Numerical Understanding Of Neural Networks:
From Representation to Learning Dynamics

Hongkai Zhao
Duke University

Joint work with Shijung Zhang, Haomin Zhou and Yimin Zhong

Research partially supported by NSF DMS-2012860,
DMS-2309551.

Happy Birthday, Russ!

The goals and key ingredients in scientific computing

Approximate a mapping/function.

The goals and key ingredients in scientific computing

Approximate a mapping/function.
Key ingredients

> Representation: the starting point.

The goals and key ingredients in scientific computing

Approximate a mapping/function.
Key ingredients
> Representation: the starting point.

» Error (lost) function.

The goals and key ingredients in scientific computing

Approximate a mapping/function.

Key ingredients
> Representation: the starting point.
» Error (lost) function.

> Find the (optimal) solution.

The goals and key ingredients in scientific computing

Approximate a mapping/function.

Key ingredients
> Representation: the starting point.
» Error (lost) function.
> Find the (optimal) solution.

The goals: efficiency, accuracy and stability.

The goals and key ingredients in scientific computing

Approximate a mapping/function.

Key ingredients
> Representation: the starting point.
» Error (lost) function.
» Find the (optimal) solution.

The goals: efficiency, accuracy and stability.

» These goals and ingredients are entwined!

> Needs a holistic study and balanced approach in practice!

Least square approximation

General form: given a target function f(x), x € D c RY, and a chosen
parametrized representation h(x;)

main (@) = llh(:;) - f(')”f?(D)

Least square approximation

General form: given a target function f(x), x € D c RY, and a chosen
parametrized representation h(x;)

main (@) = llh(:;) - f(')”f?(D)

Basic numerical questions of practical importance:
> the best accuracy one can achieve given a finite machine precision,
> the computation cost to achieve a given accuracy,

> stability with respect to perturbations.

Least square approximation

Linear representation: given a target function f(x), x € D c RY, choose a
set of basis functions yi(x), h(x; @) = X7, awi(x), @ = (a1,...,an)"

m|nI () = IIZ aii(-))”

= a" = argmin,l(a) = G,
G is Gram matrix, G(I,j) = (lﬁ,‘,l//j)D, f= ((f, Y1)p, ..., {f, lﬁn>D)T.

Least square approximation

Linear representation: given a target function f(x), x € D c RY, choose a
set of basis functions yi(x), h(x; @) = X7, awi(x), @ = (a1,...,an)"

m|nI () = IIZ aii(-))”

= a" = argmin,l(a) = G,
G is Gram matrix, G(I,j) = (lﬁ,‘,l//j)p, f= ((f, Y1)p, ..., {f, lﬁn>D)T.

» Important mathematical questions: V = span{y, ..., yn}, dist(f, V).

Least square approximation

Linear representation: given a target function f(x), x € D c RY, choose a
set of basis functions yi(x), h(x; @) = X7, awi(x), @ = (a1,...,an)"

m|nI () = IIZ aii(-))”

= a" = argmin,l(a) = G,
G is Gram matrix, G(i, j) = Wi, ¥p)p, T = ((F.¥1)p, wn)D) T
» Important mathematical questions: V = span{y, ..., yn}, dist(f, V).

» Important numerical questions:

Least square approximation

Linear representation: given a target function f(x), x € D c RY, choose a
set of basis functions yi(x), h(x; @) = X7, awi(x), @ = (a1,...,an)"

m|nI () = IIZ aii(-))”

= a" = argmin,l(a) = G,
G is Gram matrix, G(i, j) = Wi, ¥p)p, T = ((F.¥1)p, wn)D) T
» Important mathematical questions: V = span{y, ..., yn}, dist(f, V).

> Important numerical questions: G!

Least square approximation

Linear representation: given a target function f(x), x € D c RY, choose a
set of basis functions yi(x), h(x; @) = X7, awi(x), @ = (a1,...,an)"

m|nI () = IIZ aii(-))”

= a" = argmin,l(a) = G,
G is Gram matrix, G(i, j) = Wi, ¥p)p, T = ((F.¥1)p, wn)D) T
» Important mathematical questions: V = span{y, ..., yn}, dist(f, V).

> Important numerical questions: G! G!

Least square approximation

Linear representation: given a target function f(x), x € D c RY, choose a
set of basis functions yi(x), h(x; @) = X7, awi(x), @ = (a1,...,an)"

m|nI () = IIZ aii(-))”

= a" = argmin,l(a) = G,
G is Gram matrix, G(i, j) = Wi, ¥p)p, T = ((F.¥1)p, wn)D) T
» Important mathematical questions: V = span{y, ..., yn}, dist(f, V).

» Important numerical questions: G! G! G!

Least square approximation

Linear representation: given a target function f(x), x € D c RY, choose a
set of basis functions yi(x), h(x; @) = X7, awi(x), @ = (a1,...,an)"

m|nI () = IIZ aii(-))”

= a" = argmin,l(a) = G,
G is Gram matrix, G(i,j) = Wi,)0, § = (£, 41)0s ..., (Fyn)p)T.
» Important mathematical questions: V = span{y, ..., yn}, dist(f, V).
» Important numerical questions: G! G! G!

> spectral property of G,
> sparsity of G,
> computation cost of G, GT.

Least square approximation

Linear representation: given a target function f(x), x € D c RY, choose a
set of basis functions yi(x), h(x; @) = X7, awi(x), @ = (a1,...,an)"

m|nI () = IIZ aii(-))”

= a" = argmin,l(a) = G,
G is Gram matrix, G(i,j) = Wi,)0, § = (£, 41)0s ..., (Fyn)p)T.
» Important mathematical questions: V = span{y, ..., yn}, dist(f, V).
» Important numerical questions: G! G! G!

> spectral property of G,

> sparsity of G,

> computation cost of G, GT.

> choice of the basis is the key!

Setup of neural networks (NN)
Two layer NN with reLU activation function o-(t) = max(0, t):

n
h(x) = Z aic(w;-x - b)), xeR%
i=1

We show
» ill-conditioning of the representation using global activation functions
» slow learning dynamics for high frequencies

> probabilistic characterization in parameter space

Setup of neural networks (NN)
Two layer NN with reLU activation function o-(t) = max(0, t):

n
h(x) = Z aic(w;-x - b)), xeR%
i=1

We show
» ill-conditioning of the representation using global activation functions
» slow learning dynamics for high frequencies
> probabilistic characterization in parameter space

which imply

> atwo layer NN using global activation function is a "low pass filter”
in terms of representation and learning dynamics in practice

Setup of neural networks (NN)
Two layer NN with reLU activation function o-(t) = max(0, t):

n
h(x) = Z aic(w;-x - b)), xeR%
i=1

We show
» ill-conditioning of the representation using global activation functions
» slow learning dynamics for high frequencies
> probabilistic characterization in parameter space

which imply

> atwo layer NN using global activation function is a "low pass filter”
in terms of representation and learning dynamics in practice

» numerical accuracy can be far from machine precision even if the
network width goes to infinity

Setup of neural networks (NN)
Two layer NN with reLU activation function o-(t) = max(0, t):

n
h(x) = Z aic(w;-x - b)), xeR%
i=1

We show
» ill-conditioning of the representation using global activation functions
» slow learning dynamics for high frequencies
> probabilistic characterization in parameter space

which imply

> atwo layer NN using global activation function is a "low pass filter”
in terms of representation and learning dynamics in practice

» numerical accuracy can be far from machine precision even if the
network width goes to infinity

» what difference activation functions make

Setup of neural networks (NN)
Two layer NN with reLU activation function o-(t) = max(0, t):

n
h(x) = Z aic(w;-x - b)), xeR%
i=1

We show
» ill-conditioning of the representation using global activation functions
» slow learning dynamics for high frequencies
> probabilistic characterization in parameter space

which imply

> atwo layer NN using global activation function is a "low pass filter”
in terms of representation and learning dynamics in practice

» numerical accuracy can be far from machine precision even if the
network width goes to infinity

» what difference activation functions make

» why oscillatory functions are difficult to approximate

Two layer NN in 1D

n
h(x) = Za,-a(x— b), x,bjeD=(-1,1), aieR
i=

Mathematically, span{o-(x—b;)}=span{P; finite element basis}.

Two layer NN in 1D

n
h(x) = Za,-a(x— b), x,bjeD=(-1,1), aieR
i=

Mathematically, span{o-(x—b;)}=span{P; finite element basis}.
Numerically, the two sets of basis are very different!

Two layer NN in 1D

n
X) :Za,-a(x—b,-), x,bje D=(-1,1), g eR

Mathematically, span{o-(x—b;)}=span{P; finite element basis}.
Numerically, the two sets of basis are very different!

> Finite element basis: local and almost orthogonal = the Gram
matrix is sparse and well conditioned (cond = O("""”X)) = capture
all frequencies resolved by the mesh well.

Two layer NN in 1D

n
X) :Za,-a(x—b,-), x,bje D=(-1,1), g eR

Mathematically, span{o-(x—b;)}=span{P; finite element basis}.
Numerically, the two sets of basis are very different!

> Finite element basis: local and almost orthogonal = the Gram
matrix is sparse and well conditioned (cond = O(hm"“)) = capture
all frequencies resolved by the mesh well.

> RelU basis: global and can be highly correlated = the Gram matrix
is dense and has a fast spectral decay (ill-conditioned) = only a
certain number (depending on the machine precision or noise) of
leading modes (low frequencies) can be captured stably in
numerical computation = low pass filter.

Spectral analysis for the Gram matrix of ReLU basis: 1D

The corresponding continuous kernel

6(x)= [r(z-x)o(z-y)dz = 5 Ix-yP*+ 15 (2-x-y) (2(1-3)(1-y)~(x-yF)

The Gram matrix is Gjj = (G(bi, bj))1<ij<n-

Lemma
The eigenvalues of G(x.y) in descending order are: u = O(k™*). The
corresponding eigenfunctions ¢« (x) satisfies

)=k (x), x € (1,1, ¢(1) =0 (1) =4 (1) =D (-1) =0.

¢x’s are a combination of exponential functions and Fourier modes,
which are asymptotically Fourier modes, from low to high frequencies.

Theorem

{bi}_, are i.i.d distributed with probability density function p € C3[-1,1],
0 < ¢ < p(x) < € < co. With probability 1 — -, the condition number
A1/, > O(né(log n)™").

Spectral analysis for the Gram matrix of ReLU basis: R?
ReLU basis in RY: of(w - x — b),w € S%', b € R. Define

G((w,b), (v, b’)):fDo-(w - X —b)o(w - x —b")dx.

Use 020(w-x—b)=Ao(w-x—b)=8(w-x—b), and Radon transform R,

Lemma
The eigenfunction satisfies 1x0%¢x = RA™'R* ¢y in weak sense.
d+3

(A", R*¢x) forms an eigen pair of the operator A~'R*RA™" =cq4(-A) = .

Theorem
Let A¢ be the eigenvalue of the kernel G. There are constants ¢y, ¢, > 0,
depending on D and d, such that

C1k—(d+3)/d < /lk < Czk_(d+3)/d.

> For ¥, A = O(k~(d+k+2)/d),

> For analytic activation function, the spectral decays even faster.

Low pass filter
Assume f(x) = [, o(w-x — b)h(w,b)dwdb = Af(x) = R*h(w.b)

h(w,b) = > axg(w,x) = f(x) = > axA7'R¢y.
k=1 k=1

Key observations: R*¢y are eigenfunctions of A.

Low pass filter
Assume f(x) = [, o(w-x — b)h(w,b)dwdb = Af(x) = R*h(w.b)

h(w,b) = > axg(w,x) = f(x) = > axA7'R¢y.
k=1 k=1

Key observations: R*¢y are eigenfunctions of A.

» For machine precision €, Moore-Penrose pseudo-inverse (MATLAB)
maintains leading modes k < m = ©(e %) of h(w, b) = a low
pass filter in the approximation of f(x).

Low pass filter
Assume f(x) = [, o(w-x — b)h(w,b)dwdb = Af(x) = R*h(w.b)

h(w,b) = > axg(w,x) = f(x) = > axA7'R¢y.
k=1 k=1

Key observations: R*¢y are eigenfunctions of A.

» For machine precision €, Moore-Penrose pseudo-inverse (MATLAB)
maintains leading modes k < m = ©(e %%) of h(w,b) = a low
pass filter in the approximation of f(x).

> At most all eigenmodes of the Laplace operator up to frequency
O(G‘erﬁ) can be captured accurately and stably in d dimensions.
single precision e=2"2%: k; ~ 24, k, ~ 10, k3 ~ 6.
double precision e=27%2: k; ~ 1351, ky ~ 172, k3 ~ 55, kjg = 5.

Low pass filter
Assume f(x) = [, o(w-x — b)h(w,b)dwdb = Af(x) = R*h(w.b)

h(w,b) = > axg(w,x) = f(x) = > axA7'R¢y.
k=1 k=1

Key observations: R*¢y are eigenfunctions of A.

» For machine precision €, Moore-Penrose pseudo-inverse (MATLAB)
maintains leading modes k < m = ©(e %%) of h(w,b) = a low
pass filter in the approximation of f(x).

> At most all eigenmodes of the Laplace operator up to frequency
O(e‘zﬁ) can be captured accurately and stably in d dimensions.
single precision e=2"2%: k; ~ 24, k, ~ 10, k3 ~ 6.
double precision e=27%2: k; ~ 1351, ky ~ 172, k3 ~ 55, kjg = 5.

> numerical accuracy maybe far from machine precision for functions
with significant high frequency components even if the network
width goes to co.

> relative stable with respect to noise and over-parametrization.

Approximation error

d
> small network: n < O(e™23).
The dominant error i1s due to discretization error:
1
h = 0(n"43) < O(e=3). The piecewise approximation error
2
~ N3 ||fle.

> large network: n > O(e %),
The dominant error is due to truncation error ~ O(e#ia”f”h,p)_

Approximation error

d
> small network: n < O(e™23).
The domin1ant error i1s due to discretization error:
h = 0(n"9) < O(e¥@%). The piecewise approximation error
2
~ N3 ||fle.

> large network: n > O(e %),
The dominant error is due to truncation error ~ O(e#ia”f”h,p)_

Remark

Using a smoother activation function, the spectral decay is even faster. It
leads to larger truncation error for large networks but smaller
discretization error in small network regime.

Numerical spectrum for Gram matrix (1D)

—— (logy k. logyy M)

—— (logyy k, —4logyy k)

0.0 0.5 1.0 1.5 2.0

(a) n=100 (uniform bias)

— (logyo k, logyg Ax)
—— (logyg k. —4logyo k)

0.0 0.5 1.0 15 2.0

(a) n=100 (adaptive bias)

—12

—— (logiok, logio M)
—— (logyo k, —4logy k)

0.0 0.5 1.0 15 2.0 2.5 3.0

(b) n=1000 (uniform bias)

— (logyg k, logig Ax)
—— (logyg k, —4logyg k)

0.0 0.5 1.0 15 2.0 2.5 3.0

(b) n=1000 (adaptive bias)

Numerical spectrum for Gram matrix (2D)

—— (logio k, logig Ar)
—— (logg k. —2.5logo k)

000147

o000

o
oo

ooz

ooworr

-1 oomm

Numerical test
f(x) = cos(6mx)—sin(2xx), fi(x) =f(jx). E-value threshold: K =max{k :ﬁ—f <n}.

fi(x)

— Tnefution — FEM (=107, r=36) — Tnefdin — MW(p=10) — Tnefucin — W[p=107)

M Ista el B D
WAV] W Y

5 00 03 10 -10 03 00 05 10 -10 05 00 03 10

— Tefuin — W {p=10)

-1 05
f3(x)

— Tnefuton — FEM(1=107,r=36) — Tnefuin — MW(p=10) — Tuefudin — NN [y=107)

— Truefuction = NN {y=10)

-10 -05 00 [} 0) -10 -0 00 05 10 -10 05 00 05 10 -10 -05 00 05 0
fo(x)
— Tefudin — FM (y=107,r=36) — Tnefuin — NN (p=10) — Tuefuion — NN p=10) — Toefudion — NN (5= 10)
. Au ,,,,,,, !
-10 -05 00 05 10 05 10 -10 05 00 _95 IEDP] -10 -05_ 00 - [} *)Wl

Table 1: Error comparison for approximating f(z) =

Numerical test

arctan(25z) with sufficient samples.

float32 float64
n =100 n = 1000 n =100 n = 1000
MAX MSE MAX MSE MAX MSE MAX MSE
NN Uniformb 6.09x 1072 958 x107° 7.19x 1072 143x107% 137x1072 170x10°°® 1.05x10™* 1.33x 1071
FEM Uniformb 1.37x 1072 1.70x 1075 1.05x10~% 1.33x1071° 1.37x 1072 1.70x 1075 1.05x10~* 1.33 x 1071°
NN Adaptiveb 6.83x 1072 7.54x 107 1.89x 1072 1.06x107° 3.93x107% 142x10™° 474x107° 1.17x107%
FEM Adaptiveb 292x107% 9.95x 1077 379x107° 1.02x 10710 292x107% 9.95x 107 3.77x10°° 1.02x 10~1°

Stability with respect to noise and over-parametrization

noise data

—— True function ~—— True function
—— FEM (3 =10") — NN (=107

—— True function
—— FEM (n=10"%)

—— True function
—— NN (Adam1)

—— True function
— NN (p=10")

—— True function
— NN (3=10%)

over-parametrization with 1000 samples and n = 1500

2 2

= True function
—— NN (Adam)

—— True function
— FEM (3=10"")

—— True function
— NN(g=10"")

-L0 ~0.5 0.0 0.5 10 -10 -0.5 0.0 0.5 10 -10 -0.5 0.0 0.5 10

Adaptive vs uniform biases

Adaptive biases for f(x) = arctan(25x). Define F(x) = [If'(t |dt/f1 I (H)ldt, F(by) = (i-1)/(n=1).
Eigenmodes of Ay for k = {1,2,3}, {4, 5, 6},30,60 with n = 1000.

— N —h —X 2 — ?

1
1 1
0
0 "
-1 -1
-1

10 05 00 05 10

E T R T o w0 TG0 s o0 05 1
Umformly distributed biases

— Ak Tk — — M

1 1 1
0 0 0
a 1 -1
05 0 03

~10 0.5 00 05 10 - -0 -05 00 0.5 10 ~10
adaptlvely distributed biases

Projection of f on the eigenmodes

2 1 {
05
0 0 \w 0 00
-) 05
= -1

2 0 [8 100 0 2A [[8 100 0 A0 G0 S0 00 O A0 W0 G0 s 10

uniform n = 100 adaptive n = 100 uniform n = 1000 adaptive n = 1000

Learning dynamics based on gradient flow: linear

Training two layer ReLU neural networks: h(x, t) = > ; ai(t)o(w; - X — b;)
following the gradient flow of E(t) = 1llh(x,t) - f(x)||f2(D)

da(t)
dt

=-Ga(t)+f, Gj =< o(w;x=b;),o(w;x-bj) >p,fi =< f(x), o (w;-x=b;) :

Let (A, gk) be the eigen pairs of G and define
a(t) = a’ (g fk = 19k
fi

dac(t) . . , N By ot
at ——/lkak(t)—i—fk = ak(t)—(ak(o)—ﬂ)e +/l_k

Learning dynamics based on gradient flow: linear

Training two layer ReLU neural networks: h(x, t) = > ; ai(t)o(w; - X — b;)
following the gradient flow of E(t) = 1llh(x,t) - f(x)||f2(D)

da(t)
dt

=-Ga(t)+f, Gj =< o(w;x=b;),o(w;x-bj) >p,fi =< f(x), o (w;-x=b;) :

Let (A, gk) be the eigen pairs of G and define
a(t) = a’ (g fk = 19k
fi

—Axt
e —.
Jer

da(t)
dt

fi

= —/lkék(t) + /fk = ék(t) = (ék(O) 1

> It takes at least t > /l;‘ for the kth mode to converge.
> Noise will come in eventually in the long run.

> Stopping time plays the role of regularization.

Learning dynamics based on gradient flow: nonlinear

In general, training is the most challenging task for NN learning.

Learning dynamics based on gradient flow: nonlinear

In general, training is the most challenging task for NN learning.
Gradient descent for two layer neural networks
h(x,t) = ZiLq ai(t)o(x - bi(t))

E(t) = %llh(x, t)—f)I3, D= (-1,1)

% T f,;(h(x, t)—f(x))o(x—by)dx % =a f;(h(x, t)~f(x))o” (x=bi)dx.

Learning dynamics based on gradient flow: nonlinear

In general, training is the most challenging task for NN learning.
Gradient descent for two layer neural networks
h(x,t) = ZiLq ai(t)o(x - bi(t))

E(t) = %llh(x, t)—f)I3, D= (-1,1)

% T f,;(h(x, t)—f(x))o(x—by)dx % =a f;(h(x, t)~f(x))o” (x=bi)dx.

Basic questions:

> can the training process obtain the optimal a;, b;?

Learning dynamics based on gradient flow: nonlinear

In general, training is the most challenging task for NN learning.
Gradient descent for two layer neural networks
h(x,t) = ZiLq ai(t)o(x - bi(t))

E(t) = %llh(x, t)—f)I3, D= (-1,1)

% T f,;(h(x, t)—f(x))o(x—by)dx % =a f;(h(x, t)~f(x))o” (x=bi)dx.

Basic questions:
> can the training process obtain the optimal a;, b;?

> what is the training dynamics and cost?

Learning dynamics based on gradient flow: nonlinear
Learning high frequencies is slow!
Theorem

It takes at least O(m) time steps to get the initial error in (generalized)
Fourier mode m reduced by half.

Learning dynamics based on gradient flow: nonlinear
Learning high frequencies is slow!

Theorem
It takes at least O(m) time steps to get the initial error in (generalized)
Fourier mode m reduced by half.

Main difficulties for the proof:
» fully nonlinear and discrete.

» dounded domain.

Remark

1. The lower bound is not sharp.

2. With some mild conditions, the time step bound is O(m?).
3. With fixed biases, the time step bound is O(m*).
4

. Smoother the activation function, the slower the training dynamics
for high frequency components.

5. Experiments suggest Adam following a similar law initially.

Rashomon set for two layer NN

Given a target function f(x),x € D = By(1). Denote Q4 to be the
parameter domain for the two-layer ReLU neural network class

1 n
Ho={h(x)Ih(x) = ~ D ao(w - x - b)), w e s g < A, I < 1)
j=1
The Rashomon set R.(f) € Qx,

Re(f) := {(w}, &, b)) € Qi SLAIN(W), 8, by) = F()llL2(o) < ellfllLzoy)

Normalize the measure on Qy,, size of R.(f) characterizes the likelihood
that the loss is under certain threshold of relative error or how "easy” f
can be approximated by H,,.

Rashomon set for two layer NN

Theorem
Suppose f € C(D) such that there exists g € C2(D) that Ag = f, then

P(R) (1 - E)lef”Lz(D ()dH ()
) <exp|-————=—"1{, K::supf X _1(x).
2A2¢2 (w.b) JxeD,w-x=b} J o

Remark

> [f f oscillates with frequency v in all directions, then « ~ v=2

= P(R.) ~ exp(—O(v™*)), which makes the approximation of
oscillatory function difficult.

» Similar result holds for other bounded activation functions of the
form o-(w - x — b).

Key observations

n

1 < 1
x>=5j_z1a,-a<w,--x—b,-) = Ah(x) = - > ad(w;-x ~ b))

=

= 0o ang =13 X X=a f 9(x)dHa_1 ()
=

wj-x=bj

Xj are i.i.d in [-Ak, Ax], E[X]] = 0, k := sup(yp) dHg-1(x)

{xeD,w-x=b} g(X)

(1=€)°lifl
P[I1h—fllL2(p) < €llfllL2(py | <B[¢h, = (1-)||f||L2(D]<exp[—T2K2
by Hoeffding’s inequality
nt?
Sexp —m .

o(x) does not see oscillations well! (o, f) = f{xeo wex=b} A7f(x)dHg-1(x)

1 n
SEPRELEUE

Take home messages for two layer networks

» Strongly correlated global activation functions lead to ill-conditioning
of representation and slow learning dynamics for high frequencies.

Take home messages for two layer networks

» Strongly correlated global activation functions lead to ill-conditioning
of representation and slow learning dynamics for high frequencies.

> Using global activation functions can capture smooth structures with
sparse sampling = global in physical domain while local in
frequency domain.

Take home messages for two layer networks

» Strongly correlated global activation functions lead to ill-conditioning
of representation and slow learning dynamics for high frequencies.

> Using global activation functions can capture smooth structures with
sparse sampling = global in physical domain while local in
frequency domain.

» Using local activation functions can capture local and fine features
with large degrees of freedom and dense sampling = local in
physical domain while global in frequency domain.

Take home messages for two layer networks

Strongly correlated global activation functions lead to ill-conditioning
of representation and slow learning dynamics for high frequencies.

Using global activation functions can capture smooth structures with
sparse sampling = global in physical domain while local in
frequency domain.

Using local activation functions can capture local and fine features
with large degrees of freedom and dense sampling = local in
physical domain while global in frequency domain.

Approximation in problem specific transformed domain can help.

Take home messages for two layer networks

» Strongly correlated global activation functions lead to ill-conditioning
of representation and slow learning dynamics for high frequencies.

> Using global activation functions can capture smooth structures with
sparse sampling = global in physical domain while local in
frequency domain.

» Using local activation functions can capture local and fine features
with large degrees of freedom and dense sampling = local in
physical domain while global in frequency domain.

> Approximation in problem specific transformed domain can help.
Remark.
» Training highly adpative w’s and b’s is not effective.

> Training a’s with fixed random w, b to approximate smooth functions
is effective.

Take home messages for two layer networks

» Strongly correlated global activation functions lead to ill-conditioning
of representation and slow learning dynamics for high frequencies.

> Using global activation functions can capture smooth structures with
sparse sampling = global in physical domain while local in
frequency domain.

» Using local activation functions can capture local and fine features
with large degrees of freedom and dense sampling = local in
physical domain while global in frequency domain.

> Approximation in problem specific transformed domain can help.
Remark.
» Training highly adpative w’s and b’s is not effective.

> Training a’s with fixed random w, b to approximate smooth functions
is effective.

Reference:
Why Shallow Networks Struggle with Approximating and Learning High Frequency,

S. Zhang, H. Zhao, Y. Zhong and H. Zhou. arXiv:2306.17301, 2023.

Structured Decomposition and Approximation by
Multi-layer Networks

Using large deep over-parametrized black-box type of networks causes
difficulties in optimization, stability, and interpretation. The key idea is to
introduce structure and balance in the network based on

> representation of a complicated function by smooth
decomposition/transformation,

> multilayer network based on composition of structured and
balanced shallow networks,

= small network
= better accuracy and efficiency in terms of degrees of freedom and
more effective training dynamics.

Examples
Example 1: f(x) = e (19° " x e [-1,1].

8 xe[-1,-0.1]

9
fi(x)=1{ 9x x€[-0.1,0.1]

8 xe[0.4,1]

o 110(ox8)F x€[-1.-0.9]
fo(x) = e(‘8‘> x € [-0.9,0.9]

e [10(x-8)" x ¢ 10.9,1]

f(x)=fhofi(x) xe[-1,1]

Examples
Example 1: f(x) = e (1%)° x e [-1,1].

X8 xe[-1,-01]

fi(x)=1{ 9x x€[-0.1,0.1]

8 xe[0.4,1]

e [10Ox+8)F x e [-1.-0.9]
f(x) =4 e (&) x € [-0.9,0.9]

e [10(x-8)" x ¢ 10.9,1]
f(x)=fhofi(x) xe[-1,1]
Example2: f(x) = (cos(2n7rx) - 1)/2, x e [-1,1]

O — (cos(2nmx) - 1)/2 for x € [-1,0),
100 = X for x € [0, 1].

(x for x € [-1,0),
R(X) = {(cos(2nmx) — 1)/2 for x € [0, 1].

f(x)=fofi(x) xel[-1,1]

Mathematical formulation
1. divide: -1 = xp < xq <--- < X5 = 1, define

b; — a;

Yi(x) = si-ReLU (X — x;_1) — S; - ReLU (X — x;) + a;, S = x
i A1

Mathematical formulation

1. divide: -1 = xp < xq <--- < X5 = 1, define

Yi(x) = si-ReLU (X — x;_1) — S; - ReLU (X — x;) + a;, S =

b’ 1/—
a;

Zi-1 x;

2. and conquer (by scaling): £; : [a;, b]] = [xi-1, xi] a linear function.
fi=fo L;: [a, b] — Ris a smoother function which can be
approximated by one hidden layer network more easily.

n—

n 1

fx) = > frowi(x) = > f(x)
i=1 i=1

constant

Mathematical formulation
1. divide: -1 = xp < xq <--- < X5 = 1, define

b; — a;

Yi(x) =sj-ReLU(x — x;_1) — ;- ReLU(x — x;) + &, Si= o
i — Xi-1

b’ L/—
a;

Ti T;
2. and conquer (by scaling): £; : [a;, b]] = [xi-1, xi] a linear function.
fi=fo L;: [a, b] — Ris a smoother function which can be
approximated by one hidden layer network more easily.

n—

f(x) = Z fi o gri(x) — Z f(xi)

i=1
N
constant

Dividing + scaling + approximation of smooth function can be achieved by
composition of single layer networks!

Structured and balanced multi-layer networks
A single hidden layer network is viewed as a mapping: RY — R,

n
h(x) = Z ao(w;-x—b)+c, w,xeR%a,b,ceR.
j=1

Structured and balanced multi-layer networks
A single hidden layer network is viewed as a mapping: RY — R,

n
h(x) = Z ao(wj-x-b)+c, w,xeR%a,b,ceR.
j=1
Each layer | is composed of (rank) d; single layer networks,
n
hi(x) = Zai’,ja-(wj’. X — bj’) +c, i=12,....d, xeR%¥,
j=1

In matrix form, h'(x) = [h{(x), ..., h, (x)]" :R%" >R

h'=Alc(Wx +B)+¢/, Ale R W e R"™1 Bl e R" ¢! e RY.

g(w.u J-z+bil)

/, i,(wl[n 1 y+h,r[¥>
al)=u

¢ A, a) = o) = halw) = v oWy + 1) s
)
9) -+ bt
first shallow sub-network block hy second shallow sub-network block hy
Wi, by, A Wo, by, Ay,
. Wby Ao Ao Wiz i) e =hio) =y b b Aner A o(Wary+br) + = huly)
hy hy

Structured and balanced multi-layer networks
Multi-layer structure: h =h o---ohy o hy

h'=Aloc(Wx +B)+¢/, AleRPM W e R"™1 Bl e R" ¢! e RY.
Key features:

> The multi-layer network is composed of single layers through
channels (horizontally) and depth (vertically).

> Learning/optimizing A’ for each single layer network with random
(fixed) W', B, ¢! can approximate a smooth function effectively.

» Decomposition through channels and composition through depth is
effective in dealing with complicated features,

> Using ADAM optimization generates interesting learning dynamics.

Remark
Each layer of a standard fully connected network,

h'(x) = o(W'x + b') + ¢'.

W' is of dimension n; x ni_q > n; X di_y.

Experiments: learning adaptivity

f(x) = 1{x<0.02; - sin(507x) with 1000 uniformly sampled data.
Network: (width, rank, depth)=(10, 3, 5)

epoch 3000

—— true function

learned network

0.5

0.0

-0.5

epoch 10000

epoch 3500 epoch 4000
—— true function learned network —— true function learned network

1.0 10

05 0.5 i

0.0 —— 00 ‘ L—_
-05 “ -05

-1.0 -10

-10 -0.5 0.0 05 1.0 -1.0 -05 0.0 05 10

—— true function

learned network

0.0

0.5

FEM with the same number of d.o.f

—— true function FEM

1.0

0.5 .

[

0.0~ 1
-0.5
-1.0

-1.0 -0.5 0.0 0.5 1.0

Experiments: learning adaptivity

. 0 if 250 — 25r + 0.5 < 0, .
Target function: (o) ={ 1 250 -25r+05>1, p=0.1+0.02cos(x6?) With
50-5r+0.5 otherwise,

400 x 400 samples.
Network: (width, rank, depth)=(100, 10, 6)

original function NN approximation FEM with the same d.o.f.

NN error FEM error
10 1
o0se o264
003 o1se
05 05
o 002 o132
001z o060
F
. 00 00 o
o012 —ooes
o020 ~
00 10 —os Zos 0132
10 0% 019
004 0264
-10 —10!
2o o5 0o 05 10 2o o5 00 o5 10

Experiments

(300, 4, 5)
epoch 2

target function: f(x) = sin(167x)

NN: (width, depth, rank)

epoch 4

epoch 3

epoch 1

LA

W

epoch 30

AR

(AR

epoch 25

WAL
AR

AR

(BRIt

AT

A

epoch 20

AR

ARG

epoch 10

HHRAHRAYRRAAY

R P

LR

U

Experiments

target function: f(x) = sin(167]x|?)
NN: (width, depth, rank)=(300, 4, 5)

epoch 1 epoch 2 epoch 3 epoch 4

I}

T I —r TR

T TTERT T T YT

(VAU \
I \

J I
S i |

g

il
|

ool
-osq-{HHH u
00 075 050 025 o

epoch 30

001] L
cost U U os{-{HH U v —os U uv
700075 050 025 060 025 050 075 100 00 075 050 025 00 075 050 075 100 o0 075 030 025 000 025 050 075 1

epoch 10 epoch 20 epoch 25

0 025 050 o7 100

= =

TR REITII AN | TS
1) 11 G 1 A 11 A 0111
BN 11 R4 10 1T
ML UL R LY G LI |

NN: (width, depth, rank)=(500,5,3)

epoch 1

epoch 5

Experiments

epoch 2

epoch 6

10
08
05
04
02
0o

%0 o2 04 06 o088 10

epoch 10

epoch 3

10
o

o

0

02

S

epoch 7

10
o
os
0
02

epoch 30

epoch 4

10
os

os

o

o

s

epoch 8

Experiments

f(x1.x2) =2 X2 aj sin(bixi+cijxix;) cos(byx;+djxF)

0
03 02 2.4n
@)= [0.2 0.3] (b)) = [4.871'] g o
00]
02
481 48t 7.2rm
4‘87(] (d"-i)—[s.en 721" B
NN: (width, depth, rank)=(500,5,5)
epoch 2 epoch 4 epoch 8
S S =
g S S -
o . . o 04 o
-, - e
oo 0z o4 oo G5 20 oqonGz as ab o 1o " 040 0z 04 oo OB 1o o400z o4 oo g5 20
epoch 10 epoch 30 epoch 60 true function

© 02 o4 o6 08 10

0 - : - 0 o

06 ::: o1 06 ot

o - y e o i

0 o s i o o

%% oz o4 o6 o8 10 og) °% oz o1 o8 o8 10 7
a

Experiment

f(X1 R X2) = 21-2:1 21-2:1 ajj Sin(Sb,'Xi + SC,‘JX,'X]') COS(Sijj + Sd,‘,inz), s=23.
with 400 x 400 uniform data samples.
Network: (width, depth, rank)=(600, 15, 30).

original function original function error in MSE
0.06] .
o2 training error
034 N.t',l‘“ | 0.051 — test error
Ll A 1
036 1
|l 1A M
‘ i 4 I 0.04
Y et T |
(1]) ’ N \
000 T |k .
2 0o Mt | 1 J“, vk 0.03f
010 \
036 os MY / LA 0.0
'
050 i " 10
o L Y 05 0.01
o 05 Tyt ”
00 .
-0.90 y 05 05 0.00f
10 10 [0 200 400 600 800 1000
epoch 100 epoch 500 epoch 1000
10 oe7s 10 10,
- 0.540
05 = 0409 0.5 0162 05
0270 0108
0135 0,054
00 00 00
o000
o135 o054
-05 —0.270 05 -0.108 -05
o102
10 2 1 0540 10 “oae 104
2o %5 oo 05 10 2o -os 00 05 10 2o 65 oo o5 10

Specifity vs. generality

DA

v

v

v

\4

More questions for multi-layer networks

How to define the "complexity” of a function for neural networks?
How to characterize the approximation error and convergence?
How to adjust network rank, width, and depth automatically?

Understand the learning dynamics!

