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(Deep) neural network

u A1 ρ v1

Single layer:

v1 = ρ(A1u)



(Deep) neural network

u A1 ρ · · · AN ρ f(u)

Whole net response:

f(u) = ρ(AN ρ(AN−1 ρ( · · · ρ(A1u) · · · )))
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Non-linear part

u σ
v

π ρ(u)

ReLU tanh Sigmoid
max{u, 0} tanh u 1

1 + e−u

Max Mean

max
i

vi
1

m

∑
i=1

vi

Element-wise activation function σ(u)

Pooling or aggregation operator π(v)



Impact of deep learning

Audio recognition error rates
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Impact of deep learning

Visual recognition error rates
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Representation power

DNNs are universal approximators of any Borel function1

Estimation error of a function f by DNN is2

O

(
Cf

K

)
+ O

(
nK

T
logT

)
Cf = smoothness of f
K = # of degrees of freedom
n = input dimension
T = # of training samples

1Cybenko 1989; Hornik 1991; 2Barron 1992
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Representation power

DNNs represent restricted Boltzmann machines with
number of parameters exponentially greater than the
number of degrees of freedom of the network1

Deep network with the same number of degrees of
freedom divides the input space into exponentially greater
number of sets2

Depth is important!

1Montúfar & Morton, 2014; 2Montúfar et al., 2014
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Role of pooling

Pooling provides shift invariance1

Scattering networks2 : a cascade of wavelet transform,
modulus and averaging

Deeper network provides invariance to more complex
transformations

Depth is important!

1Bruna, LeCun & Szlam, 2013,2014; 2Bruna & Mallat, 2013
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Training

Supervised training by back propagation (chain rule)
results in non-convex optimization problem

In deep networks, local minima are nearly as good as
global ones

Deep networks have less saddle points

Random initialization works well

Extreme learning strategies rely only on randomization

Saxe, McClelland & Ganguli, 2014; Dauphin et al., 2014; Choromanska

et al., 2015; Haeffele & Vidal, 2015
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Assumptions

u ∈ Rn A

A ∈ Rm×n

Fully-connected linear layers

with random Gaussian
weights

Element-wise (approximately) truncated linear activation

ρ|[a,b] linear ρ|R\[a,b] = const

No pooling

: input already invariant

Low dimensional input data
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Random Gaussian weights

v = u

aij ∼ N(0, 1
m
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A k-sparse vector u ∈ Rn can be reconstructed from
m = O(k log(n/k)) random projections

Candés, Romberg, Tao, 2006; Candés & Tao, 2006
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Random Gaussian weights

v = u

aij ∼ N(0, 1
m

)

A k-sparse vector u ∈ Rn can be reconstructed from
m = O(k log(n/k)) random projections

Restricted isometry property (RIP)

Random projection is universally good

Candés, Romberg, Tao, 2006; Candés & Tao, 2006
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Low-dimensional input

Violated at the output due to DNN nonlinearity!

K =
∑
k

N(µk ,Σk)

Gaussian mixture model

K = {Dz : ‖z‖0 ≤ k}

Sparse representation



Gaussian mean width
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ω(K) = E sup
u,v∈K

〈u− v,g〉 g ∼ N(0, I)

Plan & Vershynin, 2012



Gaussian mean width

K ⊂ Bn

g1

g2

ω(K) = E sup
u,v∈K

〈u− v,g〉 g ∼ N(0, I)

ω2(K) measures intrinsic data dimension

K is GMM with k Gaussians: ω2(K) = O(k)

K is k-sparsely representable: ω2(K) = O(k log(n/k))

Plan & Vershynin, 2012



Gaussian mean width

K ⊂ Bn

g1

g2

ω(K) = E sup
u,v∈K

〈u− v,g〉 g ∼ N(0, I)

ω2(K) measures intrinsic data dimension

K is GMM with k Gaussians: ω2(K) = O(k)

K is k-sparsely representable: ω2(K) = O(k log(n/k))

Plan & Vershynin, 2012



Gaussian mean width

K ⊂ Bn

g1

g2

ω(K) = E sup
u,v∈K

〈u− v,g〉 g ∼ N(0, I)

ω2(K) measures intrinsic data dimension

K is GMM with k Gaussians: ω2(K) = O(k)

K is k-sparsely representable: ω2(K) = O(k log(n/k))

Plan & Vershynin, 2012



Low dimension in – low dimension out

K ⊂ Rn aij ∼ N(0, 1
m

)

AK ⊂ Rm

ρ(AK) ⊂ Rm

Theorem: if ω2(K)� m then ω2(ρ(AK)) ≈ ω2(K)

Proof: covering argument

Intrinsic data dimension does not grow significantly
through the network

It is sufficient to analyze a single layer in DNN

Giryes, Sapiro, B, 2015
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Stable embedding

Theorem: the map h : (K ⊂ Sn−1, d Sn−1) 7→ (h(K), dHm)
defined by h(u) = sign(ρ(Au)) is a δ-isometry with
δ = c m−1/6 ω1/3(K)

Proof: follows Plan & Vershynin, 2013

DNN layer performs stable embedding in the
Gromov-Hausdorff sense

Plan & Vershynin, 2013; Giryes, Sapiro, B, 2015
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Stable embedding

Theorem: there exists a procedure P such that

‖K− P(ρ(AK)) ‖ < O

(
ω(K)√

m

)
= O(δ3)

Proof: follows Plan & Vershynin, 2013

After N layers the error grows as O(Nδ3)

DNNs keep important information of the data

Input can be recovered from output if output dimension
m is big enough
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Inverting a CNN

Mahendran & Vedaldi, 2015
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Similarity-preserving hashing

0101101

1100111

0101101

For deep networks, number of cells in the tessellation is
exponentially greater than the number of degrees of
freedom

Montúfar et al., 2014



Image retrieval with similarity-preserving hashing

60K images from 10 different classes taken from Tiny images
Represented using 384-dimensional GIST descriptor
Training: 200 images per class; Testing: 59K images

Method / m 12 24 48
Raw 19.16

DiffHash 14.72 13.35 12.85
SSH 15.42 16.75 17.06
AGH 15.46 15.29 15.15
KSH 25.79 29.01 30.84

NN
1 layer 31.48 35.41 36.79
2 layer 45.42 49.88 50.46

Performance (mAP in %)

Data: Torralba et al. 2008, Krizhevsky 2009; Methods: Strecha et al.

2011 (diff-hash); Shakhnarovich 2005 (SSH); Liu et al. 2011 (AGH); Liu

et al. 2012 (KSH); Masci, B2, Schmidhuber 2012 (NN)
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Fully-connected linear layers with random Gaussian
weights

ReLU activation

No pooling

Low dimensional input data



Angle distortion

Theorem (concentration of output angle): for u,v ∈ K

cos^ (ρ(Au), ρ(Av)) ≈ cos^ (u,v) + ψ(^ (u,v))

where ψ(α) = 1
π

(sinα− α cosα)

Giryes, Sapiro, B, 2015
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Distance distortion

Theorem (concentration of output distance):

‖ ρ(Au)− ρ(Av) ‖2 ≈ 1
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for u,v ∈ K, where ψ(α) = 1
π

(sinα− α cosα)

Giryes, Sapiro, B, 2015
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Angle and distance distortion

Points with small angles between them become closer
than points with large angles between them
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Inside a real network

State-of-the-art 19-layer CNN trained on ImageNet

* * max * * max

* ** *max

* ** * max

* ** *max

FC soft maxFC FC

u

f(u)

Simonyan & Zisserman, 2014
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Angle distortion at 8-th layer

Distribution of ^ (f(u), f(v)) /^(u,v)

0 0.2 0.4 0.6 0.8 1.0

[0, π/4]

[π/4, π/2]
[π/2, π]

Giryes, Sapiro, B, 2015



Angle distortion at 16-th layer

Distribution of ^ (f(u), f(v)) /^(u,v)
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Training set size

DNNs are stable: close points in the input are close in the
output

Network performing well on an ε-net Kε in K performs
well on entire K

Sudakov’s minoration:

log |Kε| ≤
c ω2(K)

ε2

Not tight!

...but introduces Gaussian mean width ω(K)
as the measure of data complexity

Situation is much better in practice

Giryes, Sapiro, B, 2015
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Random data points

fu v = f(u)

u

u+
u− vv+ v−

Distance ratios between random triplets (u,u+,u−)

Intra-class =
‖v+ − v‖
‖u+ − u‖

Inter-class =
‖v− − v‖
‖u− − u‖

Giryes, Sapiro, B, 2015



Random data points

CNN on CIFAR-10 – Random weights
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Random data points

CNN on CIFAR-10 – Random and trained
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Class boundary points

fu v = f(u)

u

u+

u−
v

w+

v−
v+

w−

u random, u+ farthest in class, u− closest not in class

Intra-class =
‖w+ − v‖
‖u+ − u‖

Inter-class =
‖w− − v‖
‖u− − u‖

Giryes, Sapiro, B, 2015
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Class boundary points

CNN on CIFAR-10 – Random and trained

0 0.5 1 1.5 2 2.5 3

Intra (random)

Intra (trained)

Inter (random)

Inter (trained)

Giryes, Sapiro, B, 2015



Role of training

Negligible effect on random data points

Random weights perform well universally

Major effect on class boundary points

Intra-class distances shrink

Inter-class distances grow

Only a small subset of Kε is required for training

Giryes, Sapiro, B, 2015
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DNNs as metric learners

Massive supervision required for DNN training

Semi- and unsupervised training is a challenge

Inject metric learning criterion into training objective to
reduce the amount of labeled data
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DNNs as metric learners

Face recognition accuracy on LFW dataset
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Compressed discrimination

Compressed sensing: reconstruct signal x ∈ Rn given
m� n measurements

Compressed discrimination: estimate parameter θ ∈ Rk

(k � n) related to x given m′ < m measurements

m′ is insufficient to reconstruct the signal!
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Compressed scattering tomography

Menashe & B, 2013



Compressed scattering tomography

m : n = 1 : 2 1 : 4 1 : 8 1 : 16 1 : 32

Menashe & B, 2013
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Conclusion

Gaussian mean width as a generic data complexity
measure in DNN analysis

DNNs keep important information of the data

Random Gaussian weights are good for classifying average
data points

Training improves performance at class boundaries

Deep learning can be viewed as metric learning
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