Particle and Game Theoretic Methods for Multi-scale and High Dimensional Problems

Jack Xin

Department of Mathematics
 University of California, Irvine.

International Conference on Multiscale Modeling and Simulation based on Physics and Data (IPAM, 4/25-26, 2024).

Collaborators and Acknowledgements

- Zhongjian Wang, Nanyang Tech Univ.
- ZhiZhang Wu, Junlong Lyu, Tan Zhang, and Zhiwen Zhang University of Hong Kong
- Renaud Raquépas, Courant Institute, New York Univ.
- Hongwei Gao, Ziang Long, Yifeng Yu

UC Irvine

- Partially supported by NSF

Outline

- Fisher-Kolmogorov-Petrovsky-Piskunov Front Speeds in Flows.
- Feynman-Kac Representation and Particle Approximation.
- Learning Invariant Measure w. Physical Parameter Dependence.
- Entropy production in time reversal of diffusion processes.
- Computing principal eigenvalue by interacting particle method.
- Challenges: concentrations, large gradients and high dimensions.
- Curvature G-equation and Two-Player Game Representation.
- One-Way Reachability, Minimum Principle, Cell Problems.
- Bounded Oscillation Estimate, Front Speeds in Cell Flows.
- Conclusions and Future Work.

FKPP Variational Formula in Stationary Ergodic Media

$$
u_{t}=\kappa \Delta_{x} u+\boldsymbol{v}(t, x) \cdot \nabla_{x} u+u(1-u), x \in \mathbb{R}^{d}
$$

\boldsymbol{v} is space-time stationary ergodic, mean zero, volume preserving. To calculate front speed c^{*} along direction \boldsymbol{e}, let w solve linear equation parameterized by $\lambda>0(u=\exp \{\lambda \boldsymbol{e} \cdot x\} w)$:

$$
w_{t}=\mathcal{L} w:=\kappa \Delta_{x} w+(2 \kappa \lambda \boldsymbol{e}+\boldsymbol{v}) \cdot \nabla_{x} w+\left(1+\kappa \lambda^{2}+\lambda \boldsymbol{e} \cdot \boldsymbol{v}\right) w,
$$

with $w(0, x)=1$. Almost surely,

$$
\mu(\lambda)=\lim _{t \rightarrow \infty} t^{-1} \ln w
$$

exists as principal Lyapunov exponent, convex and superlinear in large λ.

$$
c^{*}(\boldsymbol{e})=\inf _{\lambda>0} \frac{\mu(\lambda)}{\lambda}
$$

Freidlin, Gärtner, 1979: spatially periodic (1D random) media; Nolen, X, 2009: space-time stationary ergodic flow.

Lagrangian Approximation in Space-Time Periodic Flow

- Write $\mathcal{L}=L+M=$ Markovian + Potential,

$$
M:=c(t, x) \cdot=\left(1+\kappa \lambda^{2}+\lambda \boldsymbol{e} \cdot \boldsymbol{v}\right) .
$$

Feynman-Kac formula gives:

$$
\begin{aligned}
& \mu=\lim _{t \rightarrow \infty} t^{-1} \ln \left(\mathbb{E} \exp \left\{\int_{0}^{t} c\left(t-s, \boldsymbol{X}_{s}^{t, \boldsymbol{x}}\right) d s\right\}\right) \\
& d \boldsymbol{X}_{s}^{t, \boldsymbol{x}}=\boldsymbol{v}\left(t-s, \boldsymbol{X}_{s}^{t, \boldsymbol{x}}\right) d s+\sigma d \boldsymbol{W}_{s}, \boldsymbol{X}_{0}^{t, \boldsymbol{x}}=\boldsymbol{x}
\end{aligned}
$$

- Direct approximation of this formula is challenging, as the main contribution to \mathbb{E} comes from sample paths that visit maximal points of time-dependent potential c.

Lagrangian Approximation in Space-Time Periodic Flow

- Consider a "normalized version", the Feynman-Kac semi-group:

$$
\Phi_{t}^{c}\left(\nu_{0}\right)(\phi):=\frac{\mathbb{E}\left[\phi\left(\boldsymbol{X}_{t}^{t, \boldsymbol{x}}\right) \exp \left\{\int_{0}^{t} c\left(t-s, \boldsymbol{X}_{s}^{t, \boldsymbol{x}}\right) d s\right\}\right]}{\mathbb{E}\left[\exp \left\{\int_{0}^{t} c\left(t-s, \boldsymbol{X}_{s}^{t, \boldsymbol{x}}\right) d s\right\}\right]}:=\frac{P_{t}^{c}\left(\nu_{0}\right)(\phi)}{P_{t}^{c}\left(\nu_{0}\right)(1)}
$$

acting on initial probability measure $\nu_{0}\left(\boldsymbol{x} \sim \nu_{0}\right)$, converges weakly to an invariant measure ν_{c} as $t \uparrow \infty$, for any test function ϕ. Moreover,

$$
P_{t}^{c}\left(\nu_{c}\right)=\exp \{\mu t\} \nu_{c} \text { or } \mu=t^{-1} \ln \mathbb{E}_{\nu_{c}}\left[P_{t}^{c}\left(\nu_{c}\right)\right] .
$$

- Discretize $\boldsymbol{X}_{s}^{t, \boldsymbol{x}}$ as $\boldsymbol{X}_{i}^{\Delta t}$ by explicit Euler, $i=1, \cdots, n \times m, m=\frac{T}{\Delta t}$, approximate evolution of probability measure $\Phi_{t}^{c}(\nu)$ by a particle system, with a resampling technique to reduce variance.

Lagrangian Approximation in Space-Time Periodic Flow

- Let

$$
P_{n}^{c, \Delta t}\left(\nu_{0}\right)(\phi):=\mathbb{E}\left[\phi\left(\boldsymbol{X}_{n m}^{\Delta t}\right) \exp \left\{\Delta t \sum_{i=1}^{m} c\left((m-i) \Delta t, \boldsymbol{X}_{i+(n-1) m}^{\Delta t}\right)\right\}\right]
$$

- As $n \rightarrow \infty$, the sampled FK semi-group actions on ν :

$$
\mathbb{E}_{\nu_{0}} \frac{P_{n}^{c, \Delta t}\left(\nu_{0}\right)(\phi)}{P_{n}^{c, \Delta t}\left(\nu_{0}\right)(1)} \rightarrow \int_{D} \phi d \nu_{c, \Delta t}, \quad \forall \text { smooth } \phi
$$

D : space periodic cell, $\nu_{c, \Delta t}$: approximate invariant measure.

Theorem (Lyu, Wang, X, Zhang, SINUM 2022)

There exists $q \in(0,1)$ so that:
$\mu_{\Delta t}^{n}:=(n T)^{-1} \ln \left[P_{n}^{c, \Delta t}\left(\nu_{0}\right)(1)\right] \rightarrow T^{-1} \ln \left[P_{1}^{c, \Delta t}\left(\nu_{c, \Delta t}\right)(1)\right]=\mu+o\left((\Delta t)^{q}\right)$

Genetic Interacting Particle Algorithm

- Initialize 1st generation of particles $\boldsymbol{\xi}_{1}^{0}=\left(\xi_{1}^{0,1}, \cdots, \xi_{1}^{0, N_{0}}\right) \in\left(\mathbb{T}^{d}\right)^{N_{0}}$, unif. distributed over $\mathbb{T}^{d}(d \geq 2)$. Let g be the generation no. in approximating $\nu_{c, \Delta t}$. Each generation moves and mutates m-times, with a life span T (time period), time step $\Delta t=T / m$.
for $g=1: G-1$
for $i=0: m-1$
$\boldsymbol{\zeta}_{g}^{i} \leftarrow$ one-step-advection-diffusion update on $\boldsymbol{\xi}_{g}^{i}$ with fitness $\boldsymbol{F} \leftarrow \exp \left\{c\left(T-i \Delta t, \boldsymbol{\zeta}_{g}^{i}\right) \Delta t\right\}$.
$E_{g, i}:=\frac{1}{\Delta t} \ln$ (mean population fitness), growth rate.
Normalize fitness to weight $\boldsymbol{p}:=\boldsymbol{F} / \operatorname{SUM}(\boldsymbol{F})$.
$\boldsymbol{\xi}_{g}^{i+1} \leftarrow$ resample $\boldsymbol{\zeta}_{g}^{i}$ via multinomial distribution with weight \boldsymbol{p}. end for $\xi_{g+1}^{0} \leftarrow \boldsymbol{\xi}_{g}^{m}, E_{g} \leftarrow \operatorname{mean}\left(E_{g, i}\right)$ over i. end for
- Output: approximate $\mu_{\Delta t} \leftarrow \operatorname{mean}\left(E_{g}\right)$, and ξ_{G}^{0}.

Genetic Algorithm, Bottleneck and Learning

- Feynman-Kac (F-K) semigroup, particle methods of invariant measure and principal eigenvalue, are well-known in physics, large deviation, Monte Carlo.
- Ferré \& Stoltz, 2019: error estimates of discrete F-K and particle approximation in spatially periodic media.
- Advantages of interacting particle method for generating training data: (1) meshfree, (2) self-adaptive, (3) not sensitive to high dimensions (costs about the same from 2D to 3D).
- Computational bottelneck: long time evolution of large number of particles in the small κ (large Péclet number $\sim \kappa^{-1}$) regime.
- Invariant measure learning: map uniform distribution to invariant measure at κ based on a few less expensive simulations at $\kappa_{i}>\kappa$.

Nonlocal Resnet for optimal transport (OT) map

η : physical parameter input. $X=Y=\mathbb{R}^{d}$.

Deep Particle Network Training

- Training data: interacting particle algorithm generates samples of invariant measure at $\kappa_{i}=2^{-2-0.25(i-1)}, i=1, \cdots, 8\left(=n_{\eta}\right)$, and $N_{0}=40000$ particle evolution for $G=2048, \Delta t=2^{-8}, T=1$.
- At each κ_{i}, randomly sample $N=2000$ points \mathcal{Y}_{i} without replacement.
- $\left\{\mathcal{Y}_{1}, \cdots, \mathcal{Y}_{8}\right\}$: one mini-batch of training data.
- Total 5 mini-batches for 50000 gradient descent steps of training.
- On a quad-core CPU desktop with an RTX2080 8GB GPU.

Arnold-Beltrami-Childress Flow

- (Arnold '65; Hénon '66; Dombre, Frisch, Greene, Hénon, Mehr \& Soward '86):

$$
\begin{aligned}
x^{\prime} & =A \sin z+C \cos y \\
y^{\prime} & =B \sin x+A \cos z \\
z^{\prime} & =B \cos x+C \sin y
\end{aligned}
$$

weakly chaotic at $A=B=C=1$.

- Cellular (Hamiltonian) flow or BC flow $(A=0)$ with $\pi / 4$ rotation:

$$
\boldsymbol{v}(x, y)=\left(\partial_{y} \mathcal{H},-\partial_{x} \mathcal{H}\right), \quad \mathcal{H}=\sin (x) \sin (y)
$$

Ballistic Orbits in ABC (L), Komogorov(R) Flow

- Kolmogorov (K) flow: $A B C(A=B=C=1)$ with only sine terms.
- Construction of orbits by symmetry: X, Yu, Zlatoš (ABC, SIAM Math Anal. 2016), Kao, Liu, X (K flow, MMS 2022).

$A=B=C=1$, plus random shear perturbation

- $\delta(\sin (z)+\cos (y), \sin (x)+\cos (z)+\epsilon \cdot \xi(x, \omega), \sin (y)+\cos (x))$, $\kappa=1, T=512, \Delta t=2^{-11}, T=512, N=100,000$ particles.

Figure: $\xi \approx O U$ process, generated by random Fourier series.

- $c^{\star}=O\left(\delta^{0.9842}\right)$ at $\delta \approx 100, \epsilon=0$. As $\epsilon \uparrow$, vortex tube structure in ABC flow facilitating transport is destroyed by $(0, \xi(x, \omega), 0), c^{\star} \downarrow$.

Defocusing of invariant measure: $\epsilon=0$ (top), 2 (bottom).

Kolmogorov Flows

- Galloway \& Proctor 1992, Childress \& Gilbert 1995:

$$
\begin{aligned}
x^{\prime} & =\sin z \\
y^{\prime} & =\sin x \\
z^{\prime} & =\sin y
\end{aligned}
$$

Disorder (mixing) dominates phase space, integrable regions shrink to small islands.

- Time-Periodic Kolmogorov flow field (strongly mixing):

$$
\boldsymbol{v}=(\sin (z+\sin (2 \pi t)), \sin (x+\sin (2 \pi t)), \sin (y+\sin (2 \pi t))) .
$$

DP Generated Invariant Measure Projected on yz plane

Figure: 1st/2nd col: $\kappa=2^{-2.5} / 2^{-3}$ in time-periodic K flow.

DP Predicted Inv. Meas. vs. Ground Truth on yz plane

Figure: Invariant measures projected to $y z$ plane in time-periodic K flow at $\kappa=2^{-4}$: prediction (left), ground truth (right), at test value $\kappa=2^{-4}$.

Time Reversal of Diffusion Processes

- Stochastic differential equation (SDE) in \mathbb{R}^{d} :

$$
\begin{equation*}
d X_{s}=h\left(X_{s}, s\right) d s+g(s) d W_{s}:=-\nabla V\left(X_{s}\right) d s+b\left(X_{s}\right) d s+\sqrt{2 \epsilon} d W_{s} \tag{1}
\end{equation*}
$$

where V is a smooth potential function with at least quadratic growth at infinity, b is a bounded divergence free and smooth vector field, $\epsilon \in(0,1)$, and W is standard Wiener process.

- Kolmogorov (1937): The initial distribution $\sim \exp \{-V / \epsilon\}$ is realized by solving (1) backward in time from terminal distribution iff $b=0$.
- Let terminal (prior) distribution p_{T} at time T be normal. MCMC sampler: $p_{\text {data }}=Z^{-1} \exp \{-V\}, V$ is a closed form log-likelihood function.
- Mapping $p_{\text {prior }}$ to $p_{\text {data }}$ (since 2010's): variational autoencoder, generative adversarial network, flow-based models (e.g. neural ODEs, finding h from data), deep particle (2022).

Entropy Production

- Denoising diffusion probabilistic (score-based generative) modeling.
- Map $p_{\text {data }}$ to $p_{\text {prior }}$ by (1) or adding noise in time to increase entropy.
- Invert the map (denoising) by solving SDE (in reverse time):

$$
\begin{equation*}
d \tilde{X}_{s}=\left[h\left(\tilde{X}_{s}, s\right)-g^{2}(s) \nabla_{\tilde{X}_{s}} \log p_{s}\left(\tilde{X}_{s}\right)\right] d s+g(s) d \tilde{W}_{s}, \tag{2}
\end{equation*}
$$

Anderson (1982), where p_{s} is distribution of forward time SDE (1).

- Entropy integral to quantify reversability:

$$
S_{t}=\epsilon^{-1} \int_{0}^{t}\left\langle b\left(X_{s}\right), \circ d X_{s}\right\rangle
$$

work done by non-gradient part of the drift h.

Entropy Production

- Let $P_{t}^{\lambda, \epsilon}$ be the probability measure of (1) from initial measure λ. Its moment generating function is $(\alpha \in \mathbb{R})$:

$$
\chi_{t}^{\epsilon}(\alpha)=\int_{C\left([0, t] ; \mathbb{R}^{d}\right)} \exp \left\{-\alpha S_{t}^{\epsilon}\right\} d P_{t}^{\lambda, \epsilon}
$$

with representation:

$$
\chi_{t}^{\epsilon}(\alpha)=\int_{\mathbb{R}^{d}} d \xi\left(\exp \left\{t A^{\varepsilon, \alpha}\right\} 1\right)(\xi)
$$

where $A^{\varepsilon, \alpha}$ acts on smooth and compactly supported functions f as:

$$
\begin{aligned}
A^{\varepsilon, \alpha} f= & \varepsilon \Delta f+<-\nabla V+(1-2 \alpha) b, \nabla f>-\frac{\alpha(1-\alpha)}{\varepsilon}|b|^{2} f \\
& +\frac{\alpha}{\varepsilon}<b, \nabla V>f+\alpha(\nabla \cdot b) f
\end{aligned}
$$

over $\alpha \in[-\delta, 1+\delta]$ for some small $\delta>0$.

Entropy Production and Leading Eigenvalue

- Let $\lambda^{\varepsilon, \alpha}$ be the leading eigenvalue (the one with the largest real part) of $A^{\varepsilon, \alpha}$. Then:

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{1}{t} \log \chi_{t}^{\epsilon}(\alpha)=\lambda^{\varepsilon, \alpha} \tag{3}
\end{equation*}
$$

convex in α and symmetric about $\alpha=1 / 2$.

- Legendre transform of $\lambda^{\varepsilon, \alpha}$ in α is the large deviation rate function of $t^{-1} S_{t}^{\epsilon}$, so characterizes the stochastic growth rate of entropy.
- $A^{\varepsilon, \alpha}$ shares $\lambda^{\varepsilon, \alpha}$ with operator:

$$
\begin{aligned}
B^{\varepsilon, \alpha} f:= & \exp \left((-2 \varepsilon)^{-1} V\right) A^{\varepsilon, \alpha}\left(\exp \left((2 \varepsilon)^{-1} V\right)\right) \\
= & \varepsilon \Delta f+\langle(1-2 \alpha) b, \nabla f\rangle-\frac{1}{4 \varepsilon}|\nabla V|^{2} f+\frac{1}{2 \varepsilon}\langle b, \nabla V\rangle f \\
& -\frac{\alpha(1-\alpha)}{\varepsilon}|b|^{2} f+\frac{1}{2}(\Delta V) f-\alpha(\nabla \cdot b) f:=(L+U) f .
\end{aligned}
$$

Probabilistic Representation

- Markov generator:

$$
L f:=\varepsilon \Delta f+\langle(1-2 \alpha) b, \nabla f\rangle
$$

with corresponding SDE:

$$
d X_{t}=(1-2 \alpha) b\left(X_{t}\right) d t+\sqrt{2 \varepsilon} d B_{t}
$$

- Assume: at least quadratic growth of potential $|\nabla V|^{2} \geq a|x|^{2}$ for $|x| \geq R$, consts. $(a, R)>0, \lim _{|x| \rightarrow \infty} \Delta V /|\nabla V|=0$; and bounded drift $\|b\|_{C^{1}\left(\mathbb{R}^{d}\right)} \leq C$.
- Evolution operator P_{t}^{U} :

$$
\begin{equation*}
P_{t}^{U} \varphi(x)=\mathbb{E}\left[\varphi\left(X_{t}\right) \exp \left(\int_{0}^{t} U\left(X_{s}\right) d s\right) \mid X_{0}=x\right] \tag{4}
\end{equation*}
$$

$\mathbb{E}[\cdot]$ on Brownian motion and φ measurable.

- Let \hat{P}_{t}^{U} be the time discretized $P_{t}^{U}, t=n \Delta t$.

Discrete FK semigroup

- \exists invariant measure $\hat{\nu}_{*}$ under discrete FK semigroup so that:

$$
\hat{P}_{t}^{U}\left(\hat{\nu}_{*}\right)=\exp \left\{\hat{\lambda}_{\Delta t}^{\varepsilon, \alpha} t\right\} \hat{\nu}_{*} \text { or } \hat{\lambda}_{\Delta t}^{\varepsilon, \alpha}=t^{-1} \ln \mathbb{E}_{\hat{\nu}_{*}}\left[\hat{P}_{t}^{U}\left(\hat{\nu}_{*}\right)\right]
$$

and

$$
\hat{\lambda}_{\Delta t}^{\varepsilon, \alpha}=\lim _{k \rightarrow+\infty} \frac{1}{k \Delta t} \log \mathbb{E}\left[\exp \left(\Delta t \sum_{j=1}^{k-1} U\left(X_{j \Delta t}\right)\right) \mid X_{0} \sim \nu\right]
$$

- Interacting Particle method + HKU cluster: 2 Intel Xeon Gold 6226R (16 Core) CPU's and 96GB RAM.
- Experiments: $\#($ particles $)=500,000, \Delta t=2^{-8} ; \varepsilon=0.1,0.01,0.001$. At each $\varepsilon, \alpha \in\left[-\frac{1}{10}, \frac{11}{10}\right]$, compute $\lambda^{\varepsilon, \alpha}$ for $\alpha=-\frac{1}{10}+\frac{j}{31} \frac{12}{10}$ with $j=0,1, \ldots, 31$. The computation of $\lambda^{\varepsilon, \alpha}$ for each ε with 32 different values of α is performed in parallel on 32 cores of the CPU's.

2D example

- Double-well potential

$$
V\left(x_{1}, x_{2}\right)=x_{1}^{4}-2 x_{1}^{2}+\left(1+a\left(x_{1}-1\right)^{2}\right) x_{2}^{2}+x_{2}^{4}
$$

with $a=0.4$, and cell (Hamiltonian) flow

$$
b\left(x_{1}, x_{2}\right)=\pi^{-1}\left(\cos \left(\pi x_{1}\right) \sin \left(\pi x_{2}\right),-\sin \left(\pi x_{1}\right) \cos \left(\pi x_{2}\right)\right)
$$

- $\lambda^{\alpha}=\lim _{\varepsilon \rightarrow 0} \lambda^{\varepsilon, \alpha}$ known in closed-form.

2D example: computed $\lambda^{\varepsilon, \alpha}$ and exact λ^{α} as $\varepsilon \downarrow 0$

2D example: approximate invariant measures

Figure: Distribution of particles at $T=2048$, and $\alpha \approx 0.5968$ (top)/1.0613.

4D example: $\lambda^{\varepsilon, \alpha}$ in doublewell potential $(a=0.4)$

$$
\begin{aligned}
V\left(x_{1}, x_{2}, x_{3}, x_{4}\right)= & x_{1}^{4}-2 x_{1}^{2}+\left(1+a\left(x_{1}-1\right)^{2}\right) x_{2}^{2}+ \\
& x_{2}^{4}+x_{3}^{4}-2 x_{3}^{2}+\left(1+a\left(x_{3}-1\right)^{2}\right) x_{4}^{2}+x_{4}^{4} \\
b\left(x_{1}, x_{2}, x_{3}, x_{4}\right)= & \pi^{-1}\left(\cos \left(\pi x_{1}\right) \sin \left(\pi x_{2}\right),-\sin \left(\pi x_{1}\right) \cos \left(\pi x_{2}\right),\right. \\
& \left.2 \cos \left(\pi x_{3}\right) \sin \left(\pi x_{4}\right),-2 \sin \left(\pi x_{3}\right) \cos \left(\pi x_{4}\right)\right),
\end{aligned}
$$

8 D example: $\lambda^{\varepsilon, \alpha}$ in potential and Hamiltonian flow.

$$
\begin{aligned}
V\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}\right) & =\frac{x_{1}^{2}+x_{2}^{2}}{2}+\frac{x_{1}^{4}+x_{2}^{4}}{8}+\frac{x_{3}^{2}+x_{4}^{2}}{2}+\frac{x_{3}^{4}+x_{4}^{4}}{8} \\
& +x_{5}^{4}-2 x_{5}^{2}+\left(1+a\left(x_{5}-1\right)^{2}\right) x_{6}^{2}+x_{6}^{4} \\
& +x_{7}^{4}-2 x_{7}^{2}+\left(1+a\left(x_{7}-1\right)^{2}\right) x_{8}^{2}+x_{8}^{4}
\end{aligned}
$$

with $a=0.3$.

$$
\begin{aligned}
b\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}\right)= & \pi^{-1}\left(\cos \left(\pi x_{1}\right) \sin \left(\pi x_{2}\right),-\sin \left(\pi x_{1}\right) \cos \left(\pi x_{2}\right),\right. \\
& \widetilde{b}_{2} \cos \left(\pi x_{3}\right) \sin \left(\pi x_{4}\right),-\widetilde{b}_{2} \sin \left(\pi x_{3}\right) \cos \left(\pi x_{4}\right), \\
& \cos \left(\pi x_{5}\right) \sin \left(\pi x_{6}\right),-\sin \left(\pi x_{5}\right) \cos \left(\pi x_{6}\right), \\
& \left.2 \cos \left(\pi x_{7}\right) \sin \left(\pi x_{8}\right),-2 \sin \left(\pi x_{7}\right) \cos \left(\pi x_{8}\right)\right),
\end{aligned}
$$

with $\widetilde{b}_{2}=0.5$.

8D example: computed $\lambda^{\varepsilon, \alpha}$ and exact λ^{α} as $\varepsilon \downarrow 0$

16D example: computed $\lambda^{\varepsilon, \alpha}$ and exact λ^{α} as $\varepsilon \downarrow 0$

16D example: projected invariant measures

- ε

0.01

0.001

Figure: $T=2048, \alpha \approx 0.2097$, projected on $\left(x_{12}, x_{14}\right)(\operatorname{top}) /\left(x_{15}, x_{16}\right)$.

Linear Growth: comput. time (min) vs. dimension.

G-equation: Hamilton-Jacobi Level Set Equation

- Markstein (1950's), Williams (1980's): convex yet non-coercive Hamiltonian.

$$
G_{t}+s_{l}|D G|+V(x) \cdot D G=0
$$

unburned fluid	burned fluid	
$G>0 \quad$	$G(x, t)=0$	$G<0$

- Motion law: normal velocity $v_{\vec{n}}=\vec{V} \cdot \vec{n}+s_{l}$, s_{l} laminar speed, $\vec{n}=\frac{D G}{|D G|}$.

Curvature Effect on Laminar Speed

- Curvature effect, Markstein (1951): as flame front bends toward cold region (unburned area, point C), propagation slows down. As flame bends toward hot spot (burned area, point B), it burns faster.

- Empirical linear relation proposed by Markstein:

$$
s_{l}=s_{l}^{0}(1-\tilde{d} \kappa)_{+}
$$

κ : mean curvature along the flame front. \tilde{d} : Markstein length.
$(\cdot)_{+}$prevents "unburn". Folklore: curvature slows flame on average.

Curvature G-equation in Cell Flow

- After normalizing consts, a non-convex \& non-coercive Hamiltonian:

$$
G_{t}+\left(1-d \operatorname{div}\left(\frac{D G}{|D G|}\right)\right)_{+}|D G|+V(x) \cdot D G=0
$$

- Let $V(x)=A D^{\perp} \sin \left(x_{1}\right) \sin \left(x_{2}\right)$, intensity $A>0$.

Theorem (Gao, Long, X, Yu. J. Geometric Analysis, 2024)

For any unit vector $p \in \mathbb{R}^{2}$ and initial data $G(x, 0)=p \cdot x$, there exists a positive number $\bar{H}_{A, d}(p)$ such that

$$
\left|G(x, t)-p \cdot x+\bar{H}_{A, d}(p) t\right| \leq C, \quad \forall(t, x) \in \mathbb{R}^{2} \times[0, \infty)
$$

for a constant C depending only on A and d.

Corrector

- Look for a solution of the form $p \cdot x-\bar{H}(p) t+v(x), v$ is the so called corrector satisfying (a.k.a. cell problem):

$$
\begin{equation*}
\left(1-d \operatorname{div}\left(\frac{p+D v}{|p+D v|}\right)\right)_{+}|p+D v|+V(y) \cdot(p+D v)=\bar{H}(p) \tag{5}
\end{equation*}
$$

subject to 2π-periodic boundary condition in y.

- Theorem follows by comparing G with $v \pm$ const.
- To construct a solution, consider a modified cell (discount) problem as Lions-Varadhan-Papanicolaou (1980's, coercive periodic Hamiltonian):

$$
\begin{equation*}
\lambda v+\left(1-d \operatorname{div}\left(\frac{p+D v}{|p+D v|}\right)\right)_{+}|p+D v|+V(y) \cdot(p+D v)=0 \tag{6}
\end{equation*}
$$

for a parameter $\lambda>0$,.

- Existence and uniqueness of $v=v_{\lambda}$ to (6) known by Perron's method (Crandall-Ishii-Lions 1992). Comparison principle implies: $\max _{x \in \mathbb{R}^{2}}\left|\lambda v_{\lambda}(x)\right| \leq 1+\max _{\mathbb{R}^{2}}|V|$.
- Aim to show

$$
\lim _{\lambda \rightarrow 0} \lambda v_{\lambda}(x)=-\bar{H}(p) \quad \text { uniformly on } \mathbb{R}^{2}
$$

then (6) \rightarrow (5) with standard sub/super-solution technique on v_{λ}.

- Key is the bounded oscillation estimate:

$$
\begin{equation*}
\max _{x, y \in[-\pi, \pi]^{2}}\left|v_{\lambda}(x)-v_{\lambda}(y)\right| \leq C=C(d, A) . \tag{7}
\end{equation*}
$$

- In the absence of curvature $(d=0)$, (7) follows from mutual reachability of x and y by a controled trajectory (X-Yu, 2010). If y is reachable from x by ξ for $|\alpha(t)| \leq 1$,

$$
\dot{\xi}(t)=\alpha(t)-V(\xi(t))
$$

subject to $\xi(0)=x$ within time T, then

$$
v_{\lambda}(x) \leq v_{\lambda}(y)+C T
$$

for incompressible V in any dimension.

Deterministic Two-Person Game in 2D

- A deterministic game (Kohn-Serfaty, 2006): consider the discrete dynamical system $\left\{x_{n}\right\}_{n=1}^{N} \subset \mathbb{R}^{2}$ associated with the game starting from $x_{0}=x$: for $n=0,1,2, . ., N-1$,

$$
\left\{\begin{array}{l}
x_{n+1}=x_{n}+\tau \sqrt{2 d} b_{n} \vec{\eta}_{n}+\tau^{2} \vec{\eta}_{n}^{\perp}-\tau^{2} V\left(x_{n}\right) \\
x_{0}=x
\end{array}\right.
$$

where $\left|\vec{\eta}_{n}\right| \leq 1$ and $b_{n} \in\{-1,1\}$.

- Player I controls direction via $\vec{\eta}_{n}$ and player II controls sign via b_{n}.
- Let $g=g(x)$ be a final payoff function. Player I (II) aims to minimize (maximize) $g\left(x_{N}\right)$. If both players proceed optimally, the value function

$$
u\left(x, N \tau^{2}\right):=g\left(x_{N}\right)
$$

converges to the solution of curvature G-eq with initial data $g(x)$:

$$
\lim _{N \tau^{2} \rightarrow t, \tau \rightarrow 0} u\left(x, N \tau^{2}\right)=G(x, t) .
$$

Inequalities from One-Way Reachability via Game

- A typical scenario to get an upper bound of the game value is for player I to devise a strategy so that the game trajectory, starting at a point P, ends at a point Q in a desired region U in N moves despite any strategy of player II; then

$$
u\left(P, N \tau^{2}\right) \leq g(Q) \leq \max _{q \in U} g(q)
$$

- For stationary equation, suppose: (1) w satisfies

$$
\left(1-d \operatorname{div}\left(\frac{D w}{|D w|}\right)\right)_{+}|D w|+V(x) \cdot D w \leq C
$$

implying $w-C t$ is a sub-solution to G-eq; (2) player I has a strategy to steer the game trajectory from x to a region D (invariant under $-V$ flow) within time T regardless how player II plays; then

$$
w(x)-C T \leq G\left(x, N \tau^{2}\right) \leq \max _{y \in D} w(y)
$$

- Unlike the $d=0$ case, two-way reachability does NOT hold.

Interior One-way Reachability

Player I's strategy: at each step, choose $\eta=\frac{V}{|V|}$ until it reaches the target lower level set of $\mathcal{H}: \mathcal{H}\left(X_{n+1}\right)-\mathcal{H}\left(X_{n}\right) \leq-\left|D H\left(X_{n}\right)\right| \tau^{2}+O\left(\tau^{3}\right)$.
Then switch to $\eta=0$ to reach the target point P_{2}.

Quarter Cell Boundary Crossing: PDE Method

Evolve G-equation with initial data $\left(\Omega \subset S=(0,1)^{2}\right)$: $g_{S}(x)=-\frac{2}{\pi} \arctan (\operatorname{dist}(x, \partial S))$, for $x \in S$; else, $\frac{2}{\pi} \arctan (\operatorname{dist}(x, \partial S))$. The edge $\{0\} \times(0,1)$ is part of the zero level set of G where:

$$
v_{\vec{n}}=(1-d \kappa)_{+}+V(x) \cdot \vec{n} \approx 1
$$

so $\exists t_{\delta}>0$ s.t. $G((0, \theta), t)<0 \quad$ for $(\theta, t) \in[\delta, 1-\delta] \times\left(0, t_{\delta}\right]$. An optimal game trajectory starting from $W_{\alpha, \delta}$ must pass through the edge $\{0\} \times[\delta, 1-\delta]$ during the time interval $\left(0, t_{\delta}\right]$.

PDE estimates from: 1-Way Reachability

Lemma

Let $G(x, t)$ be the unique solution with $G(x, 0)=p \cdot x$. There exist positive constants β and C depending only on d and V s.t. for all $(x, t) \in \mathbb{R}^{2} \times[0, \infty)$,

$$
\begin{equation*}
G(x, t)-p \cdot x \leq-\beta t+C \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\max _{x \in \mathbb{R}^{2}} \lambda v_{\lambda}(x)<-\frac{\beta}{2}+\lambda C . \tag{9}
\end{equation*}
$$

Inequality (8) follows from estimating travel times of game trajectories across cells and 1-way reachability inequalities.

Inequality (9) from constructing a super-solution to a time-dependent variant of the discount cell problem via the inequality (8).

Minimum Principle from: 1-Way Reachability

- Applying inequality (9) at $\lambda<\beta /(4 C)$, we have from the discount cell problem:

$$
\left(1-d \operatorname{div}\left(\frac{p+D v_{\lambda}}{\left|p+D v_{\lambda}\right|}\right)\right)_{+}\left|p+D v_{\lambda}\right|+V(y) \cdot\left(p+D v_{\lambda}\right) \geq \beta / 4
$$

- \rightarrow minimum principle: The minimum value of $u_{\lambda}:=p \cdot x+v_{\lambda}$ in a domain can only be attained on its boundary.
- $u=u_{\lambda}$ is a viscosity sub-solution of the stationary G-equation:

$$
\begin{gathered}
\left(1-d \operatorname{div}\left(\frac{D u_{\lambda}}{\left|D u_{\lambda}\right|}\right)\right)_{+}\left|D u_{\lambda}\right|+V(y) \cdot\left(D u_{\lambda}\right)=1+\max _{[-\pi, \pi]^{2}}|V|(y):=\alpha \\
\text { satisfying } \quad u_{\lambda}\left(x_{0}\right) \leq \max _{y \in \bar{S}} u_{\lambda}(y)+\alpha T_{0}
\end{gathered}
$$

if a bounded set S is reachable from x_{0} within T_{0}, and S is invariant under $-V$ flow.

Quarter Cell Interior Oscillation Estimate

- For each point $x \in \partial Q_{\mu}$ and each point $y \in \bar{Q}_{\mu}, u_{\lambda}(x) \geq u_{\lambda}(y)-C_{\mu}$ for some constant $C_{\mu}>0$. Accordingly:

$$
\min _{x \in \partial Q_{\mu}} u_{\lambda}(x) \geq \max _{x \in \bar{Q}_{\mu}} u_{\lambda}(x)-C_{\mu}
$$

- By minimum principle: $\min _{x \in \partial Q_{\mu}} u_{\lambda}(x)=\min _{x \in \bar{Q}_{\mu}} u_{\lambda}(x)$, and so:

$$
\max _{x \in \bar{Q}_{\mu}} u_{\lambda}(x)-\min _{x \in \bar{Q}_{\mu}} u_{\lambda}(x)=\max _{x, y \in \bar{Q}_{\mu}}\left|u_{\lambda}(x)-u_{\lambda}(y)\right| \leq C_{\mu}
$$

Conclusions and Future Work

- Deep Particle (DP) framework to compute and learn multi-scale PDEs with physical parameter dependence based on data from stochastic interacting particle (SIP) systems.
- Learned and generated complex phenomena of FKPP in 3D flows.
- Computed 1st eigenvalue of advection dominated reaction-diffusion operators on $\mathbb{R}^{d}(d=16)$ by SIP with linear complexity.
- Integrated two-person game and PDE method for existence of average curvature dependent front speeds in cell flows.
- Ongoing/future: (1) DP for reaction-diffusion models with interacting particle description arising in cancer cell spreading. (2) curvature G-equation in 3D: non-existence of \bar{H}_{+}in shear flow $V=\left(0,0, A f\left(x_{1}, x_{2}\right)\right)$ if A exceeds a finite value, i.e. averaging fails in some direction (Mitake, Mooney, Tran, X, Yu, '23).

