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Particle Approximation of FKPP Front Speeds in Flows

FKPP Variational Formula in Stationary Ergodic Media

ut = κ∆xu + v(t, x) · ∇xu + u(1− u), x ∈ Rd ,

v is space-time stationary ergodic, mean zero, volume preserving. To
calculate front speed c∗ along direction e, let w solve linear equation
parameterized by λ > 0 (u = exp{λ e · x}w):

wt = Lw := κ∆xw + (2κλ e + v) · ∇xw + (1 + κλ2 + λ e · v)w ,

with w(0, x) = 1. Almost surely,

µ(λ) = lim
t→∞

t−1 lnw

exists as principal Lyapunov exponent, convex and superlinear in large λ.

c∗(e) = infλ>0
µ(λ)

λ
.

Freidlin, Gärtner, 1979: spatially periodic (1D random) media; Nolen, X,
2009: space-time stationary ergodic flow.
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Particle Approximation of FKPP Front Speeds in Flows

Lagrangian Approximation in Space-Time Periodic Flow

Write L = L + M = Markovian + Potential,

M · := c(t, x) · = (1 + κλ2 + λ e · v) ·

Feynman-Kac formula gives:

µ = lim
t→∞

t−1 ln

(
E exp{

∫ t

0
c(t − s,X t,x

s ) ds}
)
,

d X t,x
s = v(t − s,X t,x

s ) ds + σ dW s , X
t,x
0 = x .

Direct approximation of this formula is challenging, as the main
contribution to E comes from sample paths that visit maximal points
of time-dependent potential c .
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Particle Approximation of FKPP Front Speeds in Flows

Lagrangian Approximation in Space-Time Periodic Flow

Consider a “normalized version”, the Feynman-Kac semi-group:

Φc
t (ν0)(φ) :=

E[φ(X t,x
t ) exp{

∫ t
0 c(t − s,X t,x

s ) ds}]
E[exp{

∫ t
0 c(t − s,X t,x

s ) ds}]
:=

Pc
t (ν0)(φ)

Pc
t (ν0)(1)

acting on initial probability measure ν0 (x ∼ ν0), converges weakly to
an invariant measure νc as t ↑ ∞, for any test function φ. Moreover,

Pc
t (νc) = exp{µ t} νc or µ = t−1 ln Eνc [Pc

t (νc)].

Discretize X t,x
s as X∆t

i by explicit Euler, i = 1, · · · , n ×m, m = T
∆t ,

approximate evolution of probability measure Φc
t (ν) by a particle

system, with a resampling technique to reduce variance.
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Particle Approximation of FKPP Front Speeds in Flows

Lagrangian Approximation in Space-Time Periodic Flow

Let

Pc,∆t
n (ν0)(φ) := E

[
φ(X∆t

nm) exp

{
∆t

m∑
i=1

c((m − i)∆t,X∆t
i+(n−1)m)

}]
As n→∞, the sampled FK semi-group actions on ν:

Eν0

Pc,∆t
n (ν0)(φ)

Pc,∆t
n (ν0)(1)

→
∫
D
φ d νc,∆t , ∀ smooth φ,

D: space periodic cell, νc,∆t : approximate invariant measure.

Theorem (Lyu, Wang, X, Zhang, SINUM 2022)

There exists q ∈ (0, 1) so that:

µn∆t := (nT )−1 ln[Pc,∆t
n (ν0)(1)]→ T−1 ln[Pc,∆t

1 (νc,∆t)(1)] = µ+o((∆t)q)
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Particle Approximation of FKPP Front Speeds in Flows

Genetic Interacting Particle Algorithm

Initialize 1st generation of particles ξ0
1 = (ξ0,1

1 , · · · , ξ0,N0
1 ) ∈ (Td)N0 ,

unif. distributed over Td (d ≥ 2). Let g be the generation no. in
approximating νc,∆t . Each generation moves and mutates m-times,
with a life span T (time period), time step ∆t = T/m.

for g = 1 : G − 1
for i = 0 : m − 1
ζ ig ← one-step-advection-diffusion update on ξig
with fitness F ← exp{c(T − i∆t, ζ ig ) ∆t}.
Eg ,i := 1

∆t ln (mean population fitness), growth rate.
Normalize fitness to weight p := F/SUM(F ).
ξi+1
g ← resample ζ ig via multinomial distribution with weight p.

end for
ξ0
g+1 ← ξmg , Eg ← mean (Eg ,i ) over i .

end for
Output: approximate µ∆t ← mean(Eg ), and ξ0

G .
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Particle Approximation of FKPP Front Speeds in Flows

Genetic Algorithm, Bottleneck and Learning

Feynman-Kac (F-K) semigroup, particle methods of invariant measure
and principal eigenvalue, are well-known in physics, large deviation,
Monte Carlo.

Ferré & Stoltz, 2019: error estimates of discrete F-K and particle
approximation in spatially periodic media.

Advantages of interacting particle method for generating training
data: (1) meshfree, (2) self-adaptive, (3) not sensitive to high
dimensions (costs about the same from 2D to 3D).

Computational bottelneck: long time evolution of large number of
particles in the small κ (large Péclet number ∼ κ−1) regime.

Invariant measure learning: map uniform distribution to invariant
measure at κ based on a few less expensive simulations at κi > κ.
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Particle Approximation of FKPP Front Speeds in Flows

Nonlocal Resnet for optimal transport (OT) map

η: physical parameter input. X = Y = Rd .

IPAM, 4/26/2024 10 / 46



Deep Particle Learning

Deep Particle Network Training

Training data: interacting particle algorithm generates samples of
invariant measure at κi = 2−2−0.25(i−1), i = 1, · · · , 8(= nη), and
N0 = 40000 particle evolution for G = 2048, ∆t = 2−8, T = 1.

At each κi , randomly sample N = 2000 points Yi without
replacement.

{Y1, · · · ,Y8}: one mini-batch of training data.

Total 5 mini-batches for 50000 gradient descent steps of training.

On a quad-core CPU desktop with an RTX2080 8GB GPU.
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Order vs. Disorder

Arnold-Beltrami-Childress Flow

(Arnold ’65; Hénon ’66; Dombre, Frisch, Greene, Hénon, Mehr &
Soward ’86):

x ′ = A sin z + C cos y

y ′ = B sin x + A cos z

z ′ = B cos x + C sin y

weakly chaotic at A = B = C = 1.

Cellular (Hamiltonian) flow or BC flow (A = 0) with π/4 rotation:

v(x , y) = (∂yH,−∂xH), H = sin(x) sin(y)
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Order vs. Disorder

Ballistic Orbits in ABC (L), Komogorov(R) Flow

Kolmogorov (K) flow: ABC (A=B=C=1) with only sine terms.

Construction of orbits by symmetry: X, Yu, Zlatoš (ABC, SIAM Math
Anal. 2016), Kao, Liu, X (K flow, MMS 2022).
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KPP front speeds in ABC flows

A=B=C=1, plus random shear perturbation

δ (sin(z) + cos(y), sin(x) + cos(z) + ε · ξ(x , ω), sin(y) + cos(x)),
κ = 1, T = 512, ∆t = 2−11, T = 512, N = 100, 000 particles.

Figure: ξ ≈ OU process, generated by random Fourier series.

c? = O(δ0.9842) at δ ≈ 100, ε = 0. As ε ↑, vortex tube structure in
ABC flow facilitating transport is destroyed by (0, ξ(x , ω), 0), c? ↓.
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KPP front speeds in ABC flows

Defocusing of invariant measure: ε = 0 (top), 2 (bottom).
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DP of KPP in 3D Flows with Chaotic Streamlines

Kolmogorov Flows

Galloway & Proctor 1992, Childress & Gilbert 1995:

x ′ = sin z

y ′ = sin x

z ′ = sin y

Disorder (mixing) dominates phase space, integrable regions shrink to
small islands.

Time-Periodic Kolmogorov flow field (strongly mixing):

v = (sin (z + sin(2πt)) , sin (x + sin(2πt)) , sin (y + sin(2πt))) .
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DP of KPP in 3D Flows with Chaotic Streamlines

DP Generated Invariant Measure Projected on yz plane
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Figure: 1st/2nd col: κ =2−2.5/2−3 in time-periodic K flow.
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DP of KPP in 3D Flows with Chaotic Streamlines

DP Predicted Inv. Meas. vs. Ground Truth on yz plane
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Figure: Invariant measures projected to yz plane in time-periodic K flow at
κ = 2−4: prediction (left), ground truth (right), at test value κ = 2−4.
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Mapping Prior to Data Distribution

Time Reversal of Diffusion Processes

Stochastic differential equation (SDE) in Rd :

d Xs = h(Xs , s) ds+g(s) d Ws := −∇V (Xs) ds+ b(Xs) ds+
√

2 ε d Ws

(1)
where V is a smooth potential function with at least quadratic
growth at infinity, b is a bounded divergence free and smooth vector
field, ε ∈ (0, 1), and W is standard Wiener process.

Kolmogorov (1937): The initial distribution ∼ exp{−V /ε} is realized
by solving (1) backward in time from terminal distribution iff b = 0.

Let terminal (prior) distribution pT at time T be normal.
MCMC sampler: pdata = Z−1 exp{−V }, V is a closed form
log-likelihood function.

Mapping pprior to pdata (since 2010’s): variational autoencoder,
generative adversarial network, flow-based models (e.g. neural ODEs,
finding h from data), deep particle (2022).
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Mapping Prior to Data Distribution

Entropy Production

Denoising diffusion probabilistic (score-based generative) modeling.

Map pdata to pprior by (1) or adding noise in time to increase entropy.

Invert the map (denoising) by solving SDE (in reverse time):

d X̃s = [h(X̃s , s)− g2(s)∇X̃s
log ps(X̃s)] ds + g(s) d W̃s , (2)

Anderson (1982), where ps is distribution of forward time SDE (1).

Entropy integral to quantify reversability:

St = ε−1

∫ t

0
〈 b(Xs), ◦ d Xs〉

work done by non-gradient part of the drift h.
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Entropy and Reversability

Entropy Production

Let Pλ, εt be the probability measure of (1) from initial measure λ. Its
moment generating function is (α ∈ R):

χεt(α) =

∫
C([0,t];Rd )

exp{−α Sεt } d Pλ, εt

with representation:

χεt(α) =

∫
Rd

dξ (exp{t Aε,α}1)(ξ)

where Aε,α acts on smooth and compactly supported functions f as:

Aε,αf = ε∆f + < −∇V + (1− 2α)b,∇f > −α(1− α)

ε
|b|2f

+
α

ε
< b,∇V > f + α(∇ · b)f

over α ∈ [−δ, 1 + δ] for some small δ > 0.
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Entropy and Reversability

Entropy Production and Leading Eigenvalue

Let λε,α be the leading eigenvalue (the one with the largest real part)
of Aε,α. Then:

lim
t→∞

1

t
logχεt(α) = λε,α (3)

convex in α and symmetric about α = 1/2.

Legendre transform of λε,α in α is the large deviation rate function of
t−1 Sεt , so characterizes the stochastic growth rate of entropy.

Aε,α shares λε,α with operator:

Bε,αf := exp((−2ε)−1V )Aε,α(exp((2ε)−1V ))

=ε∆f + 〈(1− 2α)b,∇f 〉 − 1

4ε
|∇V |2f +

1

2ε
〈b,∇V 〉f

− α(1− α)

ε
|b|2f +

1

2
(∆V )f − α(∇ · b)f := (L + U) f .
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Leading Eigenvalue

Probabilistic Representation

Markov generator:

L f := ε∆f + 〈(1− 2α)b,∇f 〉

with corresponding SDE:

dXt = (1− 2α)b(Xt) dt +
√

2ε dBt .

Assume: at least quadratic growth of potential |∇V |2 ≥ a|x |2 for
|x | ≥ R, consts. (a,R) > 0, lim

|x |→∞
∆V /|∇V | = 0; and bounded drift

‖b‖C1(Rd ) ≤ C .

Evolution operator PU
t :

PU
t ϕ(x) = E

[
ϕ(Xt) exp

(∫ t

0
U(Xs) ds

) ∣∣∣X0 = x

]
, (4)

E[·] on Brownian motion and ϕ measurable.
Let P̂U

t be the time discretized PU
t , t = n∆t.
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Leading Eigenvalue

Discrete FK semigroup

∃ invariant measure ν̂∗ under discrete FK semigroup so that:

P̂U
t (ν̂∗) = exp{λ̂ε,α∆t t} ν̂∗ or λ̂ε,α∆t = t−1 ln Eν̂∗ [P̂U

t (ν̂∗)]

and

λ̂ε,α∆t = lim
k→+∞

1

k∆t
logE

exp

∆t
k−1∑
j=1

U(Xj∆t)

∣∣∣∣X0 ∼ ν

 .
Interacting Particle method + HKU cluster: 2 Intel Xeon Gold 6226R
(16 Core) CPU’s and 96GB RAM.

Experiments: #(particles)=500, 000,∆t = 2−8; ε = 0.1, 0.01, 0.001.
At each ε, α ∈

[
− 1

10 ,
11
10

]
, compute λε,α for α = − 1

10 + j
31

12
10 with

j = 0, 1, . . . , 31. The computation of λε,α for each ε with 32 different
values of α is performed in parallel on 32 cores of the CPU’s.

IPAM, 4/26/2024 24 / 46



Computed leading eigenvalue vs. asymptotic formula

2D example

Double-well potential

V (x1, x2) = x4
1 − 2x2

1 + (1 + a (x1 − 1)2)x2
2 + x4

2

with a = 0.4, and cell (Hamiltonian) flow

b(x1, x2) = π−1(cos(πx1) sin(πx2),− sin(πx1) cos(πx2))

 

λα = limε→0 λ
ε,α known in closed-form.
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Computed leading eigenvalue vs. asymptotic formula

2D example: computed λε,α and exact λα as ε ↓ 0
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Computed leading eigenvalue vs. asymptotic formula

2D example: approximate invariant measures

ε = 0.1 0.01 0.001
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Figure: Distribution of particles at T = 2048, and α ≈ 0.5968 (top)/1.0613.
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Computed leading eigenvalue vs. asymptotic formula

4D example: λε,α in doublewell potential (a = 0.4)

V (x1, x2, x3, x4) = x4
1 − 2x2

1 + (1 + a(x1 − 1)2) x2
2 +

x4
2 + x4

3 − 2x2
3 + (1 + a(x3 − 1)2) x2

4 + x4
4

b(x1, x2, x3, x4) = π−1(cos(πx1) sin(πx2),− sin(πx1) cos(πx2),

2 cos(πx3) sin(πx4),−2 sin(πx3) cos(πx4)),
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Computed leading eigenvalue vs. asymptotic formula

8D example: λε,α in potential and Hamiltonian flow.

V (x1, x2, x3, x4, x5, x6, x7, x8) =
x2

1 + x2
2

2
+

x4
1 + x4

2

8
+

x2
3 + x2

4

2
+

x4
3 + x4

4

8
+ x4

5 − 2x2
5 + (1 + a(x5 − 1)2)x2

6 + x4
6

+ x4
7 − 2x2

7 + (1 + a(x7 − 1)2)x2
8 + x4

8

with a = 0.3.

b(x1, x2, x3, x4, x5, x6, x7, x8) =π−1(cos(πx1) sin(πx2),− sin(πx1) cos(πx2),

b̃2 cos(πx3) sin(πx4),−b̃2 sin(πx3) cos(πx4),

cos(πx5) sin(πx6),− sin(πx5) cos(πx6),

2 cos(πx7) sin(πx8),−2 sin(πx7) cos(πx8)),

with b̃2 = 0.5.
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Computed leading eigenvalue vs. asymptotic formula

8D example: computed λε,α and exact λα as ε ↓ 0
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Computed leading eigenvalue vs. asymptotic formula

16D example: computed λε,α and exact λα as ε ↓ 0
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Computed leading eigenvalue vs. asymptotic formula

16D example: projected invariant measures
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Figure: T = 2048, α ≈ 0.2097, projected on (x12, x14) (top)/(x15, x16).
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Complexity vs. Dimension

Linear Growth: comput. time (min) vs. dimension.
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Background

G-equation: Hamilton-Jacobi Level Set Equation

Markstein (1950’s), Williams (1980’s): convex yet non-coercive
Hamiltonian.

Gt + sl |DG |+ V (x) · DG = 0.

unburned 

fluid 

burned

fluid 

flame 

front 

 

 

G > 0  G(x,t)=0  G < 0 

 

 

 

 

 

Motion law: normal velocity v~n = ~V · ~n + sl ,
sl laminar speed, ~n = DG

|DG | .
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Background

Curvature Effect on Laminar Speed

Curvature effect, Markstein (1951): as flame front bends toward
cold region (unburned area, point C), propagation slows down. As
flame bends toward hot spot (burned area, point B), it burns faster.

Empirical linear relation proposed by Markstein:

sl = s0
l (1− d̃ κ)+

κ: mean curvature along the flame front. d̃ : Markstein length.
(·)+ prevents “unburn”. Folklore: curvature slows flame on average.
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Background

Curvature G-equation in Cell Flow

After normalizing consts, a non-convex & non-coercive Hamiltonian:

Gt +

(
1− d div

(
DG

|DG |

))
+

|DG |+ V (x) · DG = 0

Let V (x) = AD⊥ sin(x1) sin(x2), intensity A > 0.

Theorem (Gao, Long, X, Yu. J. Geometric Analysis, 2024)

For any unit vector p ∈ R2 and initial data G (x , 0) = p · x , there exists a
positive number HA,d(p) such that∣∣G (x , t)− p · x + HA,d(p) t

∣∣ ≤ C , ∀ (t, x) ∈ R2 × [0,∞),

for a constant C depending only on A and d .
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Analysis

Corrector

Look for a solution of the form p · x − H(p)t + v(x), v is the so
called corrector satisfying (a.k.a. cell problem):(

1− d div

(
p + Dv

|p + Dv |

))
+

|p +Dv |+V (y) · (p +Dv) = H(p), (5)

subject to 2π-periodic boundary condition in y .
Theorem follows by comparing G with v± const.
To construct a solution, consider a modified cell (discount) problem as
Lions-Varadhan-Papanicolaou (1980’s, coercive periodic Hamiltonian):

λ v +

(
1− d div

(
p + Dv

|p + Dv |

))
+

|p+Dv |+V (y) ·(p+Dv) = 0, (6)

for a parameter λ > 0,.
Existence and uniqueness of v = vλ to (6) known by Perron’s method
(Crandall-Ishii-Lions 1992). Comparison principle implies:
maxx∈R2 |λvλ(x)| ≤ 1 + maxR2 |V |.
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Analysis

Aim to show

lim
λ→0

λ vλ(x) = −H(p) uniformly on R2

then (6) → (5) with standard sub/super-solution technique on vλ.

Key is the bounded oscillation estimate:

max
x , y ∈[−π,π]2

|vλ(x)− vλ(y)| ≤ C = C (d ,A). (7)

In the absence of curvature (d = 0), (7) follows from mutual
reachability of x and y by a controled trajectory (X-Yu, 2010).
If y is reachable from x by ξ for |α(t)| ≤ 1,

ξ̇(t) = α(t)− V (ξ(t))

subject to ξ(0) = x within time T , then

vλ(x) ≤ vλ(y) + C T ,

for incompressible V in any dimension.
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Analysis

Deterministic Two-Person Game in 2D

A deterministic game (Kohn-Serfaty, 2006): consider the discrete
dynamical system {xn}Nn=1 ⊂ R2 associated with the game starting
from x0 = x : for n = 0, 1, 2, ..,N − 1,{

xn+1 = xn + τ
√

2dbn ~ηn + τ2 ~η⊥n − τ2 V (xn)

x0 = x ,

where |~ηn| ≤ 1 and bn ∈ {−1, 1}.
Player I controls direction via ~ηn and player II controls sign via bn.

Let g = g(x) be a final payoff function. Player I (II) aims to minimize
(maximize) g(xN). If both players proceed optimally, the value
function

u(x ,Nτ2) := g(xN),

converges to the solution of curvature G-eq with initial data g(x):

lim
Nτ2→t,τ→0

u(x ,Nτ2) = G (x , t).
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Analysis

Inequalities from One-Way Reachability via Game

A typical scenario to get an upper bound of the game value is for
player I to devise a strategy so that the game trajectory, starting at a
point P, ends at a point Q in a desired region U in N moves despite
any strategy of player II; then

u(P,Nτ2) ≤ g(Q) ≤ maxq∈U g(q).

For stationary equation, suppose: (1) w satisfies(
1− d div

(
Dw

|Dw |

))
+

|Dw |+ V (x) · Dw ≤ C

implying w − Ct is a sub-solution to G-eq; (2) player I has a strategy
to steer the game trajectory from x to a region D (invariant under
−V flow) within time T regardless how player II plays; then

w(x)− CT ≤ G (x ,Nτ2) ≤ max
y∈D

w(y).

Unlike the d = 0 case, two-way reachability does NOT hold.
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Analysis

Interior One-way Reachability

Player I’s strategy: at each step, choose η = V
|V | until it reaches the target

lower level set of H: H(Xn+1)−H(Xn) ≤ −|DH(Xn)| τ2 + O(τ3).
Then switch to η = 0 to reach the target point P2.
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Analysis

Quarter Cell Boundary Crossing: PDE Method

S

Ω

Wα,δ

Evolve G-equation with initial data (Ω ⊂ S = (0, 1)2):
gS(x) = − 2

π arctan(dist(x , ∂S)), for x ∈ S ; else, 2
π arctan(dist(x , ∂S)).

The edge {0} × (0, 1) is part of the zero level set of G where:

v~n = (1− dκ)+ + V (x) · ~n ≈ 1,

so ∃tδ > 0 s.t. G ((0, θ), t) < 0 for (θ, t) ∈ [δ, 1− δ]× (0, tδ]. An optimal
game trajectory starting from Wα,δ must pass through the edge
{0} × [δ, 1− δ] during the time interval (0, tδ].
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Analysis

PDE estimates from: 1-Way Reachability

Lemma

Let G (x , t) be the unique solution with G (x , 0) = p · x . There exist
positive constants β and C depending only on d and V s.t. for all
(x , t) ∈ R2 × [0,∞),

G (x , t)− p · x ≤ −β t + C (8)

and

max
x∈R2

λ vλ(x) < −β
2

+ λC . (9)

Inequality (8) follows from estimating travel times of game trajectories
across cells and 1-way reachability inequalities.

Inequality (9) from constructing a super-solution to a time-dependent
variant of the discount cell problem via the inequality (8).
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Analysis

Minimum Principle from: 1-Way Reachability

Applying inequality (9) at λ < β/(4C ), we have from the discount
cell problem:(

1− d div

(
p + Dvλ
|p + Dvλ|

))
+

|p + Dvλ|+ V (y) · (p + Dvλ) ≥ β/4

→ minimum principle: The minimum value of uλ := p · x + vλ in a
domain can only be attained on its boundary.

u = uλ is a viscosity sub-solution of the stationary G-equation:(
1− d div

(
Duλ
|Duλ|

))
+

|Duλ|+V (y)·(Duλ) = 1+ max
[−π,π]2

|V |(y) := α

satisfying uλ(x0) ≤ max
y∈S̄

uλ(y) + αT0

if a bounded set S is reachable from x0 within T0, and S is invariant
under −V flow.
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Analysis

Quarter Cell Interior Oscillation Estimate

O π

π
Q

flow of −V (x) Qµ and Γµ

ΓµQµ

π

π

O

For each point x ∈ ∂Qµ and each point y ∈ Qµ, uλ(x) ≥ uλ(y)− Cµ
for some constant Cµ > 0. Accordingly:

min
x∈∂Qµ

uλ(x) ≥ max
x∈Qµ

uλ(x)− Cµ.

By minimum principle: minx∈∂Qµ uλ(x) = minx∈Qµ
uλ(x), and so:

max
x∈Qµ

uλ(x)− min
x∈Qµ

uλ(x) = max
x ,y∈Qµ

|uλ(x)− uλ(y)| ≤ Cµ.
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Conclusion

Conclusions and Future Work

Deep Particle (DP) framework to compute and learn multi-scale
PDEs with physical parameter dependence based on data from
stochastic interacting particle (SIP) systems.

Learned and generated complex phenomena of FKPP in 3D flows.

Computed 1st eigenvalue of advection dominated reaction-diffusion
operators on Rd (d = 16) by SIP with linear complexity.

Integrated two-person game and PDE method for existence of
average curvature dependent front speeds in cell flows.

Ongoing/future: (1) DP for reaction-diffusion models with interacting
particle description arising in cancer cell spreading. (2) curvature
G-equation in 3D: non-existence of H̄+ in shear flow
V = (0, 0,A f (x1, x2)) if A exceeds a finite value, i.e. averaging fails
in some direction (Mitake, Mooney, Tran, X, Yu, ’23).

IPAM, 4/26/2024 46 / 46


	Outline
	Particle Approximation of FKPP Front Speeds in Flows
	Deep Particle Learning
	Order vs. Disorder
	KPP front speeds in ABC flows
	KPP front speeds in ABC flows
	DP of KPP in 3D Flows with Chaotic Streamlines
	Mapping Prior to Data Distribution
	Entropy and Reversability
	Leading Eigenvalue
	Computed leading eigenvalue vs. asymptotic formula
	Computed leading eigenvalue vs. asymptotic formula
	Complexity vs. Dimension
	Background
	Analysis
	Conclusion

