).
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Theorem 1.
V(x,y) € 0.0, VU(x) — Vye(x,y) =0
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Proof: see OTON, chap. 10.
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Theorem 1.
V(x,y) € 0.0, VU(x) — Vye(x,y) =0
where .10 = {(z,y)|p(x) + ¥(y) = c(x,y)} denotes the so-called c-subdifferential of 1.
Proof: see OTON, chap. 10.
Heuristic argument (at the beginning of the same chapter):

Consider a point (x,y) on the c-subdifferential 9.1, that satisfies ¢(y) + 1 (x) = c(x,y) (1).




Part. 2 Optimal Transport — c-subdifferential

Theorem 1.
V(x,y) € 0.0, VU(x) — Vye(x,y) =0
where .10 = {(z,y)|p(x) + ¥(y) = c(x,y)} denotes the so-called c-subdifferential of 1.
Proof: see OTON, chap. 10.
Heuristic argument (at the beginning of the same chapter):

Consider a point (x,y) on the c-subdifferential 9.1, that satisfies ¢(y) + 1 (x) = c(x,y) (1).
+ c

By definition, ¢(y) = 9*(y) = infe(z, y) — 9 (z), thus V7, §(y) < ¢(Z,y) — ¥(2), or ¢(y)
By substituting (1) into (2), one gets () — ¥ (x) < ¢(Z,y) — c(z,y) for all Z.
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Theorem 1.

V(x,y) € 0.0, VU(x) — Vye(x,y) =0
where .10 = {(z,y)|p(x) + ¥(y) = c(x,y)} denotes the so-called c-subdifferential of 1.
Proof: see OTON, chap. 10.

Heuristic argument (at the beginning of the same chapter):

By substituting (1) into (2), one gets () — ¥ (x) < ¢(Z,y) — c(z,y) for all Z.

Imagine now that ¥ follows a trajectory parameterized by € and starting at . One can compute the gradient
along an arbitrary direction w by taking the limit when € tends to zero in the relation w(m);w(m) < C(m’y)zc(m’y).
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Theorem 1.

V(x,y) € 0.0, VU(x) — Vye(x,y) =0
where .10 = {(z,y)|p(x) + ¥(y) = c(x,y)} denotes the so-called c-subdifferential of 1.
Proof: see OTON, chap. 10.

Heuristic argument (at the beginning of the same chapter):

By substituting (1) into (2), one gets () — ¥ (x) < ¢(Z,y) — c(z,y) for all Z.

Imagine now that ¥ follows a trajectory parameterized by € and starting at . One can compute the gradient
along an arbitrary direction w by taking the limit when € tends to zero in the relation w(m);w(m) < C(m’y)zc(m’y).




Part. 2 Optimal Transport — c-subdifferential

Theorem 1.

V(x,y) € 0.0, VU(x) — Vye(x,y) =0
where .10 = {(z,y)|p(x) + ¥(y) = c(x,y)} denotes the so-called c-subdifferential of 1.
Proof: see OTON, chap. 10.

Heuristic argument (at the beginning of the same chapter):

By substituting (1) into (2), one gets () — ¥ (x) < ¢(Z,y) — c(z,y) for all Z.

Imagine now that ¥ follows a trajectory parameterized by € and starting at . One can compute the gradient
along an arbitrary direction w by taking the limit when € tends to zero in the relation w(m);w(m) < C(m’y)zc(m’y).
Thus we have Vi (z) - w < Vye(z,y) - w

I&'z



Part. 2 Optimal Transport — c-subdifferential

Theorem 1.

V(x,y) € 00, VU(z) — Vyc(x,y) =0
where 0.4 = {(z,y)|o(x) + Y (y) = c(z,y)} denotes the so-called c-subdifferential of ).

Proof: see OTON, chap. 10.
Heuristic argument (at the beginning of the same chapter):

Consider a point (x,y) on the c-subdifferential 9.1, that satisfies ¢(y) + 1 (x) = c(x,y) (1).
By definition, ¢(y) = ¥°(y) = igf c(z,y) —¥(z), thus V&, o(y) < c(Z,y) — (&), or ¢(y) + c
By substituting (1) into (2), one gets () — ¥ (x) < ¢(Z,y) — c(z,y) for all Z.

Imagine now that ¥ follows a trajectory parameterized by € and starting at . One can compute the gradient
along an arbitrary direction w by taking the limit when € tends to zero in the relation w(m)zw(m) < C(m’y)zc(m’y).

Thus we have Vi (z) - w < Vye(z,y) - w
The same derivation can be done with —w instead of w, and one gets:

Vw, Vip(x) - w = Vye(z,y) - w, thus V(z,y) € 0.4, Vip(x) — Vee(x,y) = 0.

I&'z



Part. 2 Optimal Transport — c-subdifferential

Dual formulation of Kantorovich’s problem:

Find a c-concave function y

that maximizes Ix Y(X)du +J‘Y WE(y)dv

In the Ly case, ie. c(x,y) = 1/2||z — y||?, we have ¥(x,y) € 0.9, Vip(z) +y —x = 0, thus, whenever the
optimal transport map T exists, we have T(z) = x — Vi (z) = V(|z[?/2 — ¥ (x)).




Part. 2 Optimal Transport — c-subdifferential

Dual formulation of Kantorovich’s problem:

Find a c-concave function y

that maximizes J.x Y (X)du + IY WE(y)dv

In the Ly case, ie. c(x,y) = 1/2||lz — y||?, we have V(z,y) € 0.4, Vip(x) + 1y —

= 0, thus, whenever the
optimal transport map T exists, we have T(z) = x — Vi (z) = V(|z[?/2 — ¥ (x)).

grad y(x) withwy(x) = (Y2 x?- y(X))




Part. 2 Optimal Transport — convexity

Dual formulation of Kantorovich’s problem:

Find a c-concave function y

that maximizes IX Y(X)du +J‘Y WE(y)dv

In the Ly case, ie. c(x,y) = 1/2||z — y||?, we have ¥(x,y) € 0.9, Vip(z) +y —x = 0, thus, whenever the
optimal transport map T exists, we have T(z) = x — Vi (z) = V(|z[?/2 — ¥ (x)).

grad y(x) withwy(x) = (Y2 x?- y(X))
y IS convex




Part. 2 Optimal Transport — convexity

Dual formulation of Kantorovich’s problem:

Find a c-concave function y

that maximizes J.x Y (X)du + IY WE(y)dv

In the Ly case, ie. c(x,y) = 1/2||z — y||?, we have ¥(x,y) € 0.9, Vip(z) +y —x = 0, thus, whenever the
optimal transport map T exists, we have T(z) = x — Vi (z) = V(|z[?/2 — ¥ (x)).

grad y(x) withwy(x) = (Y2 x?- y(X))
y IS convex

Proof.




Part. 2 Optimal Transport — convexity

Dual formulation of Kantorovich’s problem:

Find a c-concave function y

that maximizes J.x Y (X)du + IY WE(y)dv

In the Ly case, ie. c(x,y) = 1/2||z — y||?, we have ¥(x,y) € 0.9, Vip(z) +y —x = 0, thus, whenever the
optimal transport map T exists, we have T(z) = x — Vi (z) = V(|z[?/2 — ¥ (x)).

grad y(x) withwy(x) = (Y2 x?- y(X))
y IS convex
Y(z) = inf= el — (y)
: _ igfn || —zey+ ()
[ @) = o) - =it ey (15— ()

U (x) — supz-y— (llyll gb(y))

Yy




Part. 2 Optimal Transport — no collision

Dual formulation of Kantorovich’s problem:

Find a c-concave function y

that maximizes IX Y(X)du +J‘Y WE(y)dv

If T(.) exists, then

T(X) =x—grad y(x) = grad ({2 x> y(%) ) y is convex

grad vy (X) l

Two transported particles cannot “collide”




Part. 2 Optimal Transport — no collision

Dual formulation of Kantorovich’s problem:

Find a c-concave function y

that maximizes IX Y(X)du +J‘Y WE(y)dv

If T(.) exists, then
T(X) =x—grad y(x) = grad ({2 x> y(%) ) v is convex
grad vy (X) l

Two transported particles cannot “collide”
Proof. By contradiction, suppose that you have t € (0,1) and x; # 2 such that:

(1 — t)ﬂjl + tT(QS‘l) = (1 — t).’l?g + tT(:I?Q)




Part. 2 Optimal Transport — no collision

Dual formulation of Kantorovich’s problem:

Find a c-concave function y
that maximizes J.x Y (X)du + IY WE(y)dv

If T(.) exists, then
T(X) =x—grad y(x) = grad ({2 x> y(%) ) v is convex

grad vy (X) l

Two transported particles cannot “collide”
Proof. By contradiction, suppose that you have t € (0,1) and x; # 2 such that:

(1 — t).’l)'g + tT(ZEg)

(1 — t)ﬂjl + tT(.’El)

(1 — f)ﬂjl —+ tV@(:cl) ~ B
(1 =t)(z1 — 22) + t(VY(21) = Vi(22))
Vo,(1—=t)v- (1 — x2) +tv- (VY(z1) — Vp(x2))

take v = (x1 — x2) ) )
(1 = t)[|zy — 2|” + t(z1 — 22) - (VO(21) — Vi(22)) = 0 ‘

(1 — t)CCQ + tVLB(Iz)
0
0




Part. 2 Optimal Transport — Monge-Ampere

Dual formulation of Kantorovich’s problem:

Find a c-concave function vy

that maximizes jx Y (X)du + IY WE(y)dv

What about our initial problem ? If T(.) exists, then one can show that:

T(x) = x — grad y(x) = grad (Y2 x*- \p(xi )

grad y(x) withy(x) := (Y2 x*- y(x))

for all borel set A, | » du = IT(A) (JJT]) dv (change of variable)

Jacobian of T (15t order derivatives)
I &Iz'u’a,-



Part. 2 Optimal Transport — Monge-Ampere

Dual formulation of Kantorovich’s problem:

Find a c-concave function vy

that maximizes jx Y (X)du + IY WE(y)dv

What about our initial problem ? If T(.) exists, then one can show that:

T(x) = x — grad y(x) = grad (Y2 x*- \p(xl )

grad y(x) withy(x) := (Y2 x*- y(x))

for all borel set A, IAdp = IT(A) (lJTl) dv = IT(A)(/l_'l \_|! ) dv

. Det. of the Hessian of y (2" order derivatives)
I lrrzia—



Part. 2 Optimal Transport — Monge-Ampere

Dual formulation of Kantorovich’s problem:

Find a c-concave function vy

that maximizes jx Y (X)du + IY WE(y)dv

What about our initial problem ?
T(x) =x —grad y(x) = grad (Y2 x*- y(x) )

grad ®(x) with ®(x) = (2 x%- y(X))

for all borel set A, IAdp = IT(A) (lJTl) dv = IT(A) (H \T! ) dv

Monge-Ampere

When p and v have a density u and v,|(H y(x)). v(grad y(x)) = u(x) equation
4 &?w—




Part. 2 Optimal Transport — summary
4 N

Find a transport map T that minimizes C(T) = Ix || X — T(X) ||? dux)
\ Y,




Part. 2 Optimal Transport — summary

4 )

Find a transport map T that minimizes C(T) = IX || X = T(X) ||? dux)
\ y,
4 A

After several rewrites and under some conditions....
(Kantorovich formulation, dual, c-convex functions) )




Part. 2 Optimal Transport — summary
4 )

Find a transport map T that minimizes C(T) = IX || X — T(X) ||? dux)
\ Y,
4 N

After several rewrites and under some conditions....
(Kantorovich formulation, dual, c-convex functions)

y

f N

Solve (H y(x)). v(grad y(x)) =u(x) Monge-Ampére equation
(When p and v have a density u and v resp.)




Part. 2 Optimal Transport — summary
4 )

Find a transport map T that minimizes C(T) = IX || X — T(X) ||? dux)
\ Y,
4 N

After several rewrites and under some conditions....
(Kantorovich formulation, dual, c-convex functions) )

- \
Solve (H y(x)). v(grad y(x)) =u(x) Monge-Ampére equation

(When p and v have a density u and v resp.)
\ Y,

4 )
Brenier, Mc Cann, Trudinger: The optimal transport map is then given by:

T(x) = grad y(x)
N y

e —




Part. 2 Optimal Transport — Isoperimetric inequality

j'-w-w' whisky, 5bo(; F-F- F;;Iing
about! (et b-b-back iy my
# glass this m-wm-minute!

...:f'\\. “h
.....
RS STRTRS i
.........

LRy

For a given volume,

ball is the shape that minimizes border area




Part. 2 Optimal Transport — Isoperimetric inequality

L, Sobolev inegality: Given f: IR" — IR sufficiently regular

j | grad f| =n Vol(B,")!" (jf n/(n-l)) (n-1)/n

Explanation in [Dario Cordero Erauquin] course notes
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Part. 2 Optimal Transport — Isoperimetric inequality

L, Sobolev inegality: Given f: IR" — IR sufficiently regular

Consider a compact set Q such that Vol(Q) = Vol(B,?3)
and f = the indicatrix function of Q

I | grad f| =n Vol(B,")!" (jf n/(n-l)) (n-1)/n

@ »

—




Part. 2 Optimal Transport — Isoperimetric inequality

L, Sobolev inegality: Given f: IR" — IR sufficiently regular

Consider a compact set Q such that Vol(Q) = Vol(B,?3)
and f = the indicatrix function of Q

I | grad f| =n Vol(B,")!" (jf n/(n-l)) (n-1)/n

l

Vol(oQ) = n Vol(B,3)3® Vol(B,3%)%3




Part. 2 Optimal Transport — Isoperimetric inequality

L, Sobolev inegality: Given f: IR" — IR sufficiently regular

Consider a compact set Q such that Vol(Q) = Vol(B,?3)
and f = the indicatrix function of Q

j | grad f| =n Vol(B,")!" (jf n/(n-1))(n-1)/n

l

Vol(dQ) =n Vol(B,3)® Vol(B,3)%3

Vol(dQQ) = 4 1 =Vol(dB.,3)

I“W—
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L, Sobolev inegality: a proof with OT [Gromov]

I | grad f| = n Vol(B,")'" (jf n/(n-l)) (n-1)/n

We suppose w.l.o0.g. that jf m(n-l) =1

There exists an optimal transport T = grad$ between
f M(0-D(x)dx and 1B,"/Vol(B,")dx ——
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Part. 2 Optimal Transport — Isoperimetric inequality

L, Sobolev inegality: a proof with OT [Gromov]

I | grad f| = n Vol(B,")'" (jf n/(n-l)) (n-1)/n

We suppose w.l.o0.g. that jf m(n-l) =1

There exists an optimal transport T = gradﬁ between
f M(0-D(x)dx and 1B,"/Vol(B,")dx ——
Monge-Ampére equation: Vol(B,") f¥(-1(x) = det Hess ¥
Arithmetico-geometric ineq: det (H) ¥ < trace(H)/n if H positive
det (Hess W) 11 < trace(Hess W)/n
det (Hess W) "< AW /n
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L, Sobolev inegality: a proof with OT [Gromov]
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L, Sobolev inegality: a proof with OT [Gromov]

I | grad f| = n Vol(B,")'" (jf n/(n-l)) (n-1)/n

We suppose w.l.o0.g. that jf m(n-l) =1
_ _ Monge-Ampere equation:
det (Hess W) 1" < (A W)/n Vol(B,") f(-1(x) = det Hess W

Vol(B,") = Vol(B,") f fn/(n-1) = _[f Vol(B," f V(D < 1/n j fAW

) fAE:-,[gradf.gradE < ,[|gradf| (T:gradEGan)

| grad f | 2 n Vol(B,")'" -
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Part. 3 Optimal Transport — semi-discrete
(X;u) (Y;v)

—

Sup

v €yt Ix e (x)du +Iy Y(y)dv
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I”"W—



Part. 3 Optimal Transport — semi-discrete
(X;u) (Y;v)

—

emk) 5P Loy du +Jy wav

N\

Zj V() v

I”"W—



Part. 3 Optimal Transport — semi-discrete

emk) 5P Loy du +Jy wav

N\

Zj V() v

I”"W—



Part. 3 Optimal Transport — semi-discrete

(DMK)

v €yt Ix e (x)du +Iy Y(y)dv

YO

Jinf ey [Ix—y; P = W(y;) ] du
| Zj V() v

I”"W—



Part. 3 Optimal Transport — semi-discrete

Sup

v €yt Ix e (x)du +jy Y(y)dv

LN

Feint e L=y, = Wiy 1 o > W) v
Zj J.Lagw(yj) I x=y; IF = Y(y;) du J i’ V]

I”'mf—

(DMK)



Part. 3 Optimal Transport — semi-discrete

DMK
OO St G(y) =3 JLagvop 1% - wep i + 20 v

Where: Lagy(y)) = { x | l1x-y: 2= W) <I[x—y [12-W(y,) } forallj #]
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Part. 3 Optimal Transport — semi-discrete

DMK
OO St G(y) =3 JLagvop 1% - wep i + 20 v

Where: Lagy(y)) = { x | l1x-y: 2= W) <[[x—y [12-W(y,) } forallj #]

! N\

Laguerre diagram of the y;'s
(with the L, cost || X —y ||? used here, Power diagram)

Weight of y; in the power diagram

v Is determined by the
weight vector [W(y,) V(Y,) .- V(Y]

l

For all weight vector, y is c-concave



Part. 3 Power Diagrams

Voronoi diagram: Vor(x;) = { x| d?(x,x;) < d2(x,xj) }




Part. 3 Power Diagrams

Voronoi diagram: Vor(x;) = { x | d?(x,x;) < d4(x,x;) }

Power diagram: Pow(x;) = { x | d2(x,x;) — y; < d2(x,x;) — y; }
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Part. 3 Optimal Transport

Theorem: (direct consequence of MK duality
alternative proof in [Aurenhammer, Hoffmann, Aronov 98] ):

Given a measure p with density, a set of points (y;), a set of positive coefficients v,

such that } v, = J du(x), it is possible to find the weights W = [W(y,) W(Y,) ... V(Y]
such that the map TS is the unique optimal transport map
between pand v =} v; d(y))
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Part. 3 Optimal Transport

Theorem: (direct consequence of MK duality
alternative proof in [Aurenhammer, Hoffmann, Aronov 98] ):

Given a measure p with density, a set of points (y;), a set of positive coefficients v,

such that } v, = J du(x), it is possible to find the weights W = [W(y,) W(Y,) ... V(Y]
such that the map TS is the unique optimal transport map
between pand v =} v; d(y))

Proof: G(\|I) :ZJ J-Lag w(yj) | X =Y, I - \V(Yj) d“] + Zj \V(yj) Vj

Is a concave function of the weight vector [W(y,) W(Y,) -.. V(Y]

I‘W’a’—



Part. 3 Optimal Transport — the AHA paper

ldea of the proof

Consider the function ~ f(W) = J.(” X—T(X) ||> - \|I(T(X))) du(x)

The (unknown) weights W = [(y) Y(Y) ... W(Ym)]
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ldea of the proof

Consider the function ~ f(W) = J.(” X—T(X) ||> - \|I(T(X))) du(x)

Fixed T f- (W)

\

f:(W) is linear in W




Part. 3 Optimal Transport — the AHA paper

ldea of the proof

Consider the function ~ f(W) = J.(” X—T(X) ||> - \|I(T(X))) du(x)

fr(W)

\

f:(W) is linear in W

fTW(W) . defined by power diagram

> fixed W




Part. 3 Optimal Transport — the AHA paper

ldea of the proof

Consider the function ~ f(W) = J.[(” X— T(X) ||2 — W(T(X)))]du(x)

f:(W) is linear in W

fTW(W) = ming (W)

> fixed W




Part. 3 Optimal Transport — the AHA paper

ldea of the proof

Consider the function ~ f(W) = J.(” X—T(X) ||> - \|I(T(X))) du(x)

f:(W) is linear in W

W — fr (W)isconcave 3
(because its graph is the lower
enveloppe of linear functions)

I&'z

fr(W)

\

fTW(W) = ming f (W)

> W




Part. 3 Optimal Transport — the AHA paper

ldea of the proof

Consider the function ~ f(W) = J.(” X—T(X) ||> - \|I(T(X))) dp(x)

fr(W)

\

(W)
f:(W) is linear in W A
W — f; (W)isconcave
(because its graph is the lower
enveloppe of linear functions) _
fTW(W) = ming f (W)
Consider g(W) = fTW(W) + 2V > W
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Part. 3 Optimal Transport — the AHA paper

ldea of the proof

Consider the function ~ f(W) = J.(” X—T(X) ||> - \|I(T(X))) dp(x)

fr(W)

\

(W)
f:(W) is linear in W A
W — f; (W)isconcave
(because its graph is the lower
enveloppe of linear functions) _
fTW(W) = ming f (W)
Consider g(W) = fTW(W) + 2V > W

og/oVi= Vj - J.pow(yj)” x—Y; [Pdu(x) and g is concave.
I“”’“f—
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Semi-discrete OT Summary:

Sup

(DMK) e G(y) = IX\VC (X)dp +J-Y\V(Y)dV

G(y) = g(W) :Zj ILag i) 1X =Y P - wiy) dy + Zj W(Y;) V; is concave
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Part. 3 Optimal Transport — the algorithm

Semi-discrete OT Summary:

Sup

(DMK) e G(y) = ijC (X)dp +J-Y\V(Y)dV

G(y) = g(W) :Zj ILag i) 1X =Y P - wiy) dy + Zj W(Y;) V; is concave

0G/oVi= Vj -J-pow(yj)” x—Y; [Pdu(x) (=0 at the maximum)

[\

Desired mass at y, Mass transported to y,

I&zu’a,-




Part. 3 Optimal Transport — the algorithm

The [AHA] paper summary:
» The optimal weights minimize a convex function
* The gradient of this convex function is easy to compute

Note: the weight w(s) correspond to the Kantorovich potential \/(x)
(solves a “discrete Monge-Ampere” equation)

The algorithm:

Input: two tetrahedral meshes M, and M,
Output: a morphing between M; and M,
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The [AHA] paper summary:
» The optimal weights minimize a convex function
* The gradient of this convex function is easy to compute

Note: the weight w(s) correspond to the Kantorovich potential \/(x)
(solves a “discrete Monge-Ampere” equation)

The algorithm:
Input: two tetrahedral meshes M, and M,
Output: a morphing between M; and M,

Step 1: sample M, with N points (s; ... Sy)

Step 2: initialize the weights (w, ... wy) = (0 ... 0)

Step 3: minimize g(w; ... wy) with a quasi-Newton algorithm:
For each iterate (s; ... sy )®:

Compute Pow( (w;, s)) ) 1 M, [Nivoliers, L 2014, Curves and Surfaces]
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Compute Pow( (w,, s) ) N M, [Nivoliers, L 2014, Curves and Surfaces]




Part. 3 Optimal Transport — the algorithm

Compute Pow( (w,, s) ) N M, [Nivoliers, L 2014, Curves and Surfaces]
Implementation in GEOGRAM (http://alice.loria.fr/software/geogram

| )L
T
,,,.' . /
) |
2N %
v & < '
L -®

®

Predicates + Predicate Construction Kit [L 2015] — available for download
I &Izu’a,-



Part. 3 Optimal Transport — the algorithm

The [AHA] paper summary:
» The optimal weights minimize a convex function
* The gradient of this convex function is easy to compute

Note: the weight w(s) correspond to the Kantorovich potential \/(x)
(solves a “discrete Monge-Ampere” equation)

The algorithm:
Input: two tetrahedral meshes M, and M,
Output: a morphing between M; and M,

Step 1: sample M, with N points (s; ... Sy)

Step 2: initialize the weights (w, ... wy) = (0 ... 0)

Step 3: minimize g(w; ... wy) with a quasi-Newton algorithm:
For each iterate (s; ... sy )®:

Compute Pow( (w;, s) ) 1 M; [L 2014, Curves and Surfaces]

Compute g and grad g
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The [AHA] paper summary:
» The optimal weights minimize a convex function
* The gradient of this convex function is easy to compute

Note: the weight w(s) correspond to the Kantorovich potential \/(x)
(solves a “discrete Monge-Ampere” equation)

The algorithm:
Input: two tetrahedral meshes M, and M,
Output: a morphing between M; and M,

Step 1: sample M, with N points (s; ... Sy)

Step 2: initialize the weights (w, ... wy) = (0 ... 0)

Step 3: minimize g(w; ... wy) with a quasi-Newton algorithm:
For each iterate (s; ... sy )®:

Compute Pow( (w;, s) ) 1 M; [L 2014, Curves and Surfaces]

Compute g and grad g
+ Multilevel version [Merigot 2011] (2D),

[L 2014 arXiv, M2AN 2015] (3D & relation with Centroidal Voronoi Tesselation)
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* The gradient of this convex function is easy to compute

Note: the weight w(s) correspond to the Kantorovich potential \/(x)
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The algorithm:

Summary:

The algorithm computes the weights w; such that the power cells associated with
the Diracs correspond to the preimages of the Diracs.
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Part. 4 Optimal Transport — 2D examples
Numerical Experiment: A disk becomes two disks
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Numerical Experiment: A sphere becomes a cube
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Numerical Experiment: A sphere becomes two spheres
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Numerical Experiment: Armadillo to sphere
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Numerical Experiment: Other examples




Part. 4 Optimal Transport — 3D examples
Numerical Experiment: Varying density




Part. 4 Optimal Transport — 3D examples
Numerical Experiment: Performances

nb masses | 1000 2000 5000 10000 30000 50000 10° 3 x 10° 5 x 10° 10°
time (s) 1.45 32 73 173 55 154 187 671 1262 2649

TABLE 4. Statistics for the Armadillo — sphere optimal transport with varying number of
masses (see third row of Figure 12). Timings are given in seconds. The multi-level algorithm
with BRIO pre-ordering and degree 2 regressions is used.
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Numerical Experiment: Performances

nb masses | 1000 2000 5000 10000 30000 50000 10> 3 x 10> 5 x 10> 10°

time (s) 145 32 7.3 173 55 154 187 671 1262 2649
TABLE 4. Statistics for the Armadillo — sphere optimal transport with varying number of
masses (see third row of Figure 12). Timings are given in seconds. The multi-level algorithm
with BRIO pre-ordering and degree 2 regressions is used.

Note that a few years ago, several hours of supercomputer time were needed
for computing OT with a few thousand Dirac masses, with a combinatorial
algorithm in O(n3)
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Numerical Experiment: Performances

time (s) 1.45 3.2 173 55 154 187 671 1262 2649
TABLE 4. Statistics for the llo — sphere optimal transport with varying number of
masses (see third row of Figure 12). Timings are given in seconds. The multi-level algorithm
with BRIO pre-ordering and degree 2 regressions is used.

[—— =
nb masses | 1000 2000| 5000 [10000 30000 50000 10° 3 x 10> 5 x 10° 10°
7.3 I

Note that a few years ago, several hours of supercomputer time were needed
for computing OT with a few thousand Dirac masses, with a combinatorial
algorithm in O(n3)

With the semi-discrete algorithm, it takes less than 10 seconds on my laptop
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Numerical Experiment: Performances

nb masses | 1000 2000 5000 10000 30000 50000 10> 3 x 10> 5 x 10° J10°

time (s) 1.45 3.2 7.3 173 55 154 187 671 1262 |2649
TABLE 4. Statistics for the Armadillo — sphere optimal transport with varying number of
masses (see third row of Figure 12). Timings are given in seconds. The multi-level algorithm
with BRIO pre-ordering and degree 2 regressions is used.

Note that a few years ago, several hours of supercomputer time were needed
for computing OT with a few thousand Dirac masses, with a combinatorial
algorithm in O(n3)

In the semi-discrete setting, my 3D version of Merigot’s multigrid algorithm
computes OT for 1 million Dirac masses in less than 1 hour on a laptop PC
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Part. 4 Optimal Transport — 3D examples
Numerical Experiment: Performances

nb masses | 1000 2000 5000 10000 30000 50000 10° 3 x 10° 5 x 10> f10°

time (s) 1.45 3.2 7.3 173 55 154 187 671 1262 |2649
TABLE 4. Statistics for the Armadillo — sphere optimal transport with varying number of
masses (see third row of Figure 12). Timings are given in seconds. The multi-level algorithm
with BRIO pre-ordering and degree 2 regressions is used.

Note that a few years ago, several hours of supercomputer time were needed
for computing OT with a few thousand Dirac masses, with a combinatorial
algorithm in O(n3)

In the semi-discrete setting, my 3D version of Merigot’s multigrid algorithm
computes OT for 1 million Dirac masses in less than 1 hour on a laptop PC

Even much faster convergence can probably be reached with a true Newton
solver (and several acceleration tricks), still investigating...
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Other topics

*Euler equation in more complicated setting:
[Merigot & Mirebeau]

‘Using semi-discrete OT to solve other PDEs
[Benamou, Carlier, Merigot , Oudet]

‘New fluid simulation methods
“power particles” [DeGoes et.al]
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Conclusions — Open questions

* Connections with physics, Legendre transform and entropy ?
[Cuturi & Peyré] — regularized discrete optimal transport — why does it work ?
Hint 1. Minimum action principle subject to conservation laws
Hint 2: Entropy = dual of temperature ; Legendre = Fourier[(+,*) — (Max,+)]...

* More continuous numerical algorithms ?
[Benamou & Brenier] fluid dynamics point of view — very elegant, but 4D problem !!
FEM-type adaptive discretization of the subdifferential (graph of T) ?

* Can we characterize OT in other semi-discrete settings ?
measures supported on unions of spheres
piecewise linear densities

* Connections with computational geometry ?

Singularity set [Figalli] = set of points where T is discontinuous
Looks like a “mutual power diagram”, anisotropic Voronoi diagrams

Y e ol



Conclusions - References

Some references (that this presentation is based on)

A Multiscale Approach to Optimal Transport,
Quentin Mérigot, Computer Graphics Forum, 2011

Variational Principles for Minkowski Type Problems, Discrete Optimal Transport,
and Discrete Monge-Ampere Equations
Xianfeng Gu, Feng Luo, Jian Sun, S.-T. Yau, ArXiv 2013

Minkowski-type theorems and least-squares clustering
AHA! (Aurenhammer, Hoffmann, and Aronov), SIAM J. on math. ana. 1998

Topics on Optimal Transportation, 2003
Optimal Transport Old and New, 2008
Cédric Villani

Jean-David Benamou & Yann Brenier
a fluid formulation of Optimal Transportation, 2000

Laudau and Lifschitz — Course of Theoretical Physics — Volumes | and Il
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Conclusions - References
Other references

Polar factorization and monotone rearrangement of vector-valued functions
Yann Brenier, Comm. On Pure and Applied Mathematics, June 1991

A computational fluid mechanics solution of the Monge-Kantorovich mass transfer
problem, J.-D. Benamou, Y. Brenier, Numer. Math. 84 (2000), pp. 375-393

Pogorelov, Alexandrov — Gradient maps, Minkovsky problem (older than AHA
paper, some overlap, in slightly different context, formalism used by Gu & Yau)

Rockafeller — Convex optimization — Theorem to switch inf(sup()) — sup(inf())
with convex functions (used to justify Kantorovich duality)

New textbook: Filippo Santambrogio — Optimal Transport for Applied
Mathematician, Calculus of Variations, PDEs and Modeling — Jan 15, 2015
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Online resources

All the sourcecode/documentation available from:
alice.loria.fr/software/geogram

Computes semi-discrete OT in 3D
Scales up to millions Dirac masses on a laptop

L., A numerical algorithm for semi-discrete L2 OT in 3D,
ESAIM Math. Modeling and Analysis, accepted
(draft: http://arxiv.org/abs/1409.1279 <= to be fixed: bug

in MA equation in this version, fixed in M2AN journal version)
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http://arxiv.org/abs/1409.1279

Downloads: alice.loria.fr/software n GEOGRAM & GRAPHITE
Video of course on OT: www.loria.fr/~levy
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