

The Principle of Least Action and its Geometric Aspects

... What I understood ...

UCLA IPAM, February 2016

Bruno Lévy ALICE Géométrie & Lumière CENTRE INRIA Nancy Grand-Est

Part. 1. The Least Action Principle

Part. 2. Optimal Transport – Elementary intro.

Part. 3. The Semi-Discrete Case

Part. 4. Understanding What's Going On...

Part. 5. Concluding Words

Yann Brenier

The polar factorization theorem (Brenier Transport)

"Each time the Laplace operator is used in a PDE, it can be replaced with the Monte-Ampère operator, and then interesting things occur"

Innía

Yann Brenier

The polar factorization theorem (Brenier Transport)

Cédric Villani Optimal Transport Old & New Topics on Optimal Transport

"Each time the Laplace operator is used in a PDE, it can be replaced with the Monte-Ampère operator, and then interesting things occur"

Innía

A computer programmer's adventure in MathLand

June 2015 Institut Fourier

March 2015 Bonn

Febr 2015 BIRS (Canada)

Febr 2015 LJLL

Discuss. with Quentin Mérigot (computational geometry – geometric measure theory)

Part. 1 The Least Action Principle

How to "morph" a shape into another one of same mass while minimizing the "effort" ?

Part. 1 The Least Action Principle

How to "morph" a shape into another one of same mass while minimizing the "effort" ?

The "effort" of the best T defines a distance between the shapes

Hamilton, Legendre, Maupertuis

Lagrange

The Least Action Principle

Axiom 1: There exists a function L(x, x, t)

that describes the state of a physical system

Short summary of the 1st chapter of Landau, Lifshitz Course of Theoretical Physics

Hamilton, Legendre, Maupertuis

Lagrange

The Least Action Principle

Axiom 1: There exists a function L(x, x, t)

position

that describes the state of a physical system

Hamilton, Legendre, Maupertuis

Lagrange

The Least Action Principle

Axiom 1: There exists a function L(x, x, t)

that describes the state of a physical system

Hamilton, Legendre, Maupertuis

Lagrange

The Least Action Principle

Axiom 1: There exists a function L(x, x, t)

that describes the state of a physical system

Hamilton, Legendre, Maupertuis

Lagrange

The Least Action Principle

Axiom 1: There exists a function L(x, x, t)

that describes the state of a physical system

Axiom 2: The movement (time evolution) of the physical system minimizes the following integral

nnía

$$\int_{t_1}^{t_2} L(\mathbf{x}, \mathbf{x}, t) dt$$

Axiom 1: There exists a function L(x, x, t)

that describes the state of a physical system

Axiom 2: The movement (time evolution) of the physical system minimizes the following integral

$$\int_{t_1}^{t_2} L(x, x, t) dt$$

Axiom 1: There exists a function L(x, x, t)

that describes the state of a physical system

Axiom 2: The movement (time evolution) of the physical system minimizes the following integral

$$\int_{t_1}^{t_2} L(x, x, t) dt$$

Theorem 1: (Lagrange equation):

$$\frac{\partial L}{\partial x} = \frac{d}{dt} \frac{\partial L}{\partial \dot{x}}$$

Axiom 1: There exists L Axiom 2: The movement minimizes

$$\int_{t_1}^{t_2} L(x, x, t) dt$$

Axiom 3:

Invariance w.r.t. change of Gallileo frame + hom. + isotrop. :

$$\frac{x'}{t} = \frac{x+vt}{t}$$

Theorem 1: (Lagrange equation):

$$\frac{\partial L}{\partial x} = \frac{d}{dt} \frac{\partial L}{\partial \dot{x}}$$

Axiom 1: There exists L Axiom 2: The movement minimizes

$$\int_{t_1}^{t_2} L(\mathbf{x}, \mathbf{x}, t) dt$$

Theorem 1: (Lagrange equation):

$$\frac{\partial L}{\partial x} = \frac{d}{dt} \frac{\partial L}{\partial \dot{x}}$$

Ínría_

Axiom 3:

Invariance w.r.t. change of Gallileo frame + hom. + isotrop. :

$$\frac{x'}{t'} = \frac{x + vt}{t}$$

Theorem 2:

$$\mathbf{\hat{x}} \frac{\partial \mathbf{L}}{\partial \mathbf{\hat{x}}} - \mathbf{L} = \mathsf{cte}$$

Axiom 1: There exists L Axiom 2: The movement minimizes

$$\int_{t_1}^{t_2} L(x, x, t) dt$$

Theorem 1: (Lagrange equation):

$$\frac{\partial L}{\partial x} = \frac{d}{dt} \frac{\partial L}{\partial \dot{x}}$$

Ínría_

Axiom 3:

Invariance w.r.t. change of Gallileo frame + hom. + isotrop. :

$$\binom{x'}{t'} = \frac{x+vt}{t}$$

Theorem 2:

OX

$$\frac{\partial L}{\partial \cdot}$$
 - L = cte

Homogeneity of time \rightarrow Preservation of **energy**

Axiom 1: There exists L Axiom 2: The movement minimizes

$$\int_{t_1}^{t_2} L(x, x, t) dt$$

Theorem 1: (Lagrange equation):

$$\frac{\partial L}{\partial x} = \frac{d}{dt} \frac{\partial L}{\partial x}$$

Axiom 3:

Invariance w.r.t. change of Gallileo frame + hom. + isotrop. :

$$\frac{x'}{t'} = \frac{x+vt}{t}$$

Theorem 2:

$$\overset{\bullet}{\mathbf{x}} \frac{\partial \mathbf{L}}{\partial \overset{\bullet}{\mathbf{x}}} - \mathbf{L} = \mathbf{cte}$$

Homogeneity of time \rightarrow Preservation of **energy**

Homogeneity of space \rightarrow Preservation of **momentum**

Axiom 1: There exists L Axiom 2: The movement minimizes

$$\int_{t_1}^{t_2} L(x, x, t) dt$$

Theorem 1: (Lagrange equation):

$$\frac{\partial L}{\partial x} = \frac{d}{dt} \frac{\partial L}{\partial x}$$

Axiom 3:

Invariance w.r.t. change of Gallileo frame + hom. + isotrop. :

$$\frac{x'}{t'} = \frac{x+vt}{t}$$

Theorem 2:

$$\overset{\bullet}{\mathbf{x}} \frac{\partial \mathbf{L}}{\partial \overset{\bullet}{\mathbf{x}}} - \mathbf{L} = \mathbf{cte}$$

Homogeneity of time \rightarrow Preservation of **energy**

Homogeneity of space \rightarrow Preservation of **momentum**

Isotropy of space \rightarrow Preservation of **angular momentum**

Axiom 3:

Invariance w.r.t. change of

Axiom 1: There exists L Axiom 2: The movement minimizes

Axiom 1: There exists L

Axiom 2: The movement minimizes $\int L$

Theorem 1: (Lagrange equation):

$$\frac{\partial L}{\partial x} = \frac{d}{dt} \frac{\partial L}{\partial x}$$

Free particle:

Theorem 3: v = cte (Newton's law I)

Axiom 3:

Invariance w.r.t. change of Gallileo frame + hom. + isotrop. :

$$\frac{x'}{t'} = \frac{x+vt}{t}$$

Theorem 2:

()X

$$\frac{\partial L}{\partial \mathbf{r}}$$
 - L = cte

Homogeneity of time \rightarrow Preservation of **energy**

Homogeneity of space \rightarrow Preservation of **momentum**

Isotropy of space \rightarrow Preservation of **angular momentum**

Axiom 1: There exists L

Axiom 2: The movement minimizes $\int L$

Theorem 1: (Lagrange equation):

$$\frac{\partial L}{\partial x} = \frac{d}{dt} \frac{\partial L}{\partial x}$$

Free particle:

Theorem 3: v = cte (Newton's law I)

Expression of the Lagrangian:

 $L = \frac{1}{2} m v^2$

Axiom 3:

Invariance w.r.t. change of Gallileo frame + hom. + isotrop. :

$$\frac{x'}{t'} = \frac{x+vt}{t}$$

Theorem 2:

UX

$$\frac{\partial L}{\partial \mathbf{v}}$$
 - L = cte

Homogeneity of time \rightarrow Preservation of **energy**

Homogeneity of space \rightarrow Preservation of **momentum**

Isotropy of space \rightarrow Preservation of **angular momentum**

Axiom 1: There exists L

Axiom 2: The movement minimizes $\int L$

Theorem 1: (Lagrange equation):

$$\frac{\partial L}{\partial x} = \frac{d}{dt} \frac{\partial L}{\partial x}$$

Free particle:

Theorem 3: v = cte (Newton's law I)

Expression of the Lagrangian:

 $L = \frac{1}{2} m v^2$

Expression of the Energy:

 $E = \frac{1}{2} m v^2$

Axiom 3:

Invariance w.r.t. change of Gallileo frame + hom. + isotrop. :

$$\frac{x'}{t'} = \frac{x+vt}{t}$$

Theorem 2:

$$\frac{\partial L}{\partial x} - L = cte$$

Homogeneity of time \rightarrow Preservation of **energy**

Homogeneity of space \rightarrow Preservation of **momentum**

Isotropy of space \rightarrow Preservation of **angular momentum**

Axiom 1: There exists L

Axiom 2: The movement minimizes $\int L$

Theorem 1: (Lagrange equation):

$$\frac{\partial L}{\partial x} = \frac{d}{dt} \frac{\partial L}{\partial \dot{x}}$$

Free particle:

Theorem 3: v = cte (Newton's law I)

Expression of the Lagrangian:

 $L = \frac{1}{2} m v^2$

Expression of the Energy:

$$E = \frac{1}{2} m v^2$$

Axiom 3:

Invariance w.r.t. change of Gallileo frame + hom. + isotrop. :

$$\frac{x'}{t} = \frac{x+vt}{t}$$

Particle in a field:

Expression of the Lagrangian: $L = \frac{1}{2} m v^2 - U(x)$

Axiom 1: There exists L

Axiom 2: The movement minimizes $\int L$

Theorem 1: (Lagrange equation):

$$\frac{\partial L}{\partial x} = \frac{d}{dt} \frac{\partial L}{\partial \dot{x}}$$

Free particle:

Theorem 3: v = cte (Newton's law I)

Expression of the Lagrangian:

 $L = \frac{1}{2} m v^2$

Expression of the Energy:

 $E = \frac{1}{2} m v^2$

Ínría_

Axiom 3:

Invariance w.r.t. change of Gallileo frame + hom. + isotrop. :

$$\frac{x'}{t} = \frac{x+vt}{t}$$

Particle in a field:

Expression of the Lagrangian: $L = \frac{1}{2} m v^2 - U(x)$ Expression of the Energy: $E = \frac{1}{2} m v^2 + U(x)$

Axiom 1: There exists L

Axiom 2: The movement minimizes $\int L$

Theorem 1: (Lagrange equation):

$$\frac{\partial L}{\partial x} = \frac{d}{dt} \frac{\partial L}{\partial \dot{x}}$$

Free particle:

Theorem 3: v = cte (Newton's law I)

Expression of the Lagrangian:

 $L = \frac{1}{2} m v^2$ Expression of the Energy:

 $E = \frac{1}{2} m v^2$

Axiom 3:

Invariance w.r.t. change of Gallileo frame + hom. + isotrop. :

$$\frac{x'}{t} = \frac{x+vt}{t}$$

Particle in a field:

Expression of the Lagrangian: $L = \frac{1}{2} m v^{2} - U(x)$ Expression of the Energy: $E = \frac{1}{2} m v^{2} + U(x)$ Theorem 4: $mx = -\nabla U \text{ (Newton's law II)}$

(relativistic setting)

Axiom 1: There exists L

Axiom 2: The movement minimizes $\int L$

Theorem 1: (Lagrange equation):

$$\frac{\partial L}{\partial x} = \frac{d}{dt} \frac{\partial L}{\partial \dot{x}}$$

Axiom 3:

Invariance w.r.t. Lorentz change of frame

$$\frac{x'}{t'} = \frac{(x-vt) \times \gamma}{(t - vx/c^2) \times \gamma}$$

$$\gamma = 1 / \sqrt{(1 - v^2 / c^2)}$$

The Least Action Principle (relativistic setting – just for fun...)

Axiom 1: There exists L

Axiom 2: The movement minimizes $\int L$

Theorem 1: (Lagrange equation):

$$\frac{\partial L}{\partial x} = \frac{d}{dt} \frac{\partial L}{\partial \dot{x}}$$

Axiom 3:

Invariance w.r.t. Lorentz change of frame

$$\frac{x'}{t'} = \frac{(x-vt) \times \gamma}{(t - vx/c^2) \times \gamma}$$

$$\gamma = 1 / \sqrt{(1 - v^2 / c^2)}$$

Theorem 5:

$$E = \frac{1}{2} \gamma m v^2 + mc^2$$

(quantum physics setting – just for fun...)

In quantum mechanics non just the extreme path contributes to the probability amplitude

$$K(B, A) = \sum_{over all possible paths} \phi[x(t)]$$

where $\Phi[x(t)] = A \exp\left\{\frac{i}{\hbar}S[x(t)]\right\}$

Feynman's path integral formula

$$K(B,A) = \int_{A}^{B} \exp\left(\frac{i}{\hbar}S[B,A]Dx(t)\right)$$

 $P(B, A) = |K(2, 1)|^2$

Fluids

"Lagrange" point of view **Fluids**

Inría

Ínría

Q1: how to compute the acceleration of the particles from v(x,y,t) ?

 $\frac{\mathrm{d} \vee}{\mathrm{d} t} = \frac{\partial \mathbf{v}}{\partial t} + \frac{\partial \mathbf{v}}{\partial \mathbf{x}} \frac{\mathrm{d} \mathbf{x}}{\mathrm{d} t} + \frac{\partial \mathbf{v}}{\partial \mathbf{y}} \frac{\mathrm{d} \mathbf{y}}{\mathrm{d} t}$

Ínría

Q1: how to compute the acceleration of the particles from
$$v(x,y,t)$$
 ?

$$\frac{\mathrm{d}v}{\mathrm{d}t} = \frac{\partial v}{\partial t} + \frac{\partial v}{\partial x}\frac{\mathrm{d}x}{\mathrm{d}t} + \frac{\partial v}{\partial y}\frac{\mathrm{d}y}{\mathrm{d}t}$$
$$= \frac{\partial v}{\partial t} + \frac{\partial v}{\partial x}\frac{v_x}{v_x} + \frac{\partial v}{\partial y}\frac{v_y}{v_y}$$

Ínría

Q1: how to compute the acceleration of the particles from v(x,y,t) ?

 $\frac{dV}{dt} = \frac{\partial v}{\partial t} + \frac{\partial v}{\partial x}\frac{dx}{dt} + \frac{\partial v}{\partial y}\frac{dy}{dt}$ $= \frac{\partial v}{\partial t} + \frac{\partial v}{\partial x}\frac{v_x}{v_x} + \frac{\partial v}{\partial y}\frac{v_y}{v_y}$ $= \frac{\partial v}{\partial t} + \frac{v.\nabla v}{v}$

Inría

Q1: how to compute the acceleration of the particles from v(x,y,t) ?

 $\frac{dV}{dt} = \frac{\partial v}{\partial t} + \frac{\partial v}{\partial x}\frac{dx}{dt} + \frac{\partial v}{\partial y}\frac{dy}{dt}$ $= \frac{\partial v}{\partial t} + \frac{\partial v}{\partial x}\frac{v_x}{v_x} + \frac{\partial v}{\partial y}\frac{v_y}{v_y}$ $= \frac{\partial v}{\partial t} + \frac{v.\nabla v}{v}$

Inría

Fluids "Euler" point of view

Q1: how to compute the acceleration of the particles from v(x,y,t) ?

- $\frac{\mathrm{d} v}{\mathrm{d} t} = \frac{\partial v}{\partial t} + \frac{v \cdot \nabla v}{v}$
- Q2: incompressible fluids ?

"grid point" (x,y) at time t

Fluids "Euler" point of view

Q1: how to compute the acceleration of the particles from v(x,y,t) ?

- $\frac{\mathrm{d} v}{\mathrm{d} t} = \frac{\partial v}{\partial t} + \frac{v \cdot \nabla v}{v}$
- Q2: incompressible fluids ?

"grid point" (x,y) at time t

Fluids "Euler" point of view Q1: how to compute the acceleration of the particles from v(x, y, t) ? $\frac{\mathrm{d} \mathrm{v}}{\mathrm{d} \mathrm{t}} = \frac{\partial \mathrm{v}}{\partial \mathrm{t}} + \mathrm{v} \cdot \nabla \mathrm{v}$ Q2: incompressible fluids ? $\rho(x,y,t)$ "nb particles per square" what goes in = v(x,y,t) speed of the particle under what goes out "grid point" (x,y) at time t Ínría

Fluids "Euler" point of view

Q1: how to compute the acceleration of the particles from v(x,y,t) ?

- $\frac{\mathrm{d} v}{\mathrm{d} t} = \frac{\partial v}{\partial t} + \frac{v \cdot \nabla v}{v}$
 - Q2: incompressible fluids ?

div(v) = 0

what goes in = what goes out

 $\rho(x,y,t)$ "nb particles per square"

v(x,y,t) speed of the particle under "grid point" (x,y) at time t

Fluids "Euler" point of view

Q1: how to compute the acceleration of the particles from v(x,y,t) ?

- $\frac{\mathrm{d} v}{\mathrm{d} t} = \frac{\partial v}{\partial t} + \frac{v \cdot \nabla v}{v}$
- Q2: incompressible fluids ? $di \lor (\lor) = 0$

Q3: mass preservation ?

Fluids "Euler" point of view $\rho(x,y,t)$ "nb particles per square" v(x,y,t) speed of the particle under

"grid point" (x,y) at time t

Q1: how to compute the acceleration of the particles from v(x,y,t) ?

 $\frac{\mathrm{d} v}{\mathrm{d} t} = \frac{\partial v}{\partial t} + v \cdot \nabla v$

Q2: incompressible fluids ?

div(v) = 0

Q3: mass preservation ?

$$\frac{d \rho}{dt} = - di \vee (\rho \vee)$$

(Continuity equation)

Start with Lagrange coordinates: "particle trajectories": X(t, X)

Inría

Start with Lagrange coordinates: "particle trajectories": X(t, X)

Start with Lagrange coordinates: "particle trajectories": X(t, X)

Start with Lagrange coordinates: "particle trajectories": X(t, X)

Start with Lagrange coordinates: "particle trajectories": X(t, X)

s.t. X satisfies mass preservation (X is measure-preserving, more on this later...)

Acceleration of the **final** particle "under the grid"

00=X $\Theta(s)$ S Measure - preserving ? वमु $\Rightarrow \forall \phi \mid div \phi = 0 \forall t, \\ \phi(t_{ij}) = \phi(t_{ij}, j) = 0 \quad j \int_{t_{ij}}^{t_{ij}} \int_{t_{ij}}^{t_{ij}} \int_{t_{ij}}^{t_{ij}} \left(\frac{2v}{2t} + v \nabla v \right) (t_{ij}) \phi(t_{ij}) dt dy = 0$ -Vp [Equation d'Euler d'un Fluide incompressible To J=Y Chemin

Start with Lagrange coordinates: "particle trajectories": X(t, X)

s.t. X satisfies mass preservation (X is measure-preserving, more on this later...)

Fluids – Benamou Brenier

Fluids – Benamou Brenier

Minimize

$$A(\rho, v) = (t_2 - t_1) \int_{t_1}^{t_2} \int_{\Omega} \rho(x, t) ||v(t, x)||^2 dx dt$$

$$s.t. \ \rho(t_1, .) = \rho_1 \quad ; \quad \rho(t_2, .) = \rho_2 \quad ; \quad \frac{d \rho}{dt} = - \operatorname{div}(\rho v)$$

Fluids – Benamou Brenier

Minimize

$$A(\rho,v) = (t_2-t_1) \int_{t_1}^{t_2} \rho(x,t) ||v(t,x)||^2 dx dt$$

$$t_1 \Omega$$
S.t. $\rho(t_1,.) = \rho_1$; $\rho(t_2,.) = \rho_2$; $\frac{d \rho}{dt} = - \operatorname{div}(\rho \vee)$
Minimize $C(T) = \int_{\Omega}^{t_1} \rho(x) ||x - T(x)||^2 dx$
S.t. T is measure-preserving

Inría

Optimal Transport an elementary introduction

(X;µ)

(Y;v)

Two measures
$$\mu$$
, v such that $\int_X d\mu(x) = \int_Y dv(x)$

(X;µ)

(Y;v)

A map T is a *transport map* between μ and ν if $\mu(T^{-1}(B)) = \nu(B)$ for any Borel subset B of Y

(X;µ)

(Y;v)

A map T is a *transport map* between μ and \vee if $\mu(T^{-1}(B)) = \vee(B)$ for any Borel subset B

A map T is a *transport map* between μ and ν if $\mu(T^{-1}(B)) = \nu(B)$ for any Borel subset B

(X;µ)

(Y;v)

A map T is a *transport map* between μ and ν if $\mu(T^{-1}(B)) = \nu(B)$ for any Borel subset B (or $\nu = T \# \mu$ the *pushforward* of μ)

(Y;v)

Monge's problem (1787): Find a transport map T that minimizes $C(T) = \int_X ||x - T(x)||^2 d\mu(x)$

Monge's problem:

Find a transport map T that minimizes $C(T) = \int_X ||x - T(x)||^2 d\mu(x)$

- Difficult to study
- If μ has an atom (isolated Dirac), it can only be mapped to another Dirac (T needs to be a map)

Monge's problem:

Find a transport map T that minimizes $C(T) = \int_X ||x - T(x)||^2 d\mu(x)$

Kantorovich's problem (1942):

Find a measure γ defined on X x Y such that $\int_{X \text{ in } X} d\gamma(x,y) = d\nu(y)$ and $\int_{Y \text{ in } Y} d\gamma(x,y) = d\mu(x)$

that minimizes
$$\iint_{X \times Y} || x - y ||^2 d_{Y(x,y)}$$

Monge's problem:

Find a transport map T that minimizes $C(T) = \int_X ||x - T(x)||^2 d\mu(x)$

Kantorovich's problem:

Find a measure γ defined on X x Y such that $\int_{X \text{ in } X} d\gamma(x,y) = d\nu(y)$ and $\int_{Y \text{ in } Y} d\gamma(x,y) = d\mu(x)$

" $\gamma(x,y)$ " : How much sand goes from x to y

that minimizes $\iint_{X \times Y} || x - y ||^2 d_{\gamma(x,y)}$

<u>Monge's problem:</u>

Find a transport map T that minimizes $C(T) = \int_X ||x - T(x)||^2 d\mu(x)$

Kantorovich's problem:

Find a measure
$$\gamma$$
 defined on X x Y
such that $\int_{X \text{ in } X} d\gamma(x,y) = dv(y)$
and $\int_{Y \text{ in } Y} d\gamma(x,y) = d\mu(x)$
Everything that is
transported from x sums to " $\mu(x)$ "

that minimizes $\iint_{X \times Y} || x - y ||^2 d_{\gamma(x,y)}$

<u>Monge's problem:</u>

Find a transport map T that minimizes $C(T) = \int_X ||x - T(x)||^2 d\mu(x)$

Kantorovich's problem:

Find a measure
$$\gamma$$
 defined on X x Y
such that $\int_{X \text{ in } X} d\gamma(x,y) = dv(y)$
and $\int_{Y \text{ in } Y} d\gamma(x,y) = d\mu(x)$
Everything that is
transported to y sums to "v(y)"

that minimizes $\iint_{X \times Y} || x - y ||^2 d_{Y(x,y)}$

Transport plan – example 1/2 : translation of a segment

Transport plan – example 1/2 : translation of a segment

Transport plan – example 2/2 : spitting a segment

Part. 2 Optimal Transport – Duality

Ínría

Part. 2 Optimal Transport – Duality

Duality is easier to understand with a discrete version Then we'll go back to the continuous setting.

Part. 2 Optimal Transport – Duality

(DMK): Min <C, γ > $s.t. \begin{cases} P_1 \gamma = u \\ P_2 \gamma = v \\ \gamma \ge 0 \end{cases}$

Part. 2 Optimal Transport – Duality

(DMK): Min <C, γ > s.t. $\begin{cases}
P_1 \gamma = u \\
P_2 \gamma = v \\
\gamma \ge 0
\end{cases}$

Ínría

1 .
Inna

Part. 2 Optimal Transport – Duality

< u, v > denotes the dot product between u and v

(DMK): Min <C, γ > $\begin{cases} P_1 \gamma = u \\ P_2 \gamma = v \\ \gamma \ge 0 \end{cases}$

Consider $\lfloor (\phi, \psi) = \langle c, \gamma \rangle - \langle \phi, P_1 \gamma - u \rangle - \langle \psi, P_2 \gamma - v \rangle$

Part. 2 Optimal Transport – Duality(DMK):
Min <C, γ >
S.t.Min <C, γ >
P₁ γ = U
P₂ γ = V
 $\gamma \ge 0$

Consider
$$\lfloor (\phi, \psi) = \langle c, \gamma \rangle - \langle \phi, P_1 \gamma - u \rangle - \langle \psi, P_2 \gamma - v \rangle$$

Part. 2 Optimal Transport – Duality(DMK):
Min <C, γ >
S.t.Min <C, γ >
P₁ γ = U
P₂ γ = V
 $\gamma \ge 0$

Consider
$$\lfloor (\phi, \psi) = \langle c, \gamma \rangle - \langle \phi, P_1 \gamma - u \rangle - \langle \psi, P_2 \gamma - v \rangle$$

Part. 2 Optimal Transport – Duality(DMK):
Min <C, γ >
S.t.Min <C, γ >
P₂ γ = V
 $\gamma \ge 0$

Consider
$$\lfloor (\phi, \psi) = \langle c, \gamma \rangle - \langle \phi, P_1 \gamma - u \rangle - \langle \psi, P_2 \gamma - v \rangle$$

 $\begin{array}{l} \text{Consider now: Inf} \left[\begin{array}{c} \text{Sup}[\ \ \Box(\phi,\psi) \end{array} \right] \right] \\ \gamma \geq 0 \quad \begin{array}{c} \phi \ \in \mathrm{IR}^m \\ \psi \in \mathrm{IR}^n \end{array} \end{array}$

Part. 2 Optimal Transport – Duality(DMK):
Min \gamma>
S.t.
$$\begin{cases} P_1 \gamma = u \\ P_2 \gamma = v \\ \gamma \ge 0 \end{cases}$$

Consider
$$\lfloor (\phi, \psi) = \langle c, \gamma \rangle - \langle \phi, P_1 \gamma - u \rangle - \langle \psi, P_2 \gamma - v \rangle$$

Part. 2 Optimal Transport – Duality(DMK):
Min \gamma>
S.t.
$$\begin{cases} P_1 \ \gamma = u \\ P_2 \ \gamma = v \\ \gamma \ge 0 \end{cases}$$

Consider
$$\lfloor (\phi, \psi) = \langle c, \gamma \rangle - \langle \phi, P_1 \gamma - u \rangle - \langle \psi, P_2 \gamma - v \rangle$$

Consider now: Inf $\begin{bmatrix} Sup[\sqcup(\phi, \psi) \end{bmatrix} \end{bmatrix} = Inf [< C, \gamma >]$ (DMK) $\gamma \ge 0 \quad \substack{\phi \in IR^m \\ \psi \in IR^n} \quad \substack{\gamma \ge 0 \\ P_1 \gamma = u \\ P_2 \gamma = v}$

(DMK): **Part. 2** Optimal Transport – Duality Min < c, γ > s.t. $\begin{cases} P_1 \gamma = u \\ P_2 \gamma = v \\ \gamma \ge 0 \end{cases}$ Inf [Sup[<c, γ > - < ϕ , P₁ γ - u> - < ψ , P₂ γ - v>]] $\gamma \geq 0 \quad \phi \ \in IR^m$ $\psi \in IR^n$

Part. 2 Optimal Transport – Duality(DMK):
Min \gamma >
S.t.
$$\begin{cases} P_1 \gamma = u \\ P_2 \gamma = v \\ \gamma \ge 0 \end{cases}$$
Inf $\begin{bmatrix} Sup[- <\phi, P_1 \gamma - u > - <\psi, P_2 \gamma - v >] \end{bmatrix}$ $\gamma \ge 0 \quad \end{v} \in IR^m \quad \end{v} \in IR^m \quad \end{v} \in IR^m \quad \end{v} = 0$ Sup[Inf[\gamma > - <\phi, P_1 \gamma - u > - <\psi, P_2 \gamma - v >] \end{bmatrix} $\varphi \in IR^m \quad \end{v} \neq 0$

Ínría

$$\begin{array}{l} \mbox{(DMK):}\\ \mbox{Min } < c, \gamma > \\ \mbox{S.t.} & \left[\begin{array}{c} P_1 \ \gamma = u \\ P_2 \ \gamma = v \\ \gamma \ge 0 \end{array} \right] \\ \mbox{Y } \geq 0 \end{array} \\ \begin{array}{l} \mbox{Inf} \left[\begin{array}{c} \mbox{Sup} \left[< c, \gamma > - < \phi, P_1 \ \gamma - u > - < \psi, P_2 \ \gamma - v > \right] \right] \\ \mbox{Y } \geq 0 \end{array} \\ \mbox{Sup} \left[\begin{array}{c} \mbox{Inf} \left[< c, \gamma > - < \phi, P_1 \ \gamma - u > - < \psi, P_2 \ \gamma - v > \right] \right] \\ \mbox{Exchange Inf Sup} \end{array} \\ \begin{array}{c} \mbox{Sup} \left[\begin{array}{c} \mbox{Inf} \left[< c, \gamma > - < \phi, P_1 \ \gamma - u > - < \psi, P_2 \ \gamma - v > \right] \right] \\ \mbox{Exchange Inf Sup} \end{array} \\ \mbox{Sup} \left[\begin{array}{c} \mbox{Inf} \left[< c, \gamma > - < \phi, P_1 \ \gamma - u > - < \psi, P_2 \ \gamma - v > \right] \right] \\ \mbox{Expand/Reorder/Collect} \end{array} \\ \mbox{Sup} \left[\begin{array}{c} \mbox{Inf} \left[< \gamma, c - P_1^t \ \phi - P_2^t \ \psi > + < \phi, u > + < \psi, v > \right] \right] \\ \mbox{W } \in \mbox{IR}^n \end{array} \right] \end{array}$$

Part. 2 Optimal Transport – Duality(DMK):
Min \gamma >
$$S.t. \begin{bmatrix} P_1 \gamma = u \\ P_2 \gamma = v \\ \gamma \ge 0 \end{bmatrix}$$
Inf $\begin{bmatrix} Sup[- <\phi, P_1 \gamma - u > - <\psi, P_2 \gamma - v >] \end{bmatrix}$
 $\gamma \ge 0 \quad \psi \in IR^n$ Exchange Inf SupSup[Inf[\gamma > - <\phi, P_1 \gamma - u > - <\psi, P_2 \gamma - v >] \end{bmatrix}
 $\psi \in IR^n$ Expand/Reorder/CollectSup[Inf[< $\gamma, c - P_1^t \phi - P_2^t \psi > + <\phi, u > + <\psi, v >] \end{bmatrix}$
 $\psi \in IR^n$ Interpret

Part. 2 Optimal Transport – Duality(DMK):
Min
$$<$$
C, $\gamma >$
S.t. $\begin{cases} P_1 \gamma = u \\ P_2 \gamma = v \\ \gamma \ge 0 \end{cases}$

$$Sup[Inf[< \gamma, c-P_1^t \phi - P_2^t \psi > + <\phi, u > + <\psi, v >]]$$

$$\varphi \in IR^m \quad \gamma \ge 0$$

$$\psi \in IR^n$$

Interpret

$$Sup[<\phi,u> + <\psi, v>]$$
(DDMK)
$$\varphi \in IR^{m}$$

$$\psi \in IR^{n}$$

$$P_{1}^{t} \varphi + P_{2}^{t} \psi \leq C$$

Part. 2 Optimal Transport – Duality(DMK):
Min \gamma >
$$\begin{bmatrix} P_1 \gamma = U \\ P_2 \gamma = V \\ \gamma \ge 0 \end{bmatrix}$$
 $\sup [\inf [< \gamma, c - P_1^t \phi - P_2^t \psi > + <\phi, u > + <\psi, v >]] \\ \psi \in IR^n \\ \psi \in IR^n \end{bmatrix}$ Interpret $\sup [<\phi, u > + <\psi, v >]$
 $\psi \in IR^n \\ \psi \in IR^n \\ P_i^t \phi + P_2^t \psi \le c$ (DDMK)
 $\phi_i + \psi_j \le c_{ij} \quad \forall (i,j)$

Kantorovich's problem:

Find a measure
$$\gamma$$
 defined on X x Y
such that $\int_{X \text{ in } X} d\gamma(x,y) = d\mu(x)$
and $\int_{Y \text{ in } Y} d\gamma(x,y) = d\nu(x)$
that minimizes $\iint_{X \times Y} ||x - y||^2 d\gamma(x,y)$

Dual formulation of Kantorovich's problem (Continuous):

Find two functions φ in L¹(μ) and ψ in L¹(v) Such that for all x,y, $\varphi(x) + \psi(y) \le \frac{1}{2} ||x - y||^2$ that maximize $\int_X \varphi d\mu + \int_Y \psi dv$

Kantorovich's problem:

Find a measure γ defined on X x Y such that $\int_{X \text{ in } X} d\gamma(x,y) = d\mu(x)$ and $\int_{Y \text{ in } Y} d\gamma(x,y) = dv(x)$

that minimizes $\iint_{X \times Y} ||x - y||^2 d\gamma(x,y)$

Your point of view: Try to minimize transport cost

Dual formulation of Kantorovich's problem:

Find two functions φ in L¹(μ) and ψ in L¹(v) Such that for all x,y, $\varphi(x) + \psi(y) \leq \frac{1}{2} ||x - y||^2$ that maximize $\int_X \varphi d\mu + \int_Y \psi dv$

Kantorovich's problem:

Find a measure γ defined on X x Y such that $\int_{X \text{ in } X} d\gamma(x,y) = d\mu(x)$ and $\int_{Y \text{ in } Y} d\gamma(x,y) = dv(x)$

that minimizes $\iint_{X \times Y} ||x - y||^2 d\gamma(x,y)$

Your point of view: Try to minimize transport cost

Dual formulation of Kantorovich's problem:

Find two functions φ in $L^1(\mu)$ and ψ in $L^1(v)$ Such that for all x,y, $\varphi(x) + \psi(y) \leq \frac{1}{2} ||x - y||^2$ that maximize $\int_X \varphi d\mu + \int_Y \psi dv$

Point of view of a "transport company": Try to maximize transport price

Kantorovich's problem:

Find a measure γ defined on X x Y such that $\int_{X \text{ in } X} d\gamma(x,y) = d\mu(x)$ and $\int_{Y \text{ in } Y} d\gamma(x,y) = dv(x)$

that minimizes $\iint_{X \times Y} ||x - y||^2 d\gamma(x,y)$

Your point of view: Try to minimize transport cost

Dual formulation of Kantorovich's problem:

Find two functions φ in L¹(μ) and ψ in L¹(v) Such that for all x,y, $\varphi(x) + \psi(y) \le \frac{1}{2} ||x - y||^2$ that maximize $\int_X \varphi(x) d\mu + \int_Y \psi(y) dv$

What they charge for loading at x

Kantorovich's problem:

Find a measure γ defined on X x Y such that $\int_{X \text{ in } X} d\gamma(x,y) = d\mu(x)$ and $\int_{Y \text{ in } Y} d\gamma(x,y) = dv(x)$

that minimizes $\iint_{X \times Y} ||x - y||^2 d\gamma(x,y)$

Your point of view: Try to minimize transport cost

Dual formulation of Kantorovich's problem:

Find two functions φ in L¹(μ) and ψ in L¹(v) Such that for all x,y, $\varphi(x) + \psi(y) \le \frac{1}{2} ||x - y||^2$ that maximize $\int_X \varphi(x) d\mu + \int_Y \psi(y) dv$ What they charge for loading at x What they charge for unloading at y

Kantorovich's problem:

Find a measure γ defined on X x Y such that $\int_{X \text{ in } X} d\gamma(x,y) = d\mu(x)$ and $\int_{Y \text{ in } Y} d\gamma(x,y) = d\nu(x)$

that minimizes $\iint_{X \times Y} ||x - y||^2 d\gamma(x,y)$

Dual formulation of Kantorovich's problem:

Find two functions φ in L¹(μ) and ψ in L¹(v)

Such that for all x,y, $\varphi(x) + \psi(y) \leq \frac{1}{2} ||x - y||^2$

that maximize $\int_X \phi(x) d\mu + \int_Y \psi(y) dv$

Your point of view: Try to minimize transport cost

Price (loading + unloading) cannot be greater than transport cost (else you do the job yourself)

What they charge for loading at x

What they charge for unloading at y

Dual formulation of Kantorovich's problem:

Find two functions φ in L¹(μ) and ψ in L¹(v) Such that for all x,y, $\varphi(x) + \psi(y) \le \frac{1}{2} ||x - y||^2$ that maximize $\int_X \varphi(x) d\mu + \int_Y \psi(y) dv$

Dual formulation of Kantorovich's problem:

Find two functions φ in L¹(μ) and ψ in L¹(v) Such that for all x,y, $\varphi(x) + \psi(y) \le \frac{1}{2} ||x - y||^2$ that maximize $\int_X \varphi(x) d\mu + \int_Y \psi(y) dv$

If we got two functions φ and ψ that satisfy the constraint

Then it is possible to obtain a better solution by replacing ψ with φ^c defined by: For all y, $\varphi^c(y) = \inf_{x \text{ in } X} \frac{1}{2} ||x - y||^2 - \varphi(y)$

Dual formulation of Kantorovich's problem:

Find two functions φ in L¹(μ) and ψ in L¹(V) Such that for all x,y, $\varphi(x) + \psi(y) \le \frac{1}{2} ||x - y||^2$ that maximize $\int_X \varphi(x) d\mu + \int_Y \psi(y) dV$

If we got two functions ϕ and ψ that satisfy the constraint

Then it is possible to obtain a better solution by replacing ψ with ϕ^c defined by: For all y, $\phi^c(y) = \inf_{x \text{ in } X} \frac{1}{2} ||x - y||^2 - \phi(y)$

- ϕ^c is called the **c-conjugate** function of ϕ
- If there is a function φ such that $\psi = \varphi^c$ then ψ is said to be **c-concave**
- If ψ is c-concave, then $\psi^{cc} = \psi$

Dual formulation of Kantorovich's problem:

Find a c-concave function ψ

that maximizes $\int_X \psi(x) d\mu + \int_Y \psi^c(y) dv$

Innía

Dual formulation of Kantorovich's problem:

Find a c-concave function ψ

that maximizes
$$\int_X \psi(x) d\mu + \int_Y \psi^c(y) dv$$

 ψ is called a **"Kantorovich potential"**

Ínría

Dual formulation of Kantorovich's problem:

Find a c-concave function ψ

that maximizes
$$\int_X \psi(x) d\mu + \int_Y \psi^c(y) dv$$

 ψ is called a **"Kantorovich potential"**

What about our initial problem ?

Dual formulation of Kantorovich's problem:

Find a c-concave function ψ

that maximizes
$$\int_X \psi(x) d\mu + \int_Y \psi^c(y) dv$$

 ψ is called a **"Kantorovich potential"**

What about our initial problem ? (i.e., this is T() that we want to find ...)

Theorem 1.

 $\forall (x,y) \in \partial_c \psi, \nabla \psi(x) - \nabla_x c(x,y) = 0$

where $\partial_c \psi = \{(x,y) | \phi(x) + \psi(y) = c(x,y)\}$ denotes the so-called c-subdifferential of ψ .

Theorem 1.

 $\forall (x,y) \in \partial_c \psi, \nabla \psi(x) - \nabla_x c(x,y) = 0$

where $\partial_c \psi = \{(x,y) | \phi(x) + \psi(y) = c(x,y)\}$ denotes the so-called c-subdifferential of ψ .

Proof: see OTON, chap. 10.

Innía

Theorem 1.

 $\forall (x,y) \in \partial_c \psi, \nabla \psi(x) - \nabla_x c(x,y) = 0$

where $\partial_c \psi = \{(x,y) | \phi(x) + \psi(y) = c(x,y)\}$ denotes the so-called c-subdifferential of ψ .

Proof: see OTON, chap. 10.

Heuristic argument (at the beginning of the same chapter):

Innía

Theorem 1.

$$\forall (x,y) \in \partial_c \psi, \nabla \psi(x) - \nabla_x c(x,y) = 0$$

where $\partial_c \psi = \{(x,y) | \phi(x) + \psi(y) = c(x,y)\}$ denotes the so-called c-subdifferential of ψ .

Proof: see OTON, chap. 10.

Heuristic argument (at the beginning of the same chapter):

Consider a point (x, y) on the c-subdifferential $\partial_c \psi$, that satisfies $\phi(y) + \psi(x) = c(x, y)$ (1).

Theorem 1.

$$\forall (x,y) \in \partial_c \psi, \nabla \psi(x) - \nabla_x c(x,y) = 0$$

where $\partial_c \psi = \{(x,y) | \phi(x) + \psi(y) = c(x,y)\}$ denotes the so-called c-subdifferential of ψ .

Proof: see OTON, chap. 10.

Heuristic argument (at the beginning of the same chapter):

Consider a point (x, y) on the c-subdifferential $\partial_c \psi$, that satisfies $\phi(y) + \psi(x) = c(x, y)$ (1). By definition, $\phi(y) = \psi^c(y) = \inf_x c(x, y) - \psi(x)$, thus $\forall \tilde{x}, \phi(y) \leq c(\tilde{x}, y) - \psi(\tilde{x})$, or $\phi(y) + \psi(\tilde{x}) \leq c(\tilde{x}, y)$ (2). By substituting (1) into (2), one gets $\psi(\tilde{x}) - \psi(x) \leq c(\tilde{x}, y) - c(x, y)$ for all \tilde{x} .

Theorem 1.

$$\forall (x,y) \in \partial_c \psi, \nabla \psi(x) - \nabla_x c(x,y) = 0$$

where $\partial_c \psi = \{(x,y) | \phi(x) + \psi(y) = c(x,y)\}$ denotes the so-called c-subdifferential of ψ .

Proof: see OTON, chap. 10.

Heuristic argument (at the beginning of the same chapter):

Consider a point (x, y) on the c-subdifferential $\partial_c \psi$, that satisfies $\phi(y) + \psi(x) = c(x, y)$ (1). By definition, $\phi(y) = \psi^c(y) = \inf_x c(x, y) - \psi(x)$, thus $\forall \tilde{x}, \phi(y) \leq c(\tilde{x}, y) - \psi(\tilde{x})$, or $\phi(y) + \psi(\tilde{x}) \leq c(\tilde{x}, y)$ (2). By substituting (1) into (2), one gets $\psi(\tilde{x}) - \psi(x) \leq c(\tilde{x}, y) - c(x, y)$ for all \tilde{x} .

Imagine now that \tilde{x} follows a trajectory parameterized by ϵ and starting at x. One can compute the gradient along an arbitrary direction w by taking the limit when ϵ tends to zero in the relation $\frac{\psi(\tilde{x})-\psi(x)}{\epsilon} \leq \frac{c(\tilde{x},y)-c(x,y)}{\epsilon}$.

Theorem 1.

$$\forall (x,y) \in \partial_c \psi, \nabla \psi(x) - \nabla_x c(x,y) = 0$$

where $\partial_c \psi = \{(x,y) | \phi(x) + \psi(y) = c(x,y)\}$ denotes the so-called c-subdifferential of ψ .

Proof: see OTON, chap. 10.

Heuristic argument (at the beginning of the same chapter):

Consider a point (x, y) on the c-subdifferential $\partial_c \psi$, that satisfies $\phi(y) + \psi(x) = c(x, y)$ (1). By definition, $\phi(y) = \psi^c(y) = \inf_x c(x, y) - \psi(x)$, thus $\forall \tilde{x}, \phi(y) \leq c(\tilde{x}, y) - \psi(\tilde{x})$, or $\phi(y) + \psi(\tilde{x}) \leq c(\tilde{x}, y)$ (2). By substituting (1) into (2), one gets $\psi(\tilde{x}) - \psi(x) \leq c(\tilde{x}, y) - c(x, y)$ for all \tilde{x} .

Imagine now that \tilde{x} follows a trajectory parameterized by ϵ and starting at x. One can compute the gradient along an arbitrary direction w by taking the limit when ϵ tends to zero in the relation $\frac{\psi(\tilde{x}) - \psi(x)}{\epsilon} \leq \frac{c(\tilde{x}, y) - c(x, y)}{\epsilon}$.

Theorem 1.

$$\forall (x,y) \in \partial_c \psi, \nabla \psi(x) - \nabla_x c(x,y) = 0$$

where $\partial_c \psi = \{(x,y) | \phi(x) + \psi(y) = c(x,y)\}$ denotes the so-called c-subdifferential of ψ .

Proof: see OTON, chap. 10.

Heuristic argument (at the beginning of the same chapter):

Consider a point (x, y) on the c-subdifferential $\partial_c \psi$, that satisfies $\phi(y) + \psi(x) = c(x, y)$ (1). By definition, $\phi(y) = \psi^c(y) = \inf_x c(x, y) - \psi(x)$, thus $\forall \tilde{x}, \phi(y) \leq c(\tilde{x}, y) - \psi(\tilde{x})$, or $\phi(y) + \psi(\tilde{x}) \leq c(\tilde{x}, y)$ (2). By substituting (1) into (2), one gets $\psi(\tilde{x}) - \psi(x) \leq c(\tilde{x}, y) - c(x, y)$ for all \tilde{x} .

Imagine now that \tilde{x} follows a trajectory parameterized by ϵ and starting at x. One can compute the gradient along an arbitrary direction w by taking the limit when ϵ tends to zero in the relation $\frac{\psi(\tilde{x})-\psi(x)}{\epsilon} \leq \frac{c(\tilde{x},y)-c(x,y)}{\epsilon}$.

Theorem 1.

$$\forall (x,y) \in \partial_c \psi, \nabla \psi(x) - \nabla_x c(x,y) = 0$$

where $\partial_c \psi = \{(x,y) | \phi(x) + \psi(y) = c(x,y)\}$ denotes the so-called c-subdifferential of ψ .

Proof: see OTON, chap. 10.

Heuristic argument (at the beginning of the same chapter):

Consider a point (x, y) on the c-subdifferential $\partial_c \psi$, that satisfies $\phi(y) + \psi(x) = c(x, y)$ (1). By definition, $\phi(y) = \psi^c(y) = \inf_x c(x, y) - \psi(x)$, thus $\forall \tilde{x}, \phi(y) \leq c(\tilde{x}, y) - \psi(\tilde{x})$, or $\phi(y) + \psi(\tilde{x}) \leq c(\tilde{x}, y)$ (2). By substituting (1) into (2), one gets $\psi(\tilde{x}) - \psi(x) \leq c(\tilde{x}, y) - c(x, y)$ for all \tilde{x} .

Imagine now that \tilde{x} follows a trajectory parameterized by ϵ and starting at x. One can compute the gradient along an arbitrary direction w by taking the limit when ϵ tends to zero in the relation $\frac{\psi(\tilde{x}) - \psi(x)}{\epsilon} \leq \frac{c(\tilde{x}, y) - c(x, y)}{\epsilon}$. Thus we have $\nabla \psi(x) \cdot w \leq \nabla_x c(x, y) \cdot w$

Theorem 1.

$$\forall (x,y) \in \partial_c \psi, \nabla \psi(x) - \nabla_x c(x,y) = 0$$

where $\partial_c \psi = \{(x, y) | \phi(x) + \psi(y) = c(x, y)\}$ denotes the so-called c-subdifferential of ψ .

Proof: see OTON, chap. 10.

Heuristic argument (at the beginning of the same chapter):

Consider a point (x, y) on the c-subdifferential $\partial_c \psi$, that satisfies $\phi(y) + \psi(x) = c(x, y)$ (1). By definition, $\phi(y) = \psi^c(y) = \inf_x c(x, y) - \psi(x)$, thus $\forall \tilde{x}, \phi(y) \leq c(\tilde{x}, y) - \psi(\tilde{x})$, or $\phi(y) + \psi(\tilde{x}) \leq c(\tilde{x}, y)$ (2). By substituting (1) into (2), one gets $\psi(\tilde{x}) - \psi(x) \leq c(\tilde{x}, y) - c(x, y)$ for all \tilde{x} .

Imagine now that \tilde{x} follows a trajectory parameterized by ϵ and starting at x. One can compute the gradient along an arbitrary direction w by taking the limit when ϵ tends to zero in the relation $\frac{\psi(\tilde{x}) - \psi(x)}{\epsilon} \leq \frac{c(\tilde{x}, y) - c(x, y)}{\epsilon}$. Thus we have $\nabla \psi(x) \cdot w \leq \nabla_x c(x, y) \cdot w$

The same derivation can be done with -w instead of w, and one gets:

$$\forall w, \nabla \psi(x) \cdot w = \nabla_x c(x, y) \cdot w$$
, thus $\forall (x, y) \in \partial_c \psi, \nabla \psi(x) - \nabla_x c(x, y) = 0$.

Dual formulation of Kantorovich's problem:

Find a c-concave function ψ

that maximizes
$$\int_X \psi(x) d\mu + \int_Y \psi^c(y) dv$$

In the L_2 case, i.e. $c(x,y) = 1/2||x-y||^2$, we have $\forall (x,y) \in \partial_c \psi, \nabla \psi(x) + y - x = 0$, thus, whenever the optimal transport map T exists, we have $T(x) = x - \nabla \psi(x) = \nabla (||x||^2/2 - \psi(x))$.

Dual formulation of Kantorovich's problem:

Find a c-concave function ψ

that maximizes
$$\int_X \psi(x) d\mu + \int_Y \psi^c(y) dv$$

In the L_2 case, i.e. $c(x,y) = 1/2||x-y||^2$, we have $\forall (x,y) \in \partial_c \psi, \nabla \psi(x) + y - x = 0$, thus, whenever the optimal transport map T exists, we have $T(x) = x - \nabla \psi(x) = \nabla (||x||^2/2 - \psi(x))$.

grad $\overline{\psi}(x)$ with $\overline{\psi}(x) := (\frac{1}{2} x^2 - \psi(x))$

Part. 2 Optimal Transport – convexity

Dual formulation of Kantorovich's problem:

Find a c-concave function ψ

that maximizes
$$\int_X \psi(x) d\mu + \int_Y \psi^c(y) dv$$

In the L_2 case, i.e. $c(x,y) = 1/2||x-y||^2$, we have $\forall (x,y) \in \partial_c \psi, \nabla \psi(x) + y - x = 0$, thus, whenever the optimal transport map T exists, we have $T(x) = x - \nabla \psi(x) = \nabla (||x||^2/2 - \psi(x))$.

grad $\overline{\psi}(x)$ with $\overline{\psi}(x) := (\frac{1}{2} x^2 - \psi(x))$ $\overline{\psi}$ is convex

Part. 2 Optimal Transport – convexity

Dual formulation of Kantorovich's problem:

Find a c-concave function ψ

that maximizes
$$\int_X \psi(x) d\mu + \int_Y \psi^c(y) dv$$

In the L_2 case, i.e. $c(x,y) = 1/2||x-y||^2$, we have $\forall (x,y) \in \partial_c \psi, \nabla \psi(x) + y - x = 0$, thus, whenever the optimal transport map T exists, we have $T(x) = x - \nabla \psi(x) = \nabla (||x||^2/2 - \psi(x))$.

grad $\overline{\psi}(x)$ with $\overline{\psi}(x) := (\frac{1}{2} x^2 - \psi(x))$ $\overline{\psi}$ is convex

Proof.

$$\begin{split} \psi(x) &= \inf_{y} \frac{|x-y|^2}{2} - \phi(y) \\ &= \inf_{y} \frac{||x||^2}{2} - x \cdot y + \frac{||y||^2}{2} - \phi(y) \\ -\bar{\psi}(x) &= \phi(x) - \frac{||x||^2}{2} = \inf_{y} -x \cdot y + \left(\frac{||y||^2}{2} - \phi(y)\right) \\ \bar{\psi}(x) &= \sup_{y} x \cdot y - \left(\frac{||y||^2}{2} - \phi(y)\right) \end{split}$$

Part. 2 Optimal Transport - convexity

Dual formulation of Kantorovich's problem:

Find a c-concave function ψ

that maximizes
$$\int_X \psi(x) d\mu + \int_Y \psi^c(y) dv$$

In the L_2 case, i.e. $c(x,y) = 1/2||x-y||^2$, we have $\forall (x,y) \in \partial_c \psi, \nabla \psi(x) + y - x = 0$, thus, whenever the optimal transport map T exists, we have $T(x) = x - \nabla \psi(x) = \nabla (||x||^2/2 - \psi(x))$.

Part. 2 Optimal Transport – no collision

Dual formulation of Kantorovich's problem:

Find a c-concave function ψ

that maximizes
$$\int_X \psi(x) d\mu + \int_Y \psi^c(y) dv$$

Part. 2 Optimal Transport – no collision

Dual formulation of Kantorovich's problem:

Find a c-concave function ψ

that maximizes
$$\int_X \psi(x) d\mu + \int_Y \psi^c(y) dv$$

Proof. By contradiction, suppose that you have $t \in (0, 1)$ and $x_1 \neq x_2$ such that:

$$(1-t)x_1 + tT(x_1) = (1-t)x_2 + tT(x_2)$$

Part. 2 Optimal Transport – no collision

Dual formulation of Kantorovich's problem:

Find a c-concave function ψ

that maximizes
$$\int_X \psi(x) d\mu + \int_Y \psi^c(y) dv$$

Two transported particles cannot "collide"

Proof. By contradiction, suppose that you have $t \in (0, 1)$ and $x_1 \neq x_2$ such that:

$$(1-t)x_1 + tT(x_1) = (1-t)x_2 + tT(x_2)$$

$$\begin{aligned} (1-t)x_1 + t\nabla\bar{\psi}(x_1) &= (1-t)x_2 + t\nabla\bar{\psi}(x_2) \\ (1-t)(x_1 - x_2) + t(\nabla\bar{\psi}(x_1) - \nabla\bar{\psi}(x_2)) &= 0 \\ \forall v, (1-t)v \cdot (x_1 - x_2) + tv \cdot (\nabla\bar{\psi}(x_1) - \nabla\bar{\psi}(x_2)) &= 0 \\ \text{take } v &= (x_1 - x_2) \\ (1-t)\|x_1 - x_2\|^2 + t(x_1 - x_2) \cdot (\nabla\bar{\psi}(x_1) - \nabla\bar{\psi}(x_2)) &= 0 \end{aligned}$$

Part. 2 Optimal Transport – Monge-Ampere

Dual formulation of Kantorovich's problem:

Find a c-concave function ψ

that maximizes
$$\int_X \psi(x) d\mu + \int_Y \psi^c(y) dv$$

What about our initial problem ? If T(.) exists, then one can show that: T(x) = x - grad $\psi(x)$ = grad (¹/₂ x²- $\psi(x)$)

grad $\overline{\psi}(x)$ with $\overline{\psi}(x) := (\frac{1}{2} x^2 - \psi(x))$

for all borel set A, $\int_A d\mu = \int_{T(A)} (|JT|) dv$ (change of variable)

Jacobian of T (1st order derivatives)

Part. 2 Optimal Transport – Monge-Ampere

Dual formulation of Kantorovich's problem:

Find a c-concave function ψ

that maximizes
$$\int_X \psi(x) d\mu + \int_Y \psi^c(y) dv$$

What about our initial problem ? If T(.) exists, then one can show that: T(x) = x - grad $\psi(x)$ = grad (½ x²- $\psi(x)$)

grad $\overline{\psi}(x)$ with $\overline{\psi}(x) := (\frac{1}{2} x^2 - \psi(x))$

for all borel set A,
$$\int_A d\mu = \int_{T(A)} (|JT|) dv = \int_{T(A)} (H \overline{\psi}) dv$$

Det. of the Hessian of $\overline{\psi}$ (2nd order derivatives)

Part. 2 Optimal Transport – Monge-Ampere

Dual formulation of Kantorovich's problem:

Find a c-concave function ψ

that maximizes
$$\int_X \psi(x) d\mu + \int_Y \psi^c(y) dv$$

What about our initial problem ? $T(x) = x - \text{grad } \psi(x) = \text{grad } (\frac{1}{2} x^2 - \psi(x))$ $\text{grad } \Phi(x) \text{ with } \Phi(x) := (\frac{1}{2} x^2 - \psi(x))$

for all borel set A,
$$\int_{A} d\mu = \int_{T(A)} (|JT|) dv = \int_{T(A)} (H \overline{\psi}) dv$$

When μ and ν have a density u and v , $(H \overline{\psi}(x))$. $v(\text{grad } \overline{\psi}(x)) = u(x)$ Monge-Ampère equation

Part. 2 Optimal Transport – summary

Find a transport map T that minimizes $C(T) = \int_X ||x - T(x)||^2 d\mu(x)$

Part. 2 Optimal Transport – summary

Find a transport map T that minimizes $C(T) = \int_X ||x - T(x)||^2 d\mu(x)$

After several rewrites and under some conditions.... (Kantorovich formulation, dual, c-convex functions)

Innía

Find a transport map T that minimizes $C(T) = \int_X ||x - T(x)||^2 d\mu(x)$

After several rewrites and under some conditions.... (Kantorovich formulation, dual, c-convex functions)

Solve $(H \overline{\psi}(x))$. $v(\text{grad } \overline{\psi}(x)) = u(x)$ Monge-Ampère equation (When μ and ν have a density u and v resp.)

Find a transport map T that minimizes $C(T) = \int_X ||x - T(x)||^2 d\mu(x)$

After several rewrites and under some conditions.... (Kantorovich formulation, dual, c-convex functions)

Solve $(H \overline{\psi}(x))$. $v(\text{grad } \overline{\psi}(x)) = u(x)$ Monge-Ampère equation (When μ and ν have a density u and v resp.)

Brenier, Mc Cann, Trudinger: *The optimal transport map is then given by:* $T(x) = \text{ grad } \overline{\psi}(x)$

innia

For a given volume, ball is the shape that minimizes border area

L₁ **Sobolev inegality:** Given f: $IR^n \rightarrow IR$ sufficiently regular

$$\int |\operatorname{grad} f| \ge n \operatorname{Vol}(B_2^n)^{1/n} \left(\int f^{n/(n-1)} \right) (n-1)/n$$

Explanation in [Dario Cordero Erauquin] course notes

L₁ **Sobolev inegality:** Given f: $IR^n \rightarrow IR$ sufficiently regular

$\int |\operatorname{grad} f| \ge n \operatorname{Vol}(B_2^n)^{1/n} \left(\int f^{n/(n-1)} \right)^{(n-1)/n}$

Explanation in [Dario Cordero Erauquin] course notes

L₁ **Sobolev inegality:** Given f: $IR^n \rightarrow IR$ sufficiently regular

$$\int |\operatorname{grad} f| \ge n \operatorname{Vol}(B_2^n)^{1/n} \left(\int f^{n/(n-1)} \right) (n-1)/n$$

Explanation in [Dario Cordero Erauquin] course notes

L₁ **Sobolev inegality:** Given f: $IR^n \rightarrow IR$ sufficiently regular

Consider a compact set Ω such that Vol(Ω) = Vol(B₂³) and f = the indicatrix function of Ω

$$\int |\operatorname{grad} f| \ge n \operatorname{Vol}(B_2^n)^{1/n} \left(\int f^{n/(n-1)} \right) (n-1)/n$$

L₁ **Sobolev inegality:** Given f: $IR^n \rightarrow IR$ sufficiently regular

Consider a compact set Ω such that Vol(Ω) = Vol(B₂³) and f = the indicatrix function of Ω

L₁ **Sobolev inegality:** Given f: $IR^n \rightarrow IR$ sufficiently regular

Consider a compact set Ω such that Vol(Ω) = Vol(B₂³) and f = the indicatrix function of Ω

$$\begin{split} & \int |\operatorname{grad} f| \geq n \operatorname{Vol}(B_2^n)^{1/n} \left(\int f^{n/(n-1)} \right)^{(n-1)/n} \\ & \downarrow \\ & \bigvee \\ \operatorname{Vol}(\partial \Omega) \geq n \operatorname{Vol}(B_2^3)^{1/3} \operatorname{Vol}(B_2^3)^{2/3} \\ & \operatorname{Vol}(\partial \Omega) \geq 4 \pi = \operatorname{Vol}(\partial B_2^3) \end{split}$$

L₁ Sobolev inegality: a proof with OT [Gromov]

$$\int |\operatorname{grad} f| \ge n \operatorname{Vol}(B_2^n)^{1/n} \left(\int f^{n/(n-1)} \right) (n-1)/n$$

Ínría

L₁ Sobolev inegality: a proof with OT [Gromov]

$$\int |\operatorname{grad} f| \ge n \operatorname{Vol}(B_2^n)^{1/n} \left(\int f^{n/(n-1)} \right) (n-1)/n$$

We suppose w.l.o.g. that $\int f^{n/(n-1)} = 1$

L1 Sobolev inegality: a proof with OT [Gromov]

$$\int |\operatorname{grad} f| \ge n \operatorname{Vol}(B_2^n)^{1/n} \left(\int f^{n/(n-1)} \right) (n-1)/n$$

We suppose w.l.o.g. that $\int f^{n/(n-1)} = 1$

There exists an optimal transport $T = \text{grad}\overline{\Psi}$ between $f^{n/(n-1)}(x)dx$ and $\mathbf{1}B_2^n/\text{Vol}(B_2^n)dx$

L1 Sobolev inegality: a proof with OT [Gromov]

$$\int |\operatorname{grad} f| \ge n \operatorname{Vol}(B_2^n)^{1/n} \left(\int f^{n/(n-1)} \right) (n-1)/n$$

We suppose w.l.o.g. that $\int f^{n/(n-1)} = 1$

There exists an optimal transport $T = \text{grad}\overline{\Psi}$ between $f^{n/(n-1)}(x)dx$ and $\mathbf{1}B_2^n/\text{Vol}(B_2^n)dx$

Monge-Ampère equation: Vol(B₂ⁿ) $f^{n/(n-1)}(x) = det Hess \overline{\Psi}$

L1 Sobolev inegality: a proof with OT [Gromov]

$$\int |\operatorname{grad} f| \ge n \operatorname{Vol}(B_2^n)^{1/n} \left(\int f^{n/(n-1)} \right) (n-1)/n$$

We suppose w.l.o.g. that $\int f^{n/(n-1)} = 1$

There exists an optimal transport $T = \text{grad}\overline{\Psi}$ between $f^{n/(n-1)}(x)dx$ and $\mathbf{1}B_2^n/\text{Vol}(B_2^n)dx$

 $\checkmark \rightarrow \bigcirc$

Monge-Ampère equation: $Vol(B_2^n) f^{n/(n-1)}(x) = det Hess \overline{\Psi}$

Arithmetico-geometric ineq: det (H) $^{1/n} \leq$ trace(H)/n if H positive

L1 Sobolev inegality: a proof with OT [Gromov]

$$\int |\operatorname{grad} f| \ge n \operatorname{Vol}(B_2^n)^{1/n} \left(\int f^{n/(n-1)} \right) (n-1)/n$$

We suppose w.l.o.g. that $\int f^{n/(n-1)} = 1$

There exists an optimal transport $T = \text{grad}\overline{\Psi}$ between $f^{n/(n-1)}(x)dx$ and $\mathbf{1}B_2^n/\text{Vol}(B_2^n)dx$

 $\checkmark \rightarrow \bigcirc$

Monge-Ampère equation: $Vol(B_2^n) f^{n/(n-1)}(x) = \det Hess \overline{\Psi}$ Arithmetico-geometric ineq: $\det (H)^{1/n} \leq trace(H)/n$ if H positive $\det (Hess \overline{\Psi})^{1/n} \leq trace(Hess \overline{\Psi})/n$

L1 Sobolev inegality: a proof with OT [Gromov]

$$\int |\operatorname{grad} f| \ge n \operatorname{Vol}(B_2^n)^{1/n} \left(\int f^{n/(n-1)} \right) (n-1)/n$$

We suppose w.l.o.g. that $\int f^{n/(n-1)} = 1$

There exists an optimal transport $T = \text{grad}\overline{\Psi}$ between $f^{n/(n-1)}(x)dx$ and $\mathbf{1}B_2^n/\text{Vol}(B_2^n)dx$

 $\rightarrow \bigcirc$

Monge-Ampère equation: $Vol(B_2^n) f^{n/(n-1)}(x) = det Hess \overline{\Psi}$

Arithmetico-geometric ineq: det (H) $^{1/n} \leq$ trace(H)/n if H positive det (Hess $\overline{\Psi}$) $^{1/n} \leq$ trace(Hess $\overline{\Psi}$)/n

det (Hess $\overline{\Psi}$) ^{1/n} $\leq \Delta \overline{\Psi}$ / n

L1 Sobolev inegality: a proof with OT [Gromov]

$$\int |\operatorname{grad} f| \ge n \operatorname{Vol}(B_2^n)^{1/n} \left(\int f^{n/(n-1)} \right) (n-1)/n$$

We suppose w.l.o.g. that $\int f^{n/(n-1)} = 1$ det (Hess $\overline{\Psi}$) $^{1/n} \leq (\Delta \overline{\Psi})/n$

Monge-Ampère equation: Vol(B_2^n) f^{n/(n-1)}(x) = det Hess $\overline{\Psi}$

L1 Sobolev inegality: a proof with OT [Gromov]

$$\int |\operatorname{grad} f| \ge n \operatorname{Vol}(B_2^n)^{1/n} \left(\int f^{n/(n-1)} \right) (n-1)/n$$

We suppose w.l.o.g. that
$$\int f^{n/(n-1)} = 1$$

det (Hess $\overline{\Psi}$) $^{1/n} \leq (\Delta \overline{\Psi})/n$
 $Vol(B_2^n) f^{n/(n-1)}(x) = det Hess \overline{\Psi}$
 $Vol(B_2^n) = Vol(B_2^n) \int f^{n/(n-1)} = \int f Vol(B_2^n) f^{1/(n-1)}$

L₁ Sobolev inegality: a proof with OT [Gromov]

$$\int |\operatorname{grad} f| \ge n \operatorname{Vol}(B_2^n)^{1/n} \left(\int f^{n/(n-1)} \right) (n-1)/n$$

We suppose w.l.o.g. that
$$\int f^{n/(n-1)} = 1$$

det (Hess $\overline{\Psi}$) $^{1/n} \leq (\Delta \overline{\Psi})/n$
 $Vol(B_2^n) f^{n/(n-1)}(x) = det Hess \overline{\Psi}$
 $Vol(B_2^n) = Vol(B_2^n) \int f^{n/(n-1)} = \int f Vol(B_2^n) f^{1/(n-1)} \leq 1/n \int f \Delta \overline{\Psi}$

L₁ Sobolev inegality: a proof with OT [Gromov]

$$\int |\operatorname{grad} f| \ge n \operatorname{Vol}(B_2^n)^{1/n} \left(\int f^{n/(n-1)} \right) (n-1)/n$$

We suppose w.l.o.g. that
$$\int f^{n/(n-1)} = 1$$

det (Hess $\overline{\Psi}$) $^{1/n} \leq (\Delta \overline{\Psi})/n$
 $Vol(B_2^n) f^{n/(n-1)}(x) = det Hess \overline{\Psi}$
 $Vol(B_2^n) = Vol(B_2^n) \int f^{n/(n-1)} = \int f Vol(B_2^n) f^{1/(n-1)} \leq 1/n \int f \Delta \overline{\Psi}$

$$\int f \Delta \overline{\Psi} = - \int \text{grad } f \cdot \text{grad} \overline{\Psi}$$

L₁ Sobolev inegality: a proof with OT [Gromov]

$$\int |\operatorname{grad} f| \ge n \operatorname{Vol}(B_2^n)^{1/n} \left(\int f^{n/(n-1)} \right) (n-1)/n$$

We suppose w.l.o.g. that
$$\int f^{n/(n-1)} = 1$$

det (Hess $\overline{\Psi}$) ^{1/n} $\leq (\Delta \overline{\Psi})/n$
 $Vol(B_2^n) f^{n/(n-1)}(x) = det Hess \overline{\Psi}$
 $Vol(B_2^n) = Vol(B_2^n) \int f^{n/(n-1)} = \int f Vol(B_2^n) f^{1/(n-1)} \leq 1/n \int f \Delta \overline{\Psi}$

$$\int f \Delta \overline{\Psi} = - \int \operatorname{grad} f \cdot \operatorname{grad} \overline{\Psi} \leq \int |\operatorname{grad} f| \quad (\mathsf{T} = \operatorname{grad} \overline{\Psi} \in \mathsf{B}_2^n)$$

L₁ Sobolev inegality: a proof with OT [Gromov]

$$\int |\operatorname{grad} f| \ge n \operatorname{Vol}(B_2^n)^{1/n} \left(\int f^{n/(n-1)} \right) (n-1)/n$$

We suppose w.l.o.g. that
$$\int f^{n/(n-1)} = 1$$

det (Hess $\overline{\Psi}$) $^{1/n} \leq (\Delta \overline{\Psi})/n$
 $Vol(B_2^n) = Vol(B_2^n) \int f^{n/(n-1)} = \int f Vol(B_2^n) f^{1/(n-1)} \leq 1/n \int f \Delta \overline{\Psi}$

$$\int f \Delta \overline{\Psi} = - \int \operatorname{grad} f \cdot \operatorname{grad} \overline{\Psi} \leq \int |\operatorname{grad} f| \quad (T = \operatorname{grad} \overline{\Psi} \in B_2^n)$$

 $\int |\operatorname{grad} f| \ge n \operatorname{Vol}(B_2^n)^{1/n}$

Semi-Discrete Optimal Transport

Ínría

Part. 3 Optimal Transport – how to program ? $(X;\mu)$ (Y;v)

Continuous

Part. 3 Optimal Transport – how to program ? (X;µ) (Y;v)

Continuous

Semi-discrete

Part. 3 Optimal Transport – how to program ? (X;µ) (Y;v)

Continuous

Semi-discrete

Discrete

Part. 3 Optimal Transport – semi-discrete (X;µ) (Y;v)

(DMK)
$$\sup_{\psi \in \psi^c} \int_X \psi^c(x) d\mu + \int_Y \psi(y) d\nu$$

Part. 3 Optimal Transport – semi-discrete (X;µ) (Y;v)

$$(\text{DMK}) \quad \begin{array}{l} \underset{\psi \in \psi^c}{\overset{\text{Sup}}{\overset{\text{Sup}}{\overset{\text{Sup}}{\overset{\text{Sup}}{\overset{\text{C}}{\overset{\text{W}}{\overset{\text{C}}{\overset{\text{C}}{\overset{\text{Sup}}}{\overset{\text{Sup}}{\overset{\text{Sup}}{\overset{\text{Sup}}}{\overset{\text{Sup}}{\overset{\text{Sup}}}{\overset{\text{Sup}}{\overset{\text{Sup}}}{\overset{\text{Sup}}}{\overset{\text{Sup}}}{\overset{\text{Sup}}}{\overset{\text{Sup}}}{\overset{\text{Sup}}}{\overset{\text{Sup}}{\overset{\text{Sup}}}{\overset{\text{Sup}}}{\overset{\text{Sup}}}{\overset{\text{Sup}}}{\overset{\text{Sup}}}{\overset{\text{Sup}}}{\overset{\text{Sup}}}{\overset{\text{Sup}}}{\overset{\text{Sup}}}{\overset{\text{Sup}}}{\overset{\text{Sup}}}{\overset{\text{Sup}}}{\overset{\text{Sup}}}{\overset{\text{Sup}}}}{\overset{\text{Sup}}}{\overset{\text{Sup}}}}}}}}}}}}}}}}}}}}}}}} } } \\ \\ \overset{\text{Sup}}{\overset{\text{Sup}}}{\overset{\text{Sup}}}}}}}} {\overset{\text{Sup}}{\overset{\text{Sup}}}}{\overset{Sup}}}}}} } \\} \overset{\text{Sup}}{\overset{Sup}}}}} \\} \overset{\text{Sup}}}{\overset{Sup}}}}} } \\} \overset{\text{Sup}}}{\overset{Sup}}}} \overset{\text{Sup}}}{\overset{Sup}}}}} } \\} \overset{\text{Sup}}}{\overset{Sup}}}} \overset{\text{Sup}}}{\overset{Sup}}}} } \overset{Sup}}} } \overset{Sup}}} \\} \overset{Sup}}} \overset{Sup}}} \overset{Sup}}} \overset{Sup}} \overset{Sup}}} \overset{Sup}}} \overset{Sup}}} \overset{Sup}}} \overset{Sup}}} \overset{Sup}}} \overset{Sup}}} \overset{Sup}}} \overset{Sup}} \overset{Sup}}} \overset{Sup}}} \overset{Sup}}} \overset{Sup}}} \overset{Sup}}} \overset{Sup}}} \overset{Sup}}} \overset{Sup}} \overset{Sup}}} \overset{Sup}}} \overset{Sup}}} \overset{Sup}} \overset{Sup}}} \overset{Sup}} \overset{Sup}} \overset{Sup}} \overset{Sup}}} \overset{Sup}}} \overset{Sup}}} \overset{Sup$$

$$\begin{array}{ll} \text{(DMK)} & \underset{\psi \in \psi^c}{\overset{\text{Sup}}{\overset{\text{Sup}}{\overset{\text{V}^c}{\overset{\text{W}^c}{(x)d\mu}}}} \int_X \psi^c(x)d\mu + \int_Y \psi(y)d\nu \\ \\ \int_X \inf_{y_j \in Y} \left[\| x - y_j \|^2 - \psi(y_j) \right] d\mu \\ & \sum_j \psi(y_j) \ v_j \end{array}$$

(DMK) Sup
$$\psi \in \psi^c$$
 $G(\psi) = \sum_j \int_{\text{Lag } \psi(yj)} ||x - y_j||^2 - \psi(y_j) d\mu + \sum_j \psi(y_j) v_j$

Where: Lag $\psi(yj) = \left\{ \begin{array}{cc} x & | & || x - y_j ||^2 - \psi(y_j) \\ & < || x - y_j ||^2 - \psi(y_{j'}) \end{array} \right\}$ for all j' $\neq j$

nnía

DMK) Sup
$$\psi \in \psi^{c}$$
 $G(\psi) = \sum_{j} \int_{\text{Lag } \psi(yj)} ||x - y_{j}||^{2} - \psi(y_{j}) d\mu + \sum_{j} \psi(y_{j}) v_{j}$

Where: Lag
$$\psi(yj) = \{ x \mid || x - y_j ||^2 - \psi(y_j) < || x - y_j ||^2 - \psi(y_{j'}) \}$$
 for all $j' \neq j$

Laguerre diagram of the y_j 's (with the L₂ cost || x - y ||² used here, Power diagram)

(DMK)
$$\sup_{\psi \in \psi^{c}} G(\psi) = \sum_{j} \int_{\text{Lag } \psi(y_{j})} ||x - y_{j}||^{2} - \psi(y_{j}) d\mu + \sum_{j} \psi(y_{j}) v_{j}$$

Where:
$$\text{Lag } \psi(y_{j}) = \left\{ \begin{array}{c} x \mid ||x - y_{j}||^{2} - \psi(y_{j}) < ||x - y_{j}||^{2} - \psi(y_{j'}) \end{array} \right\} \text{ for all } j' \neq j$$

Laguerre diagram of the y_{j} 's (with the L₂ cost || $x - y \mid ||^{2}$ used here, Power diagram)

(DMK)
$$\begin{split} & \underset{\psi \in \psi^{c}}{\operatorname{Sup}} \quad G(\psi) = \sum_{j} \int_{\operatorname{Lag} \psi(yj)} \| x - y_{j} \|^{2} - \psi(y_{j}) \, d\mu + \sum_{j} \psi(y_{j}) \, v_{j} \\ & \text{Where: } \operatorname{Lag} \psi(yj) = \left\{ \begin{array}{c} x \mid \| x - y_{j} \|^{2} - \psi(y_{j}) < \| x - y_{j} \|^{2} - \psi(y_{j'}) \end{array} \right\} \text{ for all } j' \neq j \\ & & & \\ & \underset{(\text{with the } L_{2} \operatorname{cost} \| x - y \|^{2} \operatorname{used here}, \operatorname{Power diagram}) \\ \end{split}$$

 ψ is determined by the weight vector $[\psi(y_1) \ \psi(y_2) \ \dots \ \psi(y_m)]$

(DMK)
$$\begin{split} & \underset{\psi \in \psi^{c}}{\operatorname{Sup}} \quad G(\psi) = \sum_{j} \int_{\operatorname{Lag} \psi(yj)} \| x - y_{j} \|^{2} - \psi(y_{j}) \, d\mu + \sum_{j} \psi(y_{j}) \, v_{j} \\ & \text{Where: } \operatorname{Lag} \psi(yj) = \left\{ \begin{array}{c} x \mid \| x - y_{j} \|^{2} - \psi(y_{j}) < \| x - y_{j} \|^{2} - \psi(y_{j'}) \end{array} \right\} \text{ for all } j' \neq j \\ & & & \\ & \underset{(\text{with the } L_{2} \operatorname{cost} \| x - y \|^{2} \operatorname{used here}, \operatorname{Power diagram}) \\ \end{split}$$

 ψ is determined by the weight vector $[\psi(y_1) \ \psi(y_2) \ \dots \ \psi(y_m)]$

For all weight vector, $\boldsymbol{\psi}$ is c-concave

Part. 3 Power Diagrams

Voronoi diagram: $Vor(x_i) = \{ x \mid d^2(x, x_i) < d^2(x, x_j) \}$

Part. 3 Power Diagrams

Voronoi diagram: $Vor(x_i) = \{ x \mid d^2(x, x_i) < d^2(x, x_j) \}$

Power diagram: $Pow(x_i) = \{ x \mid d^2(x,x_i) - \psi_i < d^2(x,x_j) - \psi_j \}$

Part. 3 Power Diagrams

Part. 3 Optimal Transport

<u>Theorem</u>: (direct consequence of MK duality alternative proof in [Aurenhammer, Hoffmann, Aronov 98]):

Given a measure μ with density, a set of points (y_j) , a set of positive coefficients v_j such that $\sum v_j = \int d\mu(x)$, it is possible to find the weights $W = [\psi(y_1) \ \psi(y_2) \ \dots \ \psi(y_m)]$ such that the map $T_S{}^W$ is the unique optimal transport map between μ and $v = \sum v_j \ \delta(y_j)$

Part. 3 Optimal Transport

<u>Theorem:</u> (direct consequence of MK duality alternative proof in [Aurenhammer, Hoffmann, Aronov 98]):

Given a measure μ with density, a set of points (y_j) , a set of positive coefficients v_j such that $\sum v_j = \int d\mu(x)$, it is possible to find the weights $W = [\psi(y_1) \ \psi(y_2) \ \dots \ \psi(y_m)]$ such that the map $T_S{}^W$ is the unique optimal transport map between μ and $v = \sum v_j \ \delta(y_j)$

Proof:
$$G(\psi) = \sum_{j} \int_{\text{Lag } \psi(yj)} ||x - y_j||^2 - \psi(y_j) d\mu + \sum_{j} \psi(y_j) v_j$$

Is a concave function of the weight vector $[\psi(y_1) \ \psi(y_2) \ \dots \ \psi(y_m)]$

Part. 3 Optimal Transport

<u>Theorem:</u> (direct consequence of MK duality alternative proof in [Aurenhammer, Hoffmann, Aronov 98]):

Given a measure μ with density, a set of points (y_j) , a set of positive coefficients v_j such that $\sum v_j = \int d\mu(x)$, it is possible to find the weights $W = [\psi(y_1) \ \psi(y_2) \ \dots \ \psi(y_m)]$ such that the map $T_S{}^W$ is the unique optimal transport map between μ and $v = \sum v_j \ \delta(y_j)$

Proof:
$$G(\psi) = \sum_{j} \int_{\text{Lag } \psi(yj)} ||x - y_j||^2 - \psi(y_j) d\mu + \sum_{j} \psi(y_j) v_j$$

Is a concave function of the weight vector $[\psi(y_1) \ \psi(y_2) \ \ldots \ \psi(y_m)]$

Idea of the proof

Consider the function
$$f_T(W) = \int (||x - T(x)||^2 - \psi(T(X))) d\mu(x)$$

The (unknown) weights $W = [\Psi(y_1) \Psi(y_2) \dots \Psi(y_m)]$

~

Idea of the proof

Consider the function

$$f_{T}(W) = \int (||x - T(x)||^{2} - \psi(T(X))) d\mu(x)$$

T : an arbitrary but fixed assignment.

Innía

Consider the function
$$f_T(W) = \int (||x - T(x)||^2 - \psi(T(X))) d\mu(x)$$

Consider the function
$$f_T(W) = \int (||x - T(x)||^2 - \psi(T(X))) d\mu(x)$$

Ínría

Consider the function
$$f_T(W) = \int (||x - T(x)||^2 - \psi(T(X))) d\mu(x)$$

Idea of the proof

Consider the function
$$f_T(W) = \int (||x - T(x)||^2 - \psi(T(X))) d\mu(x)$$

 $f_T(W)$ is linear in W f: W $\rightarrow f_{T_W}(W)$ is **CONCAVE !!** (because its graph is the lower enveloppe of linear functions)

Part. 3 Optimal Transport – the AHA paper

Idea of the proof

Consider the function
$$f_T(W) = \int (||x - T(x)||^2 - \psi(T(X))) d\mu(x)$$

 $\begin{array}{ll} f_T(W) \text{ is linear in } W \\ f\colon W \ \rightarrow \ f_{T_W}(W) \text{ is concave} \\ \text{ (because its graph is the lower} \\ \text{ enveloppe of linear functions)} \end{array}$

Consider
$$g(W) = f_{T_W}(W) + \sum v_j \psi_j$$

Part. 3 Optimal Transport – the AHA paper

Idea of the proof

Consider the function
$$f_T(W) = \int (||x - T(x)||^2 - \psi(T(X))) d\mu(x)$$

 $f_{T}(W)$ is linear in W $f: W \rightarrow f_{T_W}(W)$ is concave (because its graph is the lower enveloppe of linear functions)

$$f_{T}(W)$$

 $f_{T_{W}}(W) = \min_{T} f_{T}(W)$
 W

(111)

Consider
$$g(W) = f_{T_W}(W) + \sum v_j \psi_j$$

 $\partial g / \partial \Psi_{j} = V_{j} - \int_{pow(yj)} ||x - y_{j}||^{2} d\mu(x)$ and g is concave.

Semi-discrete OT Summary:

(DMK) $\begin{array}{c} \text{Sup} \\ \psi \in \psi^{c} \end{array} \quad G(\psi) = \int_{X} \psi^{c}(x) d\mu + \int_{Y} \psi(y) dv \end{array}$

Ínría

Semi-discrete OT Summary:

(DMK) $\begin{array}{c} \text{Sup} \\ \psi \in \psi^{c} \end{array} \quad G(\psi) = \int_{X} \psi^{c}(x) d\mu + \int_{Y} \psi(y) dv \end{array}$

$$G(\psi) = g(W) = \sum_{j} \int_{\text{Lag } \psi(yj)} \| x - y_j \|^2 - \psi(y_j) \, d\mu + \sum_{j} \psi(y_j) \, v_j \text{ is concave}$$

Semi-discrete OT Summary:

(DMK) $\begin{array}{c} \text{Sup} \\ \psi \in \psi^{c} \end{array} \quad G(\psi) = \int_{X} \psi^{c}(x) d\mu + \int_{Y} \psi(y) dv \end{array}$

$$G(\psi) = g(W) = \sum_{j} \int_{\text{Lag } \psi(yj)} \| x - y_j \|^2 - \psi(y_j) \, d\mu + \sum_{j} \psi(y_j) \, v_j \text{ is concave}$$

$$\partial G / \partial \Psi_j = V_j - \int_{pow(yj)} ||x - y_j||^2 d\mu(x)$$
 (= 0 at the maximum)

Semi-discrete OT Summary:

(DMK) $\begin{aligned} & \underset{\psi \in \psi^{c}}{\text{Sup}} \quad G(\psi) = \int_{X} \psi^{c}(x) d\mu + \int_{Y} \psi(y) d\nu \end{aligned}$

$$G(\psi) = g(W) = \sum_{j} \int_{\text{Lag } \psi(yj)} \| x - y_j \|^2 - \psi(y_j) \, d\mu + \sum_{j} \psi(y_j) \, v_j \text{ is concave}$$

$$\partial G / \partial \Psi_{j} = V_{j} - \int_{pow(yj)} ||x - y_{j}||^{2} d\mu(x)$$
 (= 0 at the maximum)

Desired mass at y_j

Mass transported to y_i

The [AHA] paper summary:

- The optimal weights minimize a convex function
- The gradient of this convex function is easy to compute

Note: the weight w(s) correspond to the Kantorovich potential $\psi(x)$ (solves a "discrete Monge-Ampere" equation)

The algorithm:

Input: two tetrahedral meshes M_1 and M_2 **Output:** a morphing between M_1 and M_2

The [AHA] paper summary:

- The optimal weights minimize a convex function
- The gradient of this convex function is easy to compute

Note: the weight w(s) correspond to the Kantorovich potential $\psi(x)$ (solves a "discrete Monge-Ampere" equation)

The algorithm:

Input: two tetrahedral meshes M_1 and M_2 **Output:** a morphing between M_1 and M_2

Step 1: sample M_2 with N points ($s_1 \dots s_N$)

The [AHA] paper summary:

- The optimal weights minimize a convex function
- The gradient of this convex function is easy to compute

Note: the weight w(s) correspond to the Kantorovich potential $\psi(x)$ (solves a "discrete Monge-Ampere" equation)

The algorithm:

Input: two tetrahedral meshes M_1 and M_2 **Output:** a morphing between M_1 and M_2

Step 1: sample M_2 with N points $(s_1 \dots s_N)$ **Step 2:** initialize the weights $(w_1 \dots w_N) = (0 \dots 0)$

The [AHA] paper summary:

- The optimal weights minimize a convex function
- The gradient of this convex function is easy to compute

Note: the weight w(s) correspond to the Kantorovich potential $\psi(x)$ (solves a "discrete Monge-Ampere" equation)

The algorithm:

Input: two tetrahedral meshes M_1 and M_2 **Output:** a morphing between M_1 and M_2

Step 1: sample M₂ with N points $(s_1 \dots s_N)$ **Step 2:** initialize the weights $(w_1 \dots w_N) = (0 \dots 0)$ **Step 3:** minimize $g(w_1 \dots w_N)$ with a quasi-Newton algorithm:

The [AHA] paper summary:

- The optimal weights minimize a convex function
- The gradient of this convex function is easy to compute

Note: the weight w(s) correspond to the Kantorovich potential $\psi(x)$ (solves a "discrete Monge-Ampere" equation)

The algorithm:

Input: two tetrahedral meshes M_1 and M_2 **Output:** a morphing between M_1 and M_2

Step 1: sample M₂ with N points $(s_1 \dots s_N)$ **Step 2:** initialize the weights $(w_1 \dots w_N) = (0 \dots 0)$ **Step 3:** minimize $g(w_1 \dots w_N)$ with a quasi-Newton algorithm: For each iterate $(s_1 \dots s_N)^{(k)}$:

The [AHA] paper summary:

- The optimal weights minimize a convex function
- The gradient of this convex function is easy to compute

Note: the weight w(s) correspond to the Kantorovich potential $\psi(x)$ (solves a "discrete Monge-Ampere" equation)

The algorithm:

Input: two tetrahedral meshes M_1 and M_2 **Output:** a morphing between M_1 and M_2

Step 1: sample M₂ with N points $(s_1 \dots s_N)$ **Step 2:** initialize the weights $(w_1 \dots w_N) = (0 \dots 0)$ **Step 3:** minimize $g(w_1 \dots w_N)$ with a quasi-Newton algorithm: For each iterate $(s_1 \dots s_N)^{(k)}$: Compute Pow((w_i, s_i)) \cap M₁ [Nivoliers, L 2014, Curves and Surfaces]

Compute Pow((w_i, s_i)) \cap M₁ [Nivoliers, L 2014, Curves and Surfaces]

Compute Pow((w_i , s_i)) \cap M₁ [Nivoliers, L 2014, Curves and Surfaces]

Implementation in **GEOGRAM** (http://alice.loria.fr/software/geogram

(nría_

The [AHA] paper summary:

- The optimal weights minimize a convex function
- The gradient of this convex function is easy to compute

Note: the weight w(s) correspond to the Kantorovich potential $\psi(x)$ (solves a "discrete Monge-Ampere" equation)

The algorithm:

Input: two tetrahedral meshes M_1 and M_2 **Output:** a morphing between M_1 and M_2

Step 1: sample M₂ with N points $(s_1 \dots s_N)$ **Step 2:** initialize the weights $(w_1 \dots w_N) = (0 \dots 0)$ **Step 3:** minimize $g(w_1 \dots w_N)$ with a quasi-Newton algorithm: For each iterate $(s_1 \dots s_N)^{(k)}$: Compute Pow((w_i, s_i)) \cap M₁ [L 2014, Curves and Surfaces]

Compute g and grad g

The [AHA] paper summary:

- The optimal weights minimize a convex function
- The gradient of this convex function is easy to compute

Note: the weight w(s) correspond to the Kantorovich potential $\psi(x)$ (solves a "discrete Monge-Ampere" equation)

The algorithm:

Input: two tetrahedral meshes M_1 and M_2 **Output:** a morphing between M_1 and M_2

Step 1: sample M₂ with N points $(s_1 \dots s_N)$ **Step 2:** initialize the weights $(w_1 \dots w_N) = (0 \dots 0)$ **Step 3:** minimize $g(w_1 \dots w_N)$ with a quasi-Newton algorithm: For each iterate $(s_1 \dots s_N)^{(k)}$: Compute Pow((w_i, s_i)) \cap M₁ [L 2014, Curves and Surfaces]

Compute g and grad g

+ Multilevel version [Merigot 2011] (2D),

[L 2014 arXiv, M2AN 2015] (3D & relation with Centroidal Voronoi Tesselation)

Innia

The [AHA] paper summary:

- The optimal weights minimize a convex function
- The gradient of this convex function is easy to compute

Note: the weight w(s) correspond to the Kantorovich potential $\psi(x)$ (solves a "discrete Monge-Ampere" equation)

The algorithm:

Summary:

The [AHA] paper summary:

- The optimal weights minimize a convex function
- The gradient of this convex function is easy to compute

Note: the weight w(s) correspond to the Kantorovich potential $\psi(x)$ (solves a "discrete Monge-Ampere" equation)

The algorithm:

Summary:

The [AHA] paper summary:

- The optimal weights minimize a convex function
- The gradient of this convex function is easy to compute

Note: the weight w(s) correspond to the Kantorovich potential $\psi(x)$ (solves a "discrete Monge-Ampere" equation)

The algorithm:

Summary:

Innia

The [AHA] paper summary:

- The optimal weights minimize a convex function
- The gradient of this convex function is easy to compute

Note: the weight w(s) correspond to the Kantorovich potential $\psi(x)$ (solves a "discrete Monge-Ampere" equation)

The algorithm:

Summary:

Innía

The [AHA] paper summary:

- The optimal weights minimize a convex function
- The gradient of this convex function is easy to compute

Note: the weight w(s) correspond to the Kantorovich potential $\psi(x)$ (solves a "discrete Monge-Ampere" equation)

The algorithm:

Summary:

Inría

Inría

Ínría_

Inría

Inría

Inría

Inría

Part. 4 Power Diagrams & Transport

"converging beams" con compensate the cos(x) expansion by "re-concentrating" the paints

Part. 4 Power Diagrams & Transport $d^2(p_{i,q}) \stackrel{+h_i^2}{-w_i} \langle d^2(p_{i,q}) \stackrel{+h_i^2}{-w_j} \lor_j$ $d^{2}(p_{i}, q-T) < d^{2}(j, q-T)$ V, $(p_i - q + T)^2 \leq (p_j - q + T)^2 \qquad \forall i$ $d^{2}(p_{i},q) + 2T.(p_{i}-q) + T^{2} \leq d^{2}(p_{j},q) + 2T.(p_{j}-q) + T^{2} \vee_{j}^{-}$ d²(pi,q) + 2T.pi <d²(pj,q) +2T.pj $W_i^2 = -2T \cdot p_i'$ + che hi?: (2ripir Che); hi= VZ(T-pi - min(T-p)) Granstation d'un diagramme de Uronoi sectionnel-Delevement en racine cané -

Innia

Innía

Part. 4 Optimal Transport – 2D examples Numerical Experiment: *A disk becomes two disks*

Innía

Part. 4 Optimal Transport – 3D examples Numerical Experiment: *A sphere becomes a cube*

Innía

Part. 4 Optimal Transport – 3D examples Numerical Experiment: *A sphere becomes two spheres*

Inría

Part. 4 Optimal Transport – 3D examples Numerical Experiment: *Armadillo to sphere*

Ínría

Part. 4 Optimal Transport – 3D examples Numerical Experiment: *Other examples*

Inría

Part. 4 Optimal Transport – 3D examples Numerical Experiment: *Varying density*

Ínría

Part. 4 Optimal Transport – 3D examples Numerical Experiment: *Performances*

nb masses										
time (s)	1.45	3.2	7.3	17.3	55	154	187	671	1262	2649

TABLE 4. Statistics for the Armadillo \rightarrow sphere optimal transport with varying number of masses (see third row of Figure 12). Timings are given in seconds. The multi-level algorithm with BRIO pre-ordering and degree 2 regressions is used.

Part. 4 Optimal Transport – 3D examples Numerical Experiment: *Performances*

nb masses										
time (s)	1.45	3.2	7.3	17.3	55	154	187	671	1262	2649

TABLE 4. Statistics for the Armadillo \rightarrow sphere optimal transport with varying number of masses (see third row of Figure 12). Timings are given in seconds. The multi-level algorithm with BRIO pre-ordering and degree 2 regressions is used.

Note that a few years ago, several hours of supercomputer time were needed for computing OT with a few thousand Dirac masses, with a combinatorial algorithm in $O(n^3)$

Part. 4 Optimal Transport – 3D examples Numerical Experiment: *Performances*

-			
•			
		A Star	
	A		and the second s

nb masses	1000	2000	5000	10000	30000	50000	10^{5}	3×10^5	5×10^5	10^{6}
time (s)	1.45	3.2	7.3	17.3	55	154	187	671	1262	2649

TABLE 4. Statistics for the Armadillo \rightarrow sphere optimal transport with varying number of masses (see third row of Figure 12). Timings are given in seconds. The multi-level algorithm with BRIO pre-ordering and degree 2 regressions is used.

Note that a few years ago, several hours of supercomputer time were needed for computing OT with a few thousand Dirac masses, with a combinatorial algorithm in $O(n^3)$

With the semi-discrete algorithm, it takes less than 10 seconds on my laptop

TABLE 4. Statistics for the Armadillo \rightarrow sphere optimal transport with varying number of masses (see third row of Figure 12). Timings are given in seconds. The multi-level algorithm with BRIO pre-ordering and degree 2 regressions is used.

Note that a few years ago, several hours of supercomputer time were needed for computing OT with a few thousand Dirac masses, with a combinatorial algorithm in $O(n^3)$

In the semi-discrete setting, my 3D version of Merigot's multigrid algorithm computes OT for **1 million Dirac masses** in less than 1 hour on a laptop PC

Ínría

TABLE 4. Statistics for the Armadillo \rightarrow sphere optimal transport with varying number of masses (see third row of Figure 12). Timings are given in seconds. The multi-level algorithm with BRIO pre-ordering and degree 2 regressions is used.

Note that a few years ago, several hours of supercomputer time were needed for computing OT with a few thousand Dirac masses, with a combinatorial algorithm in $O(n^3)$

In the semi-discrete setting, my 3D version of Merigot's multigrid algorithm computes OT for **1 million Dirac masses** in less than 1 hour on a laptop PC

Even much faster convergence can probably be reached with a true Newton solver (and several acceleration tricks), still investigating...

Innía

Other topics

- •Euler equation in more complicated setting: [Merigot & Mirebeau]
- •Using semi-discrete OT to solve other PDEs [Benamou, Carlier, Merigot, Oudet]
- •New fluid simulation methods "power particles" [DeGoes et.al]

Conclusions – Open questions

* Connections with physics, Legendre transform and entropy ?

[Cuturi & Peyré] – regularized discrete optimal transport – why does it work ? Hint 1: Minimum action principle subject to conservation laws Hint 2: Entropy = dual of temperature ; Legendre = Fourier[(+,*) → (Max,+)]...

* More continuous numerical algorithms ? [Benamou & Brenier] fluid dynamics point of view – very elegant, but 4D problem !! FEM-type adaptive discretization of the subdifferential (graph of T) ?

* Can we characterize OT in other semi-discrete settings ? measures supported on unions of spheres piecewise linear densities

* Connections with computational geometry ?

Singularity set **[Figalli]** = set of points where T is discontinuous Looks like a "mutual power diagram", anisotropic Voronoi diagrams

Ínría

Conclusions - References

Some references (that this presentation is based on)

A Multiscale Approach to Optimal Transport, **Quentin Mérigot**, Computer Graphics Forum, 2011

Variational Principles for Minkowski Type Problems, Discrete Optimal Transport, and Discrete Monge-Ampere Equations Xianfeng Gu, Feng Luo, Jian Sun, S.-T. Yau, ArXiv 2013

Minkowski-type theorems and least-squares clustering **AHA! (Aurenhammer, Hoffmann, and Aronov),** SIAM J. on math. ana. 1998

Topics on Optimal Transportation, 2003 Optimal Transport Old and New, 2008 **Cédric Villani**

Jean-David Benamou & Yann Brenier

a fluid formulation of Optimal Transportation, 2000

Laudau and Lifschitz – Course of Theoretical Physics – Volumes I and III

Conclusions - References Other references

Polar factorization and monotone rearrangement of vector-valued functions **Yann Brenier**, Comm. On Pure and Applied Mathematics, June 1991

A computational fluid mechanics solution of the Monge-Kantorovich mass transfer problem, **J.-D. Benamou**, **Y. Brenier**, Numer. Math. 84 (2000), pp. 375-393

Pogorelov, Alexandrov – Gradient maps, Minkovsky problem (older than AHA paper, some overlap, in slightly different context, formalism used by Gu & Yau)

Rockafeller – Convex optimization – Theorem to switch inf(sup()) – sup(inf()) with convex functions (used to justify Kantorovich duality)

New textbook: **Filippo Santambrogio** – Optimal Transport for Applied Mathematician, Calculus of Variations, PDEs and Modeling – Jan 15, 2015

Innia

Online resources

All the sourcecode/documentation available from: alice.loria.fr/software/geogram

Computes semi-discrete OT in 3D Scales up to millions Dirac masses on a laptop

L., A numerical algorithm for semi-discrete L2 OT in 3D, ESAIM Math. Modeling and Analysis, accepted (draft: <u>http://arxiv.org/abs/1409.1279</u> <= to be fixed: bug in MA equation in this version, fixed in M2AN journal version)

Innia

Downloads: alice.loria.fr/software GEOGRAM & GRAPHITE Video of course on OT: www.loria.fr/~levy

Acknowledgements

Funding: European Research Council & ANR ("french NSF")

GOODSHAPE ERC-StG-205693

VORPALINE ERC-PoC-334829

ANR MORPHO, ANR BECASIM

New project: EXPLORAGRAM (Inria) with Q. Mérigot and J.-D. Benamou

Quentin Merigot, Yann Brenier, Boris Thibert, Emmanuel Maitre, Jean-David Benamou, Filippo Santambrogio, Edouard Oudet, Hervé Pajot. ANR TOMMI, ANR GEOMETRYA