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E = ½ m v2 + mc2
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x,y) at time t

Q1: how to compute the 

acceleration of the particles
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div(v) = 0

Q3: mass preservation ?

d

dt

= div(pv)
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(Continuity equation)
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Start with Lagrange coordinates:  

X(t,x)

Minimize

Action: 

t1

t2

1/2 t,x)   dxdt

( = cte)

s.t. X satisfies mass preservation

(X is measure-preserving, more on

for the constraint = pressure

2
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|| x T(x) ||2 dx

s.t. T is measure-preserving
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(T needs to be a map)
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Find a measure defined on X x Y

such that x in X d (x,y) = d (x)

and y in Y d (x,y) = d (x)

that minimizes X x Y || x y ||2 d (x,y)

Find two functions in L1( )  and in L1( )

Such that for all x,y, (x) + y ||2

that maximize X (x)d + Y (y)d

What they charge for loading at x What they charge for unloading at y

Price (loading + unloading) cannot

be greater than transport cost

(else you do the job yourself)

Your point of view:

Try to minimize transport cost
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Find two functions in L1( )  and in L1( )

Such that for all x,y, (x) + y ||2

that maximize X (x)d + Y (y)d

If we got two functions and that satisfy the constraint 

Then it is possible to obtain a better solution by replacing with c defined by:

For all y, c(y) = inf x in X ½|| x y ||2 - (y)

c is called the c-conjugate function of 

If there is a function such that = c then is said to be c-concave

If is c-concave, then cc = 
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What about our initial problem ?

T(x) = x grad (x) = grad (½ x2- (x) )  
{

grad (x) with (x)  := (½ x2- (x)) 

When and have a density u and v, (H (x)). v(grad (x)) = u(x)
Monge-Ampère

equation

for all borel set A, A d = T(A) (|JT|) d = T(A) (H ) d

Find a c-concave function 

that maximizes X (x)d + Y
c(y)d
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Part. 2 Optimal Transport summary

Find a transport map T that minimizes C(T) = X || x T(x) ||2 d (x)

(Kantorovich formulation, dual, c-convex functions)

Brenier, Mc Cann, Trudinger: The optimal transport map is then given by:

T(x) =  grad (x)  

Solve (H (x)). v(grad (x)) = u(x) Monge-Ampère equation 
(When and have a density u and v resp.) 
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Vol(B2
n)1/n ( f n/(n-1))(n-1)/n

L1 Sobolev inegality: Given f: IRn sufficiently regular

Consider a compact set such that Vol( ) = Vol(B2
3)

and f = the indicatrix function of 

Vol Vol(B2
3)1/3   Vol(B2

3)2/3

Vol = Vol 2
3) 



Part. 2 Optimal Transport Isoperimetric inequality

Vol(B2
n)1/n ( f n/(n-1))(n-1)/n

L1 Sobolev inegality:  a proof with OT [Gromov]



Part. 2 Optimal Transport Isoperimetric inequality

Vol(B2
n)1/n ( f n/(n-1))(n-1)/n

L1 Sobolev inegality:  a proof with OT [Gromov]

We suppose w.l.o.g. that f n/(n-1) = 1



Part. 2 Optimal Transport Isoperimetric inequality

Vol(B2
n)1/n ( f n/(n-1))(n-1)/n

L1 Sobolev inegality:  a proof with OT [Gromov]

There exists an optimal transport T =  grad between 

f n/(n-1)(x)dx and 1B2
n/Vol(B2

n)dx

We suppose w.l.o.g. that f n/(n-1) = 1



Part. 2 Optimal Transport Isoperimetric inequality

Vol(B2
n)1/n ( f n/(n-1))(n-1)/n

L1 Sobolev inegality:  a proof with OT [Gromov]

There exists an optimal transport T =  grad between 

f n/(n-1)(x)dx and 1B2
n/Vol(B2

n)dx

We suppose w.l.o.g. that f n/(n-1) = 1

Monge-Ampère equation: Vol(B2
n) fn/(n-1)(x) = det Hess



Part. 2 Optimal Transport Isoperimetric inequality

Vol(B2
n)1/n ( f n/(n-1))(n-1)/n

L1 Sobolev inegality:  a proof with OT [Gromov]

There exists an optimal transport T =  grad between 

f n/(n-1)(x)dx and 1B2
n/Vol(B2

n)dx

We suppose w.l.o.g. that f n/(n-1) = 1

Monge-Ampère equation: Vol(B2
n) fn/(n-1)(x) = det Hess

Arithmetico-geometric ineq: det (H) 1/n



Part. 2 Optimal Transport Isoperimetric inequality

Vol(B2
n)1/n ( f n/(n-1))(n-1)/n

L1 Sobolev inegality:  a proof with OT [Gromov]

There exists an optimal transport T =  grad between 

f n/(n-1)(x)dx and 1B2
n/Vol(B2

n)dx

We suppose w.l.o.g. that f n/(n-1) = 1

Monge-Ampère equation: Vol(B2
n) fn/(n-1)(x) = det Hess

Arithmetico-geometric ineq: det (H) 1/n

det (Hess ) 1/n )/n



Part. 2 Optimal Transport Isoperimetric inequality

Vol(B2
n)1/n ( f n/(n-1))(n-1)/n

L1 Sobolev inegality:  a proof with OT [Gromov]

There exists an optimal transport T =  grad between 

f n/(n-1)(x)dx and 1B2
n/Vol(B2

n)dx

We suppose w.l.o.g. that f n/(n-1) = 1

Monge-Ampère equation: Vol(B2
n) fn/(n-1)(x) = det Hess

Arithmetico-geometric ineq: det (H) 1/n

det (Hess ) 1/n )/n

det (Hess ) 1/n / n



Part. 2 Optimal Transport Isoperimetric inequality

Vol(B2
n)1/n ( f n/(n-1))(n-1)/n

L1 Sobolev inegality:  a proof with OT [Gromov]

We suppose w.l.o.g. that f n/(n-1) = 1

det (Hess ) 1/n )/n
Monge-Ampère equation: 

Vol(B2
n) fn/(n-1)(x) = det Hess



Part. 2 Optimal Transport Isoperimetric inequality

Vol(B2
n)1/n ( f n/(n-1))(n-1)/n

L1 Sobolev inegality:  a proof with OT [Gromov]

We suppose w.l.o.g. that f n/(n-1) = 1

Vol(B2
n) = Vol(B2

n) f n/(n-1) = f Vol(B2
n) f 1/(n-1)

det (Hess ) 1/n )/n
Monge-Ampère equation: 

Vol(B2
n) fn/(n-1)(x) = det Hess



Part. 2 Optimal Transport Isoperimetric inequality

Vol(B2
n)1/n ( f n/(n-1))(n-1)/n

L1 Sobolev inegality:  a proof with OT [Gromov]

We suppose w.l.o.g. that f n/(n-1) = 1

Vol(B2
n) = Vol(B2

n) f n/(n-1) = f Vol(B2
n) f 1/(n-1)

det (Hess ) 1/n )/n
Monge-Ampère equation: 

Vol(B2
n) fn/(n-1)(x) = det Hess



Part. 2 Optimal Transport Isoperimetric inequality

Vol(B2
n)1/n ( f n/(n-1))(n-1)/n

L1 Sobolev inegality:  a proof with OT [Gromov]

We suppose w.l.o.g. that f n/(n-1) = 1

Vol(B2
n) = Vol(B2

n) f n/(n-1) = f Vol(B2
n) f 1/(n-1)

= - grad f . grad 

det (Hess ) 1/n )/n
Monge-Ampère equation: 

Vol(B2
n) fn/(n-1)(x) = det Hess



Part. 2 Optimal Transport Isoperimetric inequality

Vol(B2
n)1/n ( f n/(n-1))(n-1)/n

L1 Sobolev inegality:  a proof with OT [Gromov]

We suppose w.l.o.g. that f n/(n-1) = 1

Vol(B2
n) = Vol(B2

n) f n/(n-1) = f Vol(B2
n) f 1/(n-1)

= - grad f . grad | grad f | (T = grad B2
n )

det (Hess ) 1/n )/n
Monge-Ampère equation: 

Vol(B2
n) fn/(n-1)(x) = det Hess



Part. 2 Optimal Transport Isoperimetric inequality

Vol(B2
n)1/n ( f n/(n-1))(n-1)/n

L1 Sobolev inegality:  a proof with OT [Gromov]

We suppose w.l.o.g. that f n/(n-1) = 1

Vol(B2
n) = Vol(B2

n) f n/(n-1) = f Vol(B2
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G( ) = j Lag (yj) || x yj ||2 - (yj) d +  j (yj) vj
Sup

c

(DMK)

Where: Lag (yj) =  { x  |   || x yj ||2 (yj)  < || x yj ||2 - (yj ) }

Laguerre diagram of the yj

(with the L2 cost || x y ||2 used here, Power diagram)

Weight of yj in the power diagram

is determined by the

weight vector [ (y1) (y2 (ym)]

For all weight vector, is c-concave
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Idea of the proof

Consider the function     fT(W) = (|| x T(x) ||2 (T(X))) d (x)
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Semi-discrete OT Summary:

G( ) = g(W) = j Lag (yj) || x yj ||2 - (yj) d +  j (yj) vj is concave

vj - pow(yj)|| x yj ||2d (x)  (= 0 at the maximum) G / j = 

X
c (x)d + Y (y)d

Sup

c
(DMK) G( )  =

Desired mass at yj Mass transported to yj
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Compute Pow( (wi, si) M1   [Nivoliers, L 2014, Curves and Surfaces]

Implementation in GEOGRAM (http://alice.loria.fr/software/geogram

Predicates + Predicate Construction Kit [L 2015] available for download
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The [AHA] paper summary:

The optimal weights minimize a convex function

The gradient of this convex function is easy to compute 

Note: the weight w(s) correspond to the Kantorovich potential (x)

Monge-

The algorithm:

Input: two tetrahedral meshes M1 and M2

Output: a morphing between M1 and M2

Step 1: sample M2  with N points (s1 sN)

Step 2: initialize the weights (w1 wN

Step 3: minimize g(w1 wN) with a quasi-Newton algorithm:

For each iterate (s1 sN)(k):

Compute Pow( (wi, si) M1   [L 2014, Curves and Surfaces]

Compute g and grad g

+ Multilevel version [Merigot 2011] (2D),  

[L 2014 arXiv, M2AN 2015] (3D & relation with Centroidal Voronoi Tesselation)
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Numerical Experiment: Performances

Note that a few years ago, several hours of supercomputer time were needed 

for computing OT with a few thousand Dirac masses, with a combinatorial

algorithm in O(n3)

In the semi-discrete setting, my 3D version of multigrid algorithm 

computes OT for 1 million Dirac masses in less than 1 hour on a laptop PC

Even much faster convergence can probably be reached with a true Newton



Other topics

Euler equation in more complicated setting: 

[Merigot & Mirebeau]

Using semi-discrete OT to solve other PDEs

[Benamou, Carlier, Merigot , Oudet]

New fluid simulation methods

DeGoes et.al]



Conclusions Open questions

* Connections with physics, Legendre transform and entropy ?

[Cuturi & Peyré] regularized discrete optimal transport why does it work ? 

Hint 1: Minimum action principle subject to conservation laws 

* More continuous numerical algorithms ?

[Benamou & Brenier] fluid dynamics point of view very elegant, but 4D problem !!

FEM-type adaptive discretization of the subdifferential (graph of T) ?

* Can we characterize OT in other semi-discrete settings ?

measures supported on unions of spheres

piecewise linear densities

* Connections with computational geometry ?

Singularity set [Figalli] = set of points where T is discontinuous

Voronoi diagrams



Conclusions - References
Some references (that this presentation is based on)

A Multiscale Approach to Optimal Transport, 

Quentin Mérigot, Computer Graphics Forum, 2011

Variational Principles for Minkowski Type Problems, Discrete Optimal Transport, 

and Discrete Monge-Ampere Equations

Xianfeng Gu, Feng Luo, Jian Sun, S.-T. Yau, ArXiv 2013

Minkowski-type theorems and least-squares clustering

AHA! (Aurenhammer, Hoffmann, and Aronov), SIAM J. on math. ana. 1998

Topics on Optimal Transportation, 2003

Optimal Transport Old and New, 2008

Cédric Villani

Jean-David Benamou & Yann Brenier

a fluid formulation of Optimal Transportation, 2000

Laudau and Lifschitz Course of Theoretical Physics Volumes I and III



Conclusions - References
Other references  

Polar factorization and monotone rearrangement of vector-valued functions

Yann Brenier, Comm. On Pure and Applied Mathematics, June 1991 

A computational fluid mechanics solution of the Monge-Kantorovich mass transfer 

problem, J.-D. Benamou, Y. Brenier,  Numer. Math. 84 (2000), pp. 375-393

Pogorelov, Alexandrov Gradient maps, Minkovsky problem (older than AHA 

paper, some overlap, in slightly different context, formalism used by Gu & Yau)

Rockafeller Convex optimization Theorem to switch inf(sup()) sup(inf()) 

with convex functions (used to justify Kantorovich duality)

New textbook: Filippo Santambrogio Optimal Transport for Applied 

Mathematician, Calculus of Variations, PDEs and Modeling Jan 15, 2015



Online resources

All the sourcecode/documentation available from:

alice.loria.fr/software/geogram

Computes semi-discrete OT in 3D 

Scales up to millions Dirac masses on a laptop 

L., A numerical algorithm for semi-discrete L2 OT in 3D, 

ESAIM Math. Modeling and Analysis, accepted

(draft: http://arxiv.org/abs/1409.1279 <= to be fixed: bug 

in MA equation in this version, fixed in M2AN journal version)

http://arxiv.org/abs/1409.1279
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