
Deep Neural Networks: A Universal

Classification Strategy?

Alex Bronstein

School of Electrical Engineering
Tel Aviv University

February 3, 2016

Based on joint work with Raja Giryes and Guillermo Sapiro

(Deep) neural network

u A1 ρ v1

Single layer:

v1 = ρ(A1u)

(Deep) neural network

u A1 ρ · · · AN ρ f(u)

Whole net response:

f(u) = ρ(AN ρ(AN−1 ρ(· · · ρ(A1u) · · ·)))

Linear part

u
a1

Convolutional layer: shift-invariant filter bank vi = ai ∗ ui

A is block-Töplitz

Fully-connected layer: v = Au

Linear part

u
a1

Convolutional layer: shift-invariant filter bank vi = ai ∗ ui

A is block-Töplitz

Fully-connected layer: v = Au

Linear part

u
a1

u A v

Convolutional layer: shift-invariant filter bank vi = ai ∗ ui

A is block-Töplitz

Fully-connected layer: v = Au

Non-linear part

u σ
v

π ρ(u)

Element-wise activation function σ(u)

Pooling or aggregation operator π(v)

Non-linear part

u σ
v

π ρ(u)

ReLU tanh Sigmoid
max{u, 0} tanh u 1

1 + e−u

Element-wise activation function σ(u)

Pooling or aggregation operator π(v)

Non-linear part

u σ
v

π ρ(u)

ReLU tanh Sigmoid
max{u, 0} tanh u 1

1 + e−u

Max Mean

max
i

vi
1

m

∑
i=1

vi

Element-wise activation function σ(u)

Pooling or aggregation operator π(v)

Impact of deep learning

Audio recognition error rates

1998 2000 2002 2004 2006 2008 2010 2012 2014

17%

19%

21%

23%

25%

27%

29%

31% Traditional
Deep learning

Source: Clarifi

Impact of deep learning

Visual recognition error rates

2010 2011 2012 2013 2014

20%

40%

60%

80%
Traditional
Deep learning

Source: Clarifi

Why DNNs work?

Why DNNs work?

Representation power?

Role of depth?

Role of pooling?

Role of nonlinearity?

How to train?

How much training data are needed?

Why DNNs work?

Representation power?

Role of depth?

Role of pooling?

Role of nonlinearity?

How to train?

How much training data are needed?

Why DNNs work?

Representation power?

Role of depth?

Role of pooling?

Role of nonlinearity?

How to train?

How much training data are needed?

Why DNNs work?

Representation power?

Role of depth?

Role of pooling?

Role of nonlinearity?

How to train?

How much training data are needed?

Why DNNs work?

Representation power?

Role of depth?

Role of pooling?

Role of nonlinearity?

How to train?

How much training data are needed?

Why DNNs work?

Representation power?

Role of depth?

Role of pooling?

Role of nonlinearity?

How to train?

How much training data are needed?

Representation power

DNNs are universal approximators of any Borel function1

Estimation error of a function f by DNN is2

O

(
Cf

K

)
+ O

(
nK

T
logT

)
Cf = smoothness of f
K = # of degrees of freedom
n = input dimension
T = # of training samples

1Cybenko 1989; Hornik 1991; 2Barron 1992

Representation power

DNNs are universal approximators of any Borel function1

Estimation error of a function f by DNN is2

O

(
Cf

K

)
+ O

(
nK

T
logT

)
Cf = smoothness of f
K = # of degrees of freedom
n = input dimension
T = # of training samples

1Cybenko 1989; Hornik 1991; 2Barron 1992

Representation power

DNNs represent restricted Boltzmann machines with
number of parameters exponentially greater than the
number of degrees of freedom of the network1

Deep network with the same number of degrees of
freedom divides the input space into exponentially greater
number of sets2

Depth is important!

1Montúfar & Morton, 2014; 2Montúfar et al., 2014

Representation power

DNNs represent restricted Boltzmann machines with
number of parameters exponentially greater than the
number of degrees of freedom of the network1

Deep network with the same number of degrees of
freedom divides the input space into exponentially greater
number of sets2

Depth is important!

1Montúfar & Morton, 2014; 2Montúfar et al., 2014

Representation power

DNNs represent restricted Boltzmann machines with
number of parameters exponentially greater than the
number of degrees of freedom of the network1

Deep network with the same number of degrees of
freedom divides the input space into exponentially greater
number of sets2

Depth is important!

1Montúfar & Morton, 2014; 2Montúfar et al., 2014

Role of pooling

Pooling provides shift invariance1

Scattering networks2 : a cascade of wavelet transform,
modulus and averaging

Deeper network provides invariance to more complex
transformations

Depth is important!

1Bruna, LeCun & Szlam, 2013,2014; 2Bruna & Mallat, 2013

Role of pooling

Pooling provides shift invariance1

Scattering networks2 : a cascade of wavelet transform,
modulus and averaging

Deeper network provides invariance to more complex
transformations

Depth is important!

1Bruna, LeCun & Szlam, 2013,2014; 2Bruna & Mallat, 2013

Role of pooling

Pooling provides shift invariance1

Scattering networks2 : a cascade of wavelet transform,
modulus and averaging

Deeper network provides invariance to more complex
transformations

Depth is important!

1Bruna, LeCun & Szlam, 2013,2014; 2Bruna & Mallat, 2013

Role of pooling

Pooling provides shift invariance1

Scattering networks2 : a cascade of wavelet transform,
modulus and averaging

Deeper network provides invariance to more complex
transformations

Depth is important!

1Bruna, LeCun & Szlam, 2013,2014; 2Bruna & Mallat, 2013

Training

Supervised training by back propagation (chain rule)
results in non-convex optimization problem

In deep networks, local minima are nearly as good as
global ones

Deep networks have less saddle points

Random initialization works well

Extreme learning strategies rely only on randomization

Saxe, McClelland & Ganguli, 2014; Dauphin et al., 2014; Choromanska

et al., 2015; Haeffele & Vidal, 2015

Training

Supervised training by back propagation (chain rule)
results in non-convex optimization problem

In deep networks, local minima are nearly as good as
global ones

Deep networks have less saddle points

Random initialization works well

Extreme learning strategies rely only on randomization

Saxe, McClelland & Ganguli, 2014; Dauphin et al., 2014; Choromanska

et al., 2015; Haeffele & Vidal, 2015

Training

Supervised training by back propagation (chain rule)
results in non-convex optimization problem

In deep networks, local minima are nearly as good as
global ones

Deep networks have less saddle points

Random initialization works well

Extreme learning strategies rely only on randomization

Saxe, McClelland & Ganguli, 2014; Dauphin et al., 2014; Choromanska

et al., 2015; Haeffele & Vidal, 2015

Training

Supervised training by back propagation (chain rule)
results in non-convex optimization problem

In deep networks, local minima are nearly as good as
global ones

Deep networks have less saddle points

Random initialization works well

Extreme learning strategies rely only on randomization

Saxe, McClelland & Ganguli, 2014; Dauphin et al., 2014; Choromanska

et al., 2015; Haeffele & Vidal, 2015

Training

Supervised training by back propagation (chain rule)
results in non-convex optimization problem

In deep networks, local minima are nearly as good as
global ones

Deep networks have less saddle points

Random initialization works well

Extreme learning strategies rely only on randomization

Saxe, McClelland & Ganguli, 2014; Dauphin et al., 2014; Choromanska

et al., 2015; Haeffele & Vidal, 2015

Assumptions

u ∈ Rn A

A ∈ Rm×n

Fully-connected linear layers

with random Gaussian
weights

Element-wise (approximately) truncated linear activation

ρ|[a,b] linear ρ|R\[a,b] = const

No pooling

: input already invariant

Low dimensional input data

Assumptions

u ∈ Rn

aij ∼ N(0, 1
m

)

Fully-connected linear layers with random Gaussian
weights

Element-wise (approximately) truncated linear activation

ρ|[a,b] linear ρ|R\[a,b] = const

No pooling

: input already invariant

Low dimensional input data

Assumptions

u ∈ Rn Au

aij ∼ N(0, 1
m

)

ρ

Fully-connected linear layers with random Gaussian
weights

Element-wise (approximately) truncated linear activation

ρ|[a,b] linear ρ|R\[a,b] = const

No pooling

: input already invariant

Low dimensional input data

Assumptions

u ∈ Rn Au

aij ∼ N(0, 1
m

)

ρ

tanh vmax{v , 0} 1/(1 + e−v)

Fully-connected linear layers with random Gaussian
weights

Element-wise (approximately) truncated linear activation

ρ|[a,b] linear ρ|R\[a,b] = const

No pooling

: input already invariant

Low dimensional input data

Assumptions

u ∈ Rn Au
ρ(Au)

aij ∼ N(0, 1
m

)

ρ

tanh vmax{v , 0} 1/(1 + e−v)

Fully-connected linear layers with random Gaussian
weights

Element-wise (approximately) truncated linear activation

ρ|[a,b] linear ρ|R\[a,b] = const

No pooling

: input already invariant

Low dimensional input data

Assumptions

u ∈ Rn Au
ρ(Au)

aij ∼ N(0, 1
m

)

ρ

tanh vmax{v , 0} 1/(1 + e−v)

Fully-connected linear layers with random Gaussian
weights

Element-wise (approximately) truncated linear activation

ρ|[a,b] linear ρ|R\[a,b] = const

No pooling (pooling = invariance)

: input already invariant

Low dimensional input data

Assumptions

u ∈ Rn Au
ρ(Au)

aij ∼ N(0, 1
m

)

ρ

tanh vmax{v , 0} 1/(1 + e−v)

Fully-connected linear layers with random Gaussian
weights

Element-wise (approximately) truncated linear activation

ρ|[a,b] linear ρ|R\[a,b] = const

No pooling: input already invariant

Low dimensional input data

Assumptions

u ∈ Rn Au
ρ(Au)

aij ∼ N(0, 1
m

)

ρ

tanh vmax{v , 0} 1/(1 + e−v)

Fully-connected linear layers with random Gaussian
weights

Element-wise (approximately) truncated linear activation

ρ|[a,b] linear ρ|R\[a,b] = const

No pooling: input already invariant

Low dimensional input data

Random Gaussian weights

v = u

aij ∼ N(0, 1
m

)

A k-sparse vector u ∈ Rn can be reconstructed from
m = O(k log(n/k)) random projections

Candés, Romberg, Tao, 2006; Candés & Tao, 2006

Random Gaussian weights

v = u

aij ∼ N(0, 1
m

)

A k-sparse vector u ∈ Rn can be reconstructed from
m = O(k log(n/k)) random projections

Candés, Romberg, Tao, 2006; Candés & Tao, 2006

Random Gaussian weights

v = u

aij ∼ N(0, 1
m

)

A k-sparse vector u ∈ Rn can be reconstructed from
m = O(k log(n/k)) random projections

Candés, Romberg, Tao, 2006; Candés & Tao, 2006

Random Gaussian weights

v = u

aij ∼ N(0, 1
m

)

A k-sparse vector u ∈ Rn can be reconstructed from
m = O(k log(n/k)) random projections

Restricted isometry property (RIP)

Candés, Romberg, Tao, 2006; Candés & Tao, 2006

Random Gaussian weights

v = u

aij ∼ N(0, 1
m

)

A k-sparse vector u ∈ Rn can be reconstructed from
m = O(k log(n/k)) random projections

Restricted isometry property (RIP)

Random projection is universally good

Candés, Romberg, Tao, 2006; Candés & Tao, 2006

Low-dimensional input

Input data have a small number of degrees of freedom

but may be embedded in a high-dimensional space

Low-dimensional input

Input data have a small number of degrees of freedom
but may be embedded in a high-dimensional space

Low-dimensional input

Input data have a small number of degrees of freedom
but may be embedded in a high-dimensional space

K =
∑
k

N(µk ,Σk)

Gaussian mixture model

Low-dimensional input

Input data have a small number of degrees of freedom
but may be embedded in a high-dimensional space

K =
∑
k

N(µk ,Σk)

Gaussian mixture model

K = {Dz : ‖z‖0 ≤ k}

Sparse representation

Low-dimensional input

Violated at the output due to DNN nonlinearity!

K =
∑
k

N(µk ,Σk)

Gaussian mixture model

K = {Dz : ‖z‖0 ≤ k}

Sparse representation

Gaussian mean width

K ⊂ Bn

g1

g2

ω(K) = E sup
u,v∈K

〈u− v,g〉 g ∼ N(0, I)

Plan & Vershynin, 2012

Gaussian mean width

K ⊂ Bn

g1

g2

ω(K) = E sup
u,v∈K

〈u− v,g〉 g ∼ N(0, I)

ω2(K) measures intrinsic data dimension

K is GMM with k Gaussians: ω2(K) = O(k)

K is k-sparsely representable: ω2(K) = O(k log(n/k))

Plan & Vershynin, 2012

Gaussian mean width

K ⊂ Bn

g1

g2

ω(K) = E sup
u,v∈K

〈u− v,g〉 g ∼ N(0, I)

ω2(K) measures intrinsic data dimension

K is GMM with k Gaussians: ω2(K) = O(k)

K is k-sparsely representable: ω2(K) = O(k log(n/k))

Plan & Vershynin, 2012

Gaussian mean width

K ⊂ Bn

g1

g2

ω(K) = E sup
u,v∈K

〈u− v,g〉 g ∼ N(0, I)

ω2(K) measures intrinsic data dimension

K is GMM with k Gaussians: ω2(K) = O(k)

K is k-sparsely representable: ω2(K) = O(k log(n/k))

Plan & Vershynin, 2012

Low dimension in – low dimension out

K ⊂ Rn aij ∼ N(0, 1
m

)

AK ⊂ Rm

ρ(AK) ⊂ Rm

Theorem: if ω2(K)� m then ω2(ρ(AK)) ≈ ω2(K)

Proof: covering argument

Intrinsic data dimension does not grow significantly
through the network

It is sufficient to analyze a single layer in DNN

Giryes, Sapiro, B, 2015

Low dimension in – low dimension out

K ⊂ Rn aij ∼ N(0, 1
m

)

AK ⊂ Rm

ρ(AK) ⊂ Rm

Theorem: if ω2(K)� m then ω2(ρ(AK)) ≈ ω2(K)

Proof: covering argument

Intrinsic data dimension does not grow significantly
through the network

It is sufficient to analyze a single layer in DNN

Giryes, Sapiro, B, 2015

Low dimension in – low dimension out

K ⊂ Rn aij ∼ N(0, 1
m

)

AK ⊂ Rm

ρ(AK) ⊂ Rm

Theorem: if ω2(K)� m then ω2(ρ(AK)) ≈ ω2(K)

Proof: covering argument

Intrinsic data dimension does not grow significantly
through the network

It is sufficient to analyze a single layer in DNN

Giryes, Sapiro, B, 2015

Low dimension in – low dimension out

K ⊂ Rn aij ∼ N(0, 1
m

)

AK ⊂ Rm

ρ(AK) ⊂ Rm

Theorem: if ω2(K)� m then ω2(ρ(AK)) ≈ ω2(K)

Proof: covering argument

Intrinsic data dimension does not grow significantly
through the network

It is sufficient to analyze a single layer in DNN

Giryes, Sapiro, B, 2015

Low dimension in – low dimension out

K ⊂ Rn aij ∼ N(0, 1
m

)

AK ⊂ Rm

ρ(AK) ⊂ Rm

Theorem: if ω2(K)� m then ω2(ρ(AK)) ≈ ω2(K)

Proof: covering argument

Intrinsic data dimension does not grow significantly
through the network

It is sufficient to analyze a single layer in DNN

Giryes, Sapiro, B, 2015

Stable embedding

Theorem: the map h : (K ⊂ Sn−1, d Sn−1) 7→ (h(K), dHm)
defined by h(u) = sign(ρ(Au)) is a δ-isometry with
δ = c m−1/6 ω1/3(K)

Proof: follows Plan & Vershynin, 2013

DNN layer performs stable embedding in the
Gromov-Hausdorff sense

Plan & Vershynin, 2013; Giryes, Sapiro, B, 2015

Stable embedding

Theorem: the map h : (K ⊂ Sn−1, d Sn−1) 7→ (h(K), dHm)
defined by h(u) = sign(ρ(Au)) is a δ-isometry, i.e.,

|d Sn−1(u,v)− dHm(h(u),h(v))| ≤ δ ∀u,v ∈ K

and every w ∈ h(K) has some u ∈ K such that
dHm(h(u,w) ≤ δ with δ = c m−1/6 ω1/3(K)

Proof: follows Plan & Vershynin, 2013

DNN layer performs stable embedding in the
Gromov-Hausdorff sense

Plan & Vershynin, 2013; Giryes, Sapiro, B, 2015

Stable embedding

Theorem: the map h : (K ⊂ Sn−1, d Sn−1) 7→ (h(K), dHm)
defined by h(u) = sign(ρ(Au)) is a δ-isometry, i.e.,

|d Sn−1(u,v)− dHm(h(u),h(v))| ≤ δ ∀u,v ∈ K

and every w ∈ h(K) has some u ∈ K such that
dHm(h(u,w) ≤ δ with δ = c m−1/6 ω1/3(K)

Proof: follows Plan & Vershynin, 2013

DNN layer performs stable embedding in the
Gromov-Hausdorff sense

Plan & Vershynin, 2013; Giryes, Sapiro, B, 2015

Stable embedding

Theorem: the map h : (K ⊂ Sn−1, d Sn−1) 7→ (h(K), dHm)
defined by h(u) = sign(ρ(Au)) is a δ-isometry, i.e.,

|d Sn−1(u,v)− dHm(h(u),h(v))| ≤ δ ∀u,v ∈ K

and every w ∈ h(K) has some u ∈ K such that
dHm(h(u,w) ≤ δ with δ = c m−1/6 ω1/3(K)

Proof: follows Plan & Vershynin, 2013

DNN layer performs stable embedding in the
Gromov-Hausdorff sense

Plan & Vershynin, 2013; Giryes, Sapiro, B, 2015

Tessellation of the input space

0101101

1100111

0101101

Cell diameter ≤ δ

If h(u) = h(v) then d Sn−1(u,v) ≤ δ

Input metric can be recovered up to a small distortion

Giryes, Sapiro, B, 2015

Tessellation of the input space

0101101

1100111

0101101

v
u
≤ δ

Cell diameter ≤ δ

If h(u) = h(v) then d Sn−1(u,v) ≤ δ

Input metric can be recovered up to a small distortion

Giryes, Sapiro, B, 2015

Tessellation of the input space

0101101

1100111

0101101

v
u
≤ δ

Cell diameter ≤ δ

If h(u) = h(v) then d Sn−1(u,v) ≤ δ

Input metric can be recovered up to a small distortion

Giryes, Sapiro, B, 2015

Tessellation of the input space

0101101

1100111

0101101

v
u
≤ δ

Cell diameter ≤ δ

If h(u) = h(v) then d Sn−1(u,v) ≤ δ

Input metric can be recovered up to a small distortion

Giryes, Sapiro, B, 2015

Stable embedding

Theorem: there exists a procedure P such that

‖K− P(ρ(AK)) ‖ < O

(
ω(K)√

m

)
= O(δ3)

Proof: follows Plan & Vershynin, 2013

After N layers the error grows as O(Nδ3)

DNNs keep important information of the data

Input can be recovered from output if output dimension
m is big enough

Plan & Vershynin, 2013; Giryes, Sapiro, B, 2015

Stable embedding

Theorem: there exists a procedure P such that

‖K− P(ρ(AK)) ‖ < O

(
ω(K)√

m

)
= O(δ3)

Proof: follows Plan & Vershynin, 2013

After N layers the error grows as O(Nδ3)

DNNs keep important information of the data

Input can be recovered from output if output dimension
m is big enough

Plan & Vershynin, 2013; Giryes, Sapiro, B, 2015

Stable embedding

Theorem: there exists a procedure P such that

‖K− P(ρ(AK)) ‖ < O

(
ω(K)√

m

)
= O(δ3)

Proof: follows Plan & Vershynin, 2013

After N layers the error grows as O(Nδ3)

DNNs keep important information of the data

Input can be recovered from output if output dimension
m is big enough

Plan & Vershynin, 2013; Giryes, Sapiro, B, 2015

Stable embedding

Theorem: there exists a procedure P such that

‖K− P(ρ(AK)) ‖ < O

(
ω(K)√

m

)
= O(δ3)

Proof: follows Plan & Vershynin, 2013

After N layers the error grows as O(Nδ3)

DNNs keep important information of the data

Input can be recovered from output if output dimension
m is big enough

Plan & Vershynin, 2013; Giryes, Sapiro, B, 2015

Stable embedding

Theorem: there exists a procedure P such that

‖K− P(ρ(AK)) ‖ < O

(
ω(K)√

m

)
= O(δ3)

Proof: follows Plan & Vershynin, 2013

After N layers the error grows as O(Nδ3)

DNNs keep important information of the data

Input can be recovered from output if output dimension
m is big enough

Plan & Vershynin, 2013; Giryes, Sapiro, B, 2015

Inverting a CNN

Mahendran & Vedaldi, 2015

Similarity-preserving hashing

0101101

1100111

0101101

Single layer = locality sensitive hashing (LSH)

Random weights perform well universally

Can be tuned to specific data by training

Giryes, Sapiro, B, 2015

Similarity-preserving hashing

0101101

1100111

0101101

Single layer = locality sensitive hashing (LSH)

Random weights perform well universally

Can be tuned to specific data by training

Giryes, Sapiro, B, 2015

Similarity-preserving hashing

0101101

1100111

0101101

Single layer = locality sensitive hashing (LSH)

Random weights perform well universally

Can be tuned to specific data by training

Giryes, Sapiro, B, 2015

Similarity-preserving hashing

0101101

1100111

0101101

Single layer = locality sensitive hashing (LSH)

Random weights perform well universally

Can be tuned to specific data by training

Giryes, Sapiro, B, 2015

Similarity-preserving hashing

0101101

1100111

0101101

For deep networks, number of cells in the tessellation is
exponentially greater than the number of degrees of
freedom

Montúfar et al., 2014

Image retrieval with similarity-preserving hashing

60K images from 10 different classes taken from Tiny images
Represented using 384-dimensional GIST descriptor
Training: 200 images per class; Testing: 59K images

Method / m 12 24 48
Raw 19.16

DiffHash 14.72 13.35 12.85
SSH 15.42 16.75 17.06
AGH 15.46 15.29 15.15
KSH 25.79 29.01 30.84

NN
1 layer 31.48 35.41 36.79
2 layer 45.42 49.88 50.46

Performance (mAP in %)

Data: Torralba et al. 2008, Krizhevsky 2009; Methods: Strecha et al.

2011 (diff-hash); Shakhnarovich 2005 (SSH); Liu et al. 2011 (AGH); Liu

et al. 2012 (KSH); Masci, B2, Schmidhuber 2012 (NN)

Image retrieval with similarity-preserving hashing

60K images from 10 different classes taken from Tiny images
Represented using 384-dimensional GIST descriptor
Training: 200 images per class; Testing: 59K images

SSH

AGH

KSH

NN

Ranking using 48-bit hashes
Data: Torralba et al. 2008, Krizhevsky 2009; Methods: Strecha et al.

2011 (diff-hash); Shakhnarovich 2005 (SSH); Liu et al. 2011 (AGH); Liu

et al. 2012 (KSH); Masci, B2, Schmidhuber 2012 (NN)

Image retrieval with similarity-preserving hashing

60K images from 10 different classes taken from Tiny images
Represented using 384-dimensional GIST descriptor
Training: 200 images per class; Testing: 59K images

SSH

AGH

KSH

NN

Ranking using 48-bit hashes
Data: Torralba et al. 2008, Krizhevsky 2009; Methods: Strecha et al.

2011 (diff-hash); Shakhnarovich 2005 (SSH); Liu et al. 2011 (AGH); Liu

et al. 2012 (KSH); Masci, B2, Schmidhuber 2012 (NN)

Image retrieval with similarity-preserving hashing

60K images from 10 different classes taken from Tiny images
Represented using 384-dimensional GIST descriptor
Training: 200 images per class; Testing: 59K images

SSH

AGH

KSH

NN

Ranking using 48-bit hashes
Data: Torralba et al. 2008, Krizhevsky 2009; Methods: Strecha et al.

2011 (diff-hash); Shakhnarovich 2005 (SSH); Liu et al. 2011 (AGH); Liu

et al. 2012 (KSH); Masci, B2, Schmidhuber 2012 (NN)

Assumptions

u ∈ Rn Au
ρ(Au)ρ

tanh vmax{v , 0} 1/(1 + e−v)

Fully-connected linear layers with random Gaussian
weights

Element-wise approximately truncated linear activation

No pooling

Low dimensional input data

Assumptions

u ∈ Rn Au
ρ(Au)

Fully-connected linear layers with random Gaussian
weights

ReLU activation

No pooling

Low dimensional input data

Angle distortion

Theorem (concentration of output angle): for u,v ∈ K

cos^ (ρ(Au), ρ(Av)) ≈ cos^ (u,v) + ψ(^ (u,v))

where ψ(α) = 1
π

(sinα− α cosα)

Giryes, Sapiro, B, 2015

Angle distortion

cos^ (ρ(Au), ρ(Av)) ≈ cos^ (u,v) + ψ(^ (u,v))

^
(ρ

(A
u

),
ρ

(A
v

))

^ (u,v)π

4

π

2

π0

π

4

π

2

<
5%

sh
rin

k
<

20%
sh

rin
k

distortio
n

Giryes, Sapiro, B, 2015

Angle distortion

cos^ (ρ(Au), ρ(Av)) ≈ cos^ (u,v) + ψ(^ (u,v))

^
(ρ

(A
u

),
ρ

(A
v

))

^ (u,v)π

4

π

2

π0

π

4

π

2

<
5%

sh
rin

k
<

20%
sh

rin
k

distortio
n

Giryes, Sapiro, B, 2015

Distance distortion

Theorem (concentration of output distance):

‖ ρ(Au)− ρ(Av) ‖2 ≈ 1

2
‖u− v‖2 + ‖u‖‖v‖ψ(^ (u,v))

for u,v ∈ K, where ψ(α) = 1
π

(sinα− α cosα)

Giryes, Sapiro, B, 2015

Distance distortion

‖ ρ(Au)− ρ(Av) ‖2 ≈ 1

2
‖u− v‖2 + ‖u‖‖v‖ψ(^ (u,v))

‖ρ
(A

u
)
−
ρ

(A
v

)
‖2

‖u
−

v
‖2

^ (u,v)π

4

π

2

3π

4

π0
0.5

0.75

Giryes, Sapiro, B, 2015

Angle and distance distortion

Points with small angles between them become closer
than points with large angles between them

Giryes, Sapiro, B, 2015

Angle and distance distortion

Points with small angles between them become closer
than points with large angles between them

Giryes, Sapiro, B, 2015

Inside a real network

State-of-the-art 19-layer CNN trained on ImageNet

* * max * * max

* ** *max

* ** * max

* ** *max

FC soft maxFC FC

u

f(u)

Simonyan & Zisserman, 2014

Inside a real network

State-of-the-art 19-layer CNN trained on ImageNet

* * max * * max

* ** *max

* ** * max

* ** *max

FC soft maxFC FC

u

f(u)

Simonyan & Zisserman, 2014

Angle distortion at 8-th layer

Distribution of ^ (f(u), f(v)) /^(u,v)

0 0.2 0.4 0.6 0.8 1.0

[0, π/4]

[π/4, π/2]
[π/2, π]

Giryes, Sapiro, B, 2015

Angle distortion at 16-th layer

Distribution of ^ (f(u), f(v)) /^(u,v)

0 0.2 0.4 0.6 0.8 1.0

[0, π/4]

[π/4, π/2]

[π/2, π]

Giryes, Sapiro, B, 2015

Training set size

DNNs are stable: close points in the input are close in the
output

Network performing well on an ε-net Kε in K performs
well on entire K

Sudakov’s minoration:

log |Kε| ≤
c ω2(K)

ε2

Not tight!

...but introduces Gaussian mean width ω(K)
as the measure of data complexity

Situation is much better in practice

Giryes, Sapiro, B, 2015

Training set size

DNNs are stable: close points in the input are close in the
output

Network performing well on an ε-net Kε in K performs
well on entire K

Sudakov’s minoration:

log |Kε| ≤
c ω2(K)

ε2

Not tight!

...but introduces Gaussian mean width ω(K)
as the measure of data complexity

Situation is much better in practice

Giryes, Sapiro, B, 2015

Training set size

DNNs are stable: close points in the input are close in the
output

Network performing well on an ε-net Kε in K performs
well on entire K

Sudakov’s minoration:

log |Kε| ≤
c ω2(K)

ε2

Not tight!

...but introduces Gaussian mean width ω(K)
as the measure of data complexity

Situation is much better in practice

Giryes, Sapiro, B, 2015

Training set size

DNNs are stable: close points in the input are close in the
output

Network performing well on an ε-net Kε in K performs
well on entire K

Sudakov’s minoration:

log |Kε| ≤
c ω2(K)

ε2

Not tight!

...but introduces Gaussian mean width ω(K)
as the measure of data complexity

Situation is much better in practice

Giryes, Sapiro, B, 2015

Training set size

DNNs are stable: close points in the input are close in the
output

Network performing well on an ε-net Kε in K performs
well on entire K

Sudakov’s minoration:

log |Kε| ≤
c ω2(K)

ε2

Not tight! ...but introduces Gaussian mean width ω(K)
as the measure of data complexity

Situation is much better in practice

Giryes, Sapiro, B, 2015

Training set size

DNNs are stable: close points in the input are close in the
output

Network performing well on an ε-net Kε in K performs
well on entire K

Sudakov’s minoration:

log |Kε| ≤
c ω2(K)

ε2

Not tight! ...but introduces Gaussian mean width ω(K)
as the measure of data complexity

Situation is much better in practice

Giryes, Sapiro, B, 2015

Random data points

fu v = f(u)

u

u+
u− vv+ v−

Distance ratios between random triplets (u,u+,u−)

Intra-class =
‖v+ − v‖
‖u+ − u‖

Inter-class =
‖v− − v‖
‖u− − u‖

Giryes, Sapiro, B, 2015

Random data points

CNN on CIFAR-10 – Random weights

0 0.5 1 1.5 2 2.5 3

Intra

Inter

Giryes, Sapiro, B, 2015

Random data points

CNN on CIFAR-10 – Trained to 25% error

0 0.5 1 1.5 2 2.5 3

Intra

Inter

Giryes, Sapiro, B, 2015

Random data points

CNN on CIFAR-10 – Trained to 21% error

0 0.5 1 1.5 2 2.5 3

Intra

Inter

Giryes, Sapiro, B, 2015

Random data points

CNN on CIFAR-10 – Trained to 18% error

0 0.5 1 1.5 2 2.5 3

Intra

Inter

Giryes, Sapiro, B, 2015

Random data points

CNN on CIFAR-10 – Random and trained

0 0.5 1 1.5 2 2.5 3

Intra

Inter

Giryes, Sapiro, B, 2015

Class boundary points

fu v = f(u)

u

u+

u−
v

w+

v−
v+

w−

u random, u+ farthest in class, u− closest not in class

Intra-class =
‖w+ − v‖
‖u+ − u‖

Inter-class =
‖w− − v‖
‖u− − u‖

Giryes, Sapiro, B, 2015

Class boundary points

CNN on CIFAR-10 – Random weights

0 0.5 1 1.5 2 2.5 3

Intra

Inter

Giryes, Sapiro, B, 2015

Class boundary points

CNN on CIFAR-10 – Trained to 25% error

0 0.5 1 1.5 2 2.5 3

Intra

Inter

Giryes, Sapiro, B, 2015

Class boundary points

CNN on CIFAR-10 – Trained to 21% error

0 0.5 1 1.5 2 2.5 3

Intra

Inter

Giryes, Sapiro, B, 2015

Class boundary points

CNN on CIFAR-10 – Trained to 18% error

0 0.5 1 1.5 2 2.5 3

Intra

Inter

Giryes, Sapiro, B, 2015

Class boundary points

CNN on CIFAR-10 – Random and trained

0 0.5 1 1.5 2 2.5 3

Intra (random)

Intra (trained)

Inter (random)

Inter (trained)

Giryes, Sapiro, B, 2015

Role of training

Negligible effect on random data points

Random weights perform well universally

Major effect on class boundary points

Intra-class distances shrink

Inter-class distances grow

Only a small subset of Kε is required for training

Giryes, Sapiro, B, 2015

Role of training

Negligible effect on random data points

Random weights perform well universally

Major effect on class boundary points

Intra-class distances shrink

Inter-class distances grow

Only a small subset of Kε is required for training

Giryes, Sapiro, B, 2015

Role of training

Negligible effect on random data points

Random weights perform well universally

Major effect on class boundary points

Intra-class distances shrink

Inter-class distances grow

Only a small subset of Kε is required for training

Giryes, Sapiro, B, 2015

Role of training

Negligible effect on random data points

Random weights perform well universally

Major effect on class boundary points

Intra-class distances shrink

Inter-class distances grow

Only a small subset of Kε is required for training

Giryes, Sapiro, B, 2015

Role of training

Negligible effect on random data points

Random weights perform well universally

Major effect on class boundary points

Intra-class distances shrink

Inter-class distances grow

Only a small subset of Kε is required for training

Giryes, Sapiro, B, 2015

Role of training

Negligible effect on random data points

Random weights perform well universally

Major effect on class boundary points

Intra-class distances shrink

Inter-class distances grow

Only a small subset of Kε is required for training

Giryes, Sapiro, B, 2015

DNNs as metric learners

Massive supervision required for DNN training

Semi- and unsupervised training is a challenge

Inject metric learning criterion into training objective to
reduce the amount of labeled data

DNNs as metric learners

Massive supervision required for DNN training

Semi- and unsupervised training is a challenge

Inject metric learning criterion into training objective to
reduce the amount of labeled data

DNNs as metric learners

Massive supervision required for DNN training

Semi- and unsupervised training is a challenge

Inject metric learning criterion into training objective to
reduce the amount of labeled data

DNNs as metric learners

Face recognition accuracy on LFW dataset

0.5

0.6

0.7

0.8

0.9

1.0

T
ru

e
p

os
it

iv
e

ra
te

False positive rate
0 0.25 0.5 0.75 1

Deep Face
4.4× 106 samples

Metric learning
6× 105 samples

Huang et al.

Compressed discrimination

Compressed sensing: reconstruct signal x ∈ Rn given
m� n measurements

Compressed discrimination: estimate parameter θ ∈ Rk

(k � n) related to x given m′ < m measurements

m′ is insufficient to reconstruct the signal!

Compressed discrimination

Compressed sensing: reconstruct signal x ∈ Rn given
m� n measurements

Compressed discrimination: estimate parameter θ ∈ Rk

(k � n) related to x given m′ < m measurements

m′ is insufficient to reconstruct the signal!

Compressed discrimination

Compressed sensing: reconstruct signal x ∈ Rn given
m� n measurements

Compressed discrimination: estimate parameter θ ∈ Rk

(k � n) related to x given m′ < m measurements

m′ is insufficient to reconstruct the signal!

Compressed scattering tomography

Menashe & B, 2013

Compressed scattering tomography

m : n = 1 : 2 1 : 4 1 : 8 1 : 16 1 : 32

Menashe & B, 2013

Compressed discrimination

Compressed sensing: reconstruct signal x ∈ Rn given
m� n measurements

Compressed discrimination: estimate parameter θ ∈ Rk

(k � n) related to x given m′ < m measurements

Compressed discrimination

Compressed sensing: reconstruct signal x ∈ Rn given
m� n measurements

Random projection: global & linear

Compressed discrimination: estimate parameter θ ∈ Rk

(k � n) related to x given m′ < m measurements

Compressed discrimination

Compressed sensing: reconstruct signal x ∈ Rn given
m� n measurements

Random projection: global & linear

Compressed discrimination: estimate parameter θ ∈ Rk

(k � n) related to x given m′ < m measurements

CNN: local & non-linear

Compressed discrimination

Compressed sensing: reconstruct signal x ∈ Rn given
m� n measurements

Random projection: global & linear

Compressed discrimination: estimate parameter θ ∈ Rk

(k � n) related to x given m′ < m measurements

CNN: local & non-linear

Compressed discrimination

Compressed sensing: reconstruct signal x ∈ Rn given
m� n measurements

Random projection: global & linear

Compressed discrimination: estimate parameter θ ∈ Rk

(k � n) related to x given m′ < m measurements

CNN: local & non-linear

Conclusion

Gaussian mean width as a generic data complexity
measure in DNN analysis

DNNs keep important information of the data

Random Gaussian weights are good for classifying average
data points

Training improves performance at class boundaries

Deep learning can be viewed as metric learning

..

Conclusion

Gaussian mean width as a generic data complexity
measure in DNN analysis

DNNs keep important information of the data

Random Gaussian weights are good for classifying average
data points

Training improves performance at class boundaries

Deep learning can be viewed as metric learning

..

Conclusion

Gaussian mean width as a generic data complexity
measure in DNN analysis

DNNs keep important information of the data

Random Gaussian weights are good for classifying average
data points

Training improves performance at class boundaries

Deep learning can be viewed as metric learning

..

Conclusion

Gaussian mean width as a generic data complexity
measure in DNN analysis

DNNs keep important information of the data

Random Gaussian weights are good for classifying average
data points

Training improves performance at class boundaries

Deep learning can be viewed as metric learning

..

Conclusion

Gaussian mean width as a generic data complexity
measure in DNN analysis

DNNs keep important information of the data

Random Gaussian weights are good for classifying average
data points

Training improves performance at class boundaries

Deep learning can be viewed as metric learning

..

\beamer@endinputifotherversion {3.26pt}
\headcommand {\slideentry {0}{0}{1}{1/1}{}{0}}
\headcommand {\beamer@framepages {1}{1}}
\headcommand {\slideentry {0}{0}{2}{2/3}{}{0}}
\headcommand {\beamer@framepages {2}{3}}
\headcommand {\slideentry {0}{0}{3}{4/6}{}{0}}
\headcommand {\beamer@framepages {4}{6}}
\headcommand {\slideentry {0}{0}{4}{7/9}{}{0}}
\headcommand {\beamer@framepages {7}{9}}
\headcommand {\slideentry {0}{0}{5}{10/10}{}{0}}
\headcommand {\beamer@framepages {10}{10}}
\headcommand {\slideentry {0}{0}{6}{11/11}{}{0}}
\headcommand {\beamer@framepages {11}{11}}
\headcommand {\slideentry {0}{0}{7}{12/12}{}{0}}
\headcommand {\beamer@framepages {12}{12}}
\headcommand {\slideentry {0}{0}{8}{13/18}{}{0}}
\headcommand {\beamer@framepages {13}{18}}
\headcommand {\slideentry {0}{0}{9}{19/20}{}{0}}
\headcommand {\beamer@framepages {19}{20}}
\headcommand {\slideentry {0}{0}{10}{21/23}{}{0}}
\headcommand {\beamer@framepages {21}{23}}
\headcommand {\slideentry {0}{0}{11}{24/27}{}{0}}
\headcommand {\beamer@framepages {24}{27}}
\headcommand {\slideentry {0}{0}{12}{28/32}{}{0}}
\headcommand {\beamer@framepages {28}{32}}
\headcommand {\slideentry {0}{0}{13}{33/40}{}{0}}
\headcommand {\beamer@framepages {33}{40}}
\headcommand {\slideentry {0}{0}{14}{41/45}{}{0}}
\headcommand {\beamer@framepages {41}{45}}
\headcommand {\slideentry {0}{0}{15}{46/49}{}{0}}
\headcommand {\beamer@framepages {46}{49}}
\headcommand {\slideentry {0}{0}{16}{50/50}{}{0}}
\headcommand {\beamer@framepages {50}{50}}
\headcommand {\slideentry {0}{0}{17}{51/51}{}{0}}
\headcommand {\beamer@framepages {51}{51}}
\headcommand {\slideentry {0}{0}{18}{52/54}{}{0}}
\headcommand {\beamer@framepages {52}{54}}
\headcommand {\slideentry {0}{0}{19}{55/59}{}{0}}
\headcommand {\beamer@framepages {55}{59}}
\headcommand {\slideentry {0}{0}{20}{60/63}{}{0}}
\headcommand {\beamer@framepages {60}{63}}
\headcommand {\slideentry {0}{0}{21}{64/67}{}{0}}
\headcommand {\beamer@framepages {64}{67}}
\headcommand {\slideentry {0}{0}{22}{68/72}{}{0}}
\headcommand {\beamer@framepages {68}{72}}
\headcommand {\slideentry {0}{0}{23}{73/73}{}{0}}
\headcommand {\beamer@framepages {73}{73}}
\headcommand {\slideentry {0}{0}{24}{74/77}{}{0}}
\headcommand {\beamer@framepages {74}{77}}
\headcommand {\slideentry {0}{0}{25}{78/78}{}{0}}
\headcommand {\beamer@framepages {78}{78}}
\headcommand {\slideentry {0}{0}{26}{79/82}{}{0}}
\headcommand {\beamer@framepages {79}{82}}
\headcommand {\slideentry {0}{0}{27}{83/84}{}{0}}
\headcommand {\beamer@framepages {83}{84}}
\headcommand {\slideentry {0}{0}{28}{85/85}{}{0}}
\headcommand {\beamer@framepages {85}{85}}
\headcommand {\slideentry {0}{0}{29}{86/87}{}{0}}
\headcommand {\beamer@framepages {86}{87}}
\headcommand {\slideentry {0}{0}{30}{88/88}{}{0}}
\headcommand {\beamer@framepages {88}{88}}
\headcommand {\slideentry {0}{0}{31}{89/89}{}{0}}
\headcommand {\beamer@framepages {89}{89}}
\headcommand {\slideentry {0}{0}{32}{90/91}{}{0}}
\headcommand {\beamer@framepages {90}{91}}
\headcommand {\slideentry {0}{0}{33}{92/93}{}{0}}
\headcommand {\beamer@framepages {92}{93}}
\headcommand {\slideentry {0}{0}{34}{94/94}{}{0}}
\headcommand {\beamer@framepages {94}{94}}
\headcommand {\slideentry {0}{0}{35}{95/95}{}{0}}
\headcommand {\beamer@framepages {95}{95}}
\headcommand {\slideentry {0}{0}{36}{96/101}{}{0}}
\headcommand {\beamer@framepages {96}{101}}
\headcommand {\slideentry {0}{0}{37}{102/102}{}{0}}
\headcommand {\beamer@framepages {102}{102}}
\headcommand {\slideentry {0}{0}{38}{103/103}{}{0}}
\headcommand {\beamer@framepages {103}{103}}
\headcommand {\slideentry {0}{0}{39}{104/104}{}{0}}
\headcommand {\beamer@framepages {104}{104}}
\headcommand {\slideentry {0}{0}{40}{105/105}{}{0}}
\headcommand {\beamer@framepages {105}{105}}
\headcommand {\slideentry {0}{0}{41}{106/106}{}{0}}
\headcommand {\beamer@framepages {106}{106}}
\headcommand {\slideentry {0}{0}{42}{107/107}{}{0}}
\headcommand {\beamer@framepages {107}{107}}
\headcommand {\slideentry {0}{0}{43}{108/108}{}{0}}
\headcommand {\beamer@framepages {108}{108}}
\headcommand {\slideentry {0}{0}{44}{109/109}{}{0}}
\headcommand {\beamer@framepages {109}{109}}
\headcommand {\slideentry {0}{0}{45}{110/110}{}{0}}
\headcommand {\beamer@framepages {110}{110}}
\headcommand {\slideentry {0}{0}{46}{111/111}{}{0}}
\headcommand {\beamer@framepages {111}{111}}
\headcommand {\slideentry {0}{0}{47}{112/112}{}{0}}
\headcommand {\beamer@framepages {112}{112}}
\headcommand {\slideentry {0}{0}{48}{113/113}{}{0}}
\headcommand {\beamer@framepages {113}{113}}
\headcommand {\slideentry {0}{0}{49}{114/119}{}{0}}
\headcommand {\beamer@framepages {114}{119}}
\headcommand {\slideentry {0}{0}{50}{120/122}{}{0}}
\headcommand {\beamer@framepages {120}{122}}
\headcommand {\slideentry {0}{0}{51}{123/123}{}{0}}
\headcommand {\beamer@framepages {123}{123}}
\headcommand {\slideentry {0}{0}{52}{124/126}{}{0}}
\headcommand {\beamer@framepages {124}{126}}
\headcommand {\slideentry {0}{0}{53}{127/128}{}{0}}
\headcommand {\beamer@framepages {127}{128}}
\headcommand {\slideentry {0}{0}{54}{129/133}{}{0}}
\headcommand {\beamer@framepages {129}{133}}
\headcommand {\slideentry {0}{0}{55}{134/138}{}{0}}
\headcommand {\beamer@framepages {134}{138}}
\headcommand {\beamer@partpages {1}{138}}
\headcommand {\beamer@subsectionpages {1}{138}}
\headcommand {\beamer@sectionpages {1}{138}}
\headcommand {\beamer@documentpages {138}}
\headcommand {\def \inserttotalframenumber {55}}

