
Numerical Understanding Of Neural Networks:
From Representation to Learning Dynamics

Hongkai Zhao
Duke University

Joint work with Shijung Zhang, Haomin Zhou and Yimin Zhong

Research partially supported by NSF DMS-2012860,
DMS-2309551.

Happy Birthday, Russ!

The goals and key ingredients in scientific computing

Approximate a mapping/function.

Key ingredients

I Representation: the starting point.

I Error (lost) function.

I Find the (optimal) solution.

The goals: efficiency, accuracy and stability.

I These goals and ingredients are entwined!

I Needs a holistic study and balanced approach in practice!

The goals and key ingredients in scientific computing

Approximate a mapping/function.

Key ingredients

I Representation: the starting point.

I Error (lost) function.

I Find the (optimal) solution.

The goals: efficiency, accuracy and stability.

I These goals and ingredients are entwined!

I Needs a holistic study and balanced approach in practice!

The goals and key ingredients in scientific computing

Approximate a mapping/function.

Key ingredients

I Representation: the starting point.

I Error (lost) function.

I Find the (optimal) solution.

The goals: efficiency, accuracy and stability.

I These goals and ingredients are entwined!

I Needs a holistic study and balanced approach in practice!

The goals and key ingredients in scientific computing

Approximate a mapping/function.

Key ingredients

I Representation: the starting point.

I Error (lost) function.

I Find the (optimal) solution.

The goals: efficiency, accuracy and stability.

I These goals and ingredients are entwined!

I Needs a holistic study and balanced approach in practice!

The goals and key ingredients in scientific computing

Approximate a mapping/function.

Key ingredients

I Representation: the starting point.

I Error (lost) function.

I Find the (optimal) solution.

The goals: efficiency, accuracy and stability.

I These goals and ingredients are entwined!

I Needs a holistic study and balanced approach in practice!

The goals and key ingredients in scientific computing

Approximate a mapping/function.

Key ingredients

I Representation: the starting point.

I Error (lost) function.

I Find the (optimal) solution.

The goals: efficiency, accuracy and stability.

I These goals and ingredients are entwined!

I Needs a holistic study and balanced approach in practice!

Least square approximation

General form: given a target function f(x), x ∈ D ⊂ Rd , and a chosen
parametrized representation h(x;α)

min
α

l(α) = ‖h(·;α) − f(·)‖2L2(D)

Basic numerical questions of practical importance:

I the best accuracy one can achieve given a finite machine precision,

I the computation cost to achieve a given accuracy,

I stability with respect to perturbations.

Least square approximation

General form: given a target function f(x), x ∈ D ⊂ Rd , and a chosen
parametrized representation h(x;α)

min
α

l(α) = ‖h(·;α) − f(·)‖2L2(D)

Basic numerical questions of practical importance:

I the best accuracy one can achieve given a finite machine precision,

I the computation cost to achieve a given accuracy,

I stability with respect to perturbations.

Least square approximation

Linear representation: given a target function f(x), x ∈ D ⊂ Rd , choose a
set of basis functions ψi(x), h(x;α) =

∑n
i=1 aiψi(x), α = (a1, . . . , an)T

min
α

l(α) = ‖
n∑

i=1

aiψi(·) − f(·)‖2L2(D)

⇒ α∗ = argminαl(α) = G†f,

G is Gram matrix, G(i, j) = 〈ψi , ψj〉D , f = (〈f , ψ1〉D , . . . , 〈f , ψn〉D)T .

I Important mathematical questions: V = span{ψ1, . . . , ψn}, dist(f ,V).

I Important numerical questions: G! G! G!

I spectral property of G,
I sparsity of G,
I computation cost of G, G†.
I choice of the basis is the key!

Least square approximation

Linear representation: given a target function f(x), x ∈ D ⊂ Rd , choose a
set of basis functions ψi(x), h(x;α) =

∑n
i=1 aiψi(x), α = (a1, . . . , an)T

min
α

l(α) = ‖
n∑

i=1

aiψi(·) − f(·)‖2L2(D)

⇒ α∗ = argminαl(α) = G†f,

G is Gram matrix, G(i, j) = 〈ψi , ψj〉D , f = (〈f , ψ1〉D , . . . , 〈f , ψn〉D)T .

I Important mathematical questions: V = span{ψ1, . . . , ψn}, dist(f ,V).

I Important numerical questions: G! G! G!

I spectral property of G,
I sparsity of G,
I computation cost of G, G†.
I choice of the basis is the key!

Least square approximation

Linear representation: given a target function f(x), x ∈ D ⊂ Rd , choose a
set of basis functions ψi(x), h(x;α) =

∑n
i=1 aiψi(x), α = (a1, . . . , an)T

min
α

l(α) = ‖
n∑

i=1

aiψi(·) − f(·)‖2L2(D)

⇒ α∗ = argminαl(α) = G†f,

G is Gram matrix, G(i, j) = 〈ψi , ψj〉D , f = (〈f , ψ1〉D , . . . , 〈f , ψn〉D)T .

I Important mathematical questions: V = span{ψ1, . . . , ψn}, dist(f ,V).

I Important numerical questions:

G! G! G!

I spectral property of G,
I sparsity of G,
I computation cost of G, G†.
I choice of the basis is the key!

Least square approximation

Linear representation: given a target function f(x), x ∈ D ⊂ Rd , choose a
set of basis functions ψi(x), h(x;α) =

∑n
i=1 aiψi(x), α = (a1, . . . , an)T

min
α

l(α) = ‖
n∑

i=1

aiψi(·) − f(·)‖2L2(D)

⇒ α∗ = argminαl(α) = G†f,

G is Gram matrix, G(i, j) = 〈ψi , ψj〉D , f = (〈f , ψ1〉D , . . . , 〈f , ψn〉D)T .

I Important mathematical questions: V = span{ψ1, . . . , ψn}, dist(f ,V).

I Important numerical questions: G!

G! G!

I spectral property of G,
I sparsity of G,
I computation cost of G, G†.
I choice of the basis is the key!

Least square approximation

Linear representation: given a target function f(x), x ∈ D ⊂ Rd , choose a
set of basis functions ψi(x), h(x;α) =

∑n
i=1 aiψi(x), α = (a1, . . . , an)T

min
α

l(α) = ‖
n∑

i=1

aiψi(·) − f(·)‖2L2(D)

⇒ α∗ = argminαl(α) = G†f,

G is Gram matrix, G(i, j) = 〈ψi , ψj〉D , f = (〈f , ψ1〉D , . . . , 〈f , ψn〉D)T .

I Important mathematical questions: V = span{ψ1, . . . , ψn}, dist(f ,V).

I Important numerical questions: G! G!

G!

I spectral property of G,
I sparsity of G,
I computation cost of G, G†.
I choice of the basis is the key!

Least square approximation

Linear representation: given a target function f(x), x ∈ D ⊂ Rd , choose a
set of basis functions ψi(x), h(x;α) =

∑n
i=1 aiψi(x), α = (a1, . . . , an)T

min
α

l(α) = ‖
n∑

i=1

aiψi(·) − f(·)‖2L2(D)

⇒ α∗ = argminαl(α) = G†f,

G is Gram matrix, G(i, j) = 〈ψi , ψj〉D , f = (〈f , ψ1〉D , . . . , 〈f , ψn〉D)T .

I Important mathematical questions: V = span{ψ1, . . . , ψn}, dist(f ,V).

I Important numerical questions: G! G! G!

I spectral property of G,
I sparsity of G,
I computation cost of G, G†.
I choice of the basis is the key!

Least square approximation

Linear representation: given a target function f(x), x ∈ D ⊂ Rd , choose a
set of basis functions ψi(x), h(x;α) =

∑n
i=1 aiψi(x), α = (a1, . . . , an)T

min
α

l(α) = ‖
n∑

i=1

aiψi(·) − f(·)‖2L2(D)

⇒ α∗ = argminαl(α) = G†f,

G is Gram matrix, G(i, j) = 〈ψi , ψj〉D , f = (〈f , ψ1〉D , . . . , 〈f , ψn〉D)T .

I Important mathematical questions: V = span{ψ1, . . . , ψn}, dist(f ,V).

I Important numerical questions: G! G! G!

I spectral property of G,
I sparsity of G,
I computation cost of G, G†.

I choice of the basis is the key!

Least square approximation

Linear representation: given a target function f(x), x ∈ D ⊂ Rd , choose a
set of basis functions ψi(x), h(x;α) =

∑n
i=1 aiψi(x), α = (a1, . . . , an)T

min
α

l(α) = ‖
n∑

i=1

aiψi(·) − f(·)‖2L2(D)

⇒ α∗ = argminαl(α) = G†f,

G is Gram matrix, G(i, j) = 〈ψi , ψj〉D , f = (〈f , ψ1〉D , . . . , 〈f , ψn〉D)T .

I Important mathematical questions: V = span{ψ1, . . . , ψn}, dist(f ,V).

I Important numerical questions: G! G! G!

I spectral property of G,
I sparsity of G,
I computation cost of G, G†.
I choice of the basis is the key!

Setup of neural networks (NN)
Two layer NN with reLU activation function σ(t) = max(0, t):

h(x) =
n∑

i=1

aiσ(wi · x − bi), x ∈ Rd .

We show

I ill-conditioning of the representation using global activation functions

I slow learning dynamics for high frequencies

I probabilistic characterization in parameter space

which imply

I a two layer NN using global activation function is a ”low pass filter”
in terms of representation and learning dynamics in practice

I numerical accuracy can be far from machine precision even if the
network width goes to infinity

I what difference activation functions make

I why oscillatory functions are difficult to approximate

Setup of neural networks (NN)
Two layer NN with reLU activation function σ(t) = max(0, t):

h(x) =
n∑

i=1

aiσ(wi · x − bi), x ∈ Rd .

We show

I ill-conditioning of the representation using global activation functions

I slow learning dynamics for high frequencies

I probabilistic characterization in parameter space

which imply

I a two layer NN using global activation function is a ”low pass filter”
in terms of representation and learning dynamics in practice

I numerical accuracy can be far from machine precision even if the
network width goes to infinity

I what difference activation functions make

I why oscillatory functions are difficult to approximate

Setup of neural networks (NN)
Two layer NN with reLU activation function σ(t) = max(0, t):

h(x) =
n∑

i=1

aiσ(wi · x − bi), x ∈ Rd .

We show

I ill-conditioning of the representation using global activation functions

I slow learning dynamics for high frequencies

I probabilistic characterization in parameter space

which imply

I a two layer NN using global activation function is a ”low pass filter”
in terms of representation and learning dynamics in practice

I numerical accuracy can be far from machine precision even if the
network width goes to infinity

I what difference activation functions make

I why oscillatory functions are difficult to approximate

Setup of neural networks (NN)
Two layer NN with reLU activation function σ(t) = max(0, t):

h(x) =
n∑

i=1

aiσ(wi · x − bi), x ∈ Rd .

We show

I ill-conditioning of the representation using global activation functions

I slow learning dynamics for high frequencies

I probabilistic characterization in parameter space

which imply

I a two layer NN using global activation function is a ”low pass filter”
in terms of representation and learning dynamics in practice

I numerical accuracy can be far from machine precision even if the
network width goes to infinity

I what difference activation functions make

I why oscillatory functions are difficult to approximate

Setup of neural networks (NN)
Two layer NN with reLU activation function σ(t) = max(0, t):

h(x) =
n∑

i=1

aiσ(wi · x − bi), x ∈ Rd .

We show

I ill-conditioning of the representation using global activation functions

I slow learning dynamics for high frequencies

I probabilistic characterization in parameter space

which imply

I a two layer NN using global activation function is a ”low pass filter”
in terms of representation and learning dynamics in practice

I numerical accuracy can be far from machine precision even if the
network width goes to infinity

I what difference activation functions make

I why oscillatory functions are difficult to approximate

Two layer NN in 1D

h(x) =
n∑

i=1

aiσ(x − bi), x, bi ∈ D = (−1, 1), ai ∈ R

Mathematically, span{σ(x−bi)}=span{P1 finite element basis}.

Numerically, the two sets of basis are very different!

I Finite element basis: local and almost orthogonal⇒ the Gram
matrix is sparse and well conditioned (cond = O(hmax

hmin
))⇒ capture

all frequencies resolved by the mesh well.

I ReLU basis: global and can be highly correlated⇒ the Gram matrix
is dense and has a fast spectral decay (ill-conditioned)⇒ only a
certain number (depending on the machine precision or noise) of
leading modes (low frequencies) can be captured stably in
numerical computation⇒ low pass filter.

Two layer NN in 1D

h(x) =
n∑

i=1

aiσ(x − bi), x, bi ∈ D = (−1, 1), ai ∈ R

Mathematically, span{σ(x−bi)}=span{P1 finite element basis}.
Numerically, the two sets of basis are very different!

I Finite element basis: local and almost orthogonal⇒ the Gram
matrix is sparse and well conditioned (cond = O(hmax

hmin
))⇒ capture

all frequencies resolved by the mesh well.

I ReLU basis: global and can be highly correlated⇒ the Gram matrix
is dense and has a fast spectral decay (ill-conditioned)⇒ only a
certain number (depending on the machine precision or noise) of
leading modes (low frequencies) can be captured stably in
numerical computation⇒ low pass filter.

Two layer NN in 1D

h(x) =
n∑

i=1

aiσ(x − bi), x, bi ∈ D = (−1, 1), ai ∈ R

Mathematically, span{σ(x−bi)}=span{P1 finite element basis}.
Numerically, the two sets of basis are very different!

I Finite element basis: local and almost orthogonal⇒ the Gram
matrix is sparse and well conditioned (cond = O(hmax

hmin
))⇒ capture

all frequencies resolved by the mesh well.

I ReLU basis: global and can be highly correlated⇒ the Gram matrix
is dense and has a fast spectral decay (ill-conditioned)⇒ only a
certain number (depending on the machine precision or noise) of
leading modes (low frequencies) can be captured stably in
numerical computation⇒ low pass filter.

Two layer NN in 1D

h(x) =
n∑

i=1

aiσ(x − bi), x, bi ∈ D = (−1, 1), ai ∈ R

Mathematically, span{σ(x−bi)}=span{P1 finite element basis}.
Numerically, the two sets of basis are very different!

I Finite element basis: local and almost orthogonal⇒ the Gram
matrix is sparse and well conditioned (cond = O(hmax

hmin
))⇒ capture

all frequencies resolved by the mesh well.

I ReLU basis: global and can be highly correlated⇒ the Gram matrix
is dense and has a fast spectral decay (ill-conditioned)⇒ only a
certain number (depending on the machine precision or noise) of
leading modes (low frequencies) can be captured stably in
numerical computation⇒ low pass filter.

Spectral analysis for the Gram matrix of ReLU basis: 1D
The corresponding continuous kernel

G(x,y)=

∫
D
σ(z−x)σ(z−y)dz =

1
12
|x−y |3+

1
12

(2−x−y)
(
2(1−x)(1−y)−(x−y)2

)
The Gram matrix is Gij = (G(bi , bj))1≤i,j≤n.

Lemma
The eigenvalues of G(x,y) in descending order are: µk = O(k−4). The
corresponding eigenfunctions φk (x) satisfies

φ
(4)
k (x)=µ−1

k φk (x), x ∈ (−1, 1), φk (1)=φ
(1)
k (1)=φ

(2)
k (−1)=φ

(3)
k (−1)=0.

φk ’s are a combination of exponential functions and Fourier modes,
which are asymptotically Fourier modes, from low to high frequencies.

Theorem
{bi}

n
i=1 are i.i.d distributed with probability density function ρ ∈ C3[−1, 1],

0 < c ≤ ρ(x) ≤ c̄ < ∞. With probability 1 − 1
n , the condition number

λ1/λn ≥ O(n3(log n)−1).

Spectral analysis for the Gram matrix of ReLU basis: Rd

ReLU basis in Rd : σ(w · x − b),w ∈ Sd−1, b ∈ R. Define

G((w, b), (w′, b ′))=

∫
D
σ(w · x − b)σ(w′ · x − b ′)dx.

Use ∂2
bσ(w ·x−b)=∆xσ(w ·x−b)=δ(w ·x−b), and Radon transform R,

Lemma
The eigenfunction satisfies λk∂

2
bφk = R∆−1R∗φk in weak sense.

(λ−1
k ,R∗φk) forms an eigen pair of the operator ∆−1R∗R∆−1 =cd(−∆)−

d+3
2 .

Theorem
Let λk be the eigenvalue of the kernel G. There are constants c1, c2 > 0,
depending on D and d, such that

c1k−(d+3)/d ≤ λk ≤ c2k−(d+3)/d .

I For σk , λk = O(k−(d+k+2)/d).

I For analytic activation function, the spectral decays even faster.

Low pass filter
Assume f(x) =

∫
V σ(w · x − b)h(w, b)dwdb ⇒ ∆f(x) = R∗h(w, b)

h(w, b) =
∞∑

k=1

αkφk (w, x) ⇒ f(x) =
∞∑

k=1

αk ∆−1R∗φk .

Key observations: R∗φk are eigenfunctions of ∆.

I For machine precision ε, Moore-Penrose pseudo-inverse (MATLAB)
maintains leading modes k ≤ m = Θ(ε−

d
2d+3) of h(w, b)⇒ a low

pass filter in the approximation of f(x).

I At most all eigenmodes of the Laplace operator up to frequency
O(ε−

1
2d+3) can be captured accurately and stably in d dimensions.

single precision ε=2−23: k1 ' 24, k2 ' 10, k3 ' 6.
double precision ε=2−52: k1 ' 1351, k2 ' 172, k3 ' 55, k10 = 5.

I numerical accuracy maybe far from machine precision for functions
with significant high frequency components even if the network
width goes to ∞.

I relative stable with respect to noise and over-parametrization.

Low pass filter
Assume f(x) =

∫
V σ(w · x − b)h(w, b)dwdb ⇒ ∆f(x) = R∗h(w, b)

h(w, b) =
∞∑

k=1

αkφk (w, x) ⇒ f(x) =
∞∑

k=1

αk ∆−1R∗φk .

Key observations: R∗φk are eigenfunctions of ∆.

I For machine precision ε, Moore-Penrose pseudo-inverse (MATLAB)
maintains leading modes k ≤ m = Θ(ε−

d
2d+3) of h(w, b)⇒ a low

pass filter in the approximation of f(x).

I At most all eigenmodes of the Laplace operator up to frequency
O(ε−

1
2d+3) can be captured accurately and stably in d dimensions.

single precision ε=2−23: k1 ' 24, k2 ' 10, k3 ' 6.
double precision ε=2−52: k1 ' 1351, k2 ' 172, k3 ' 55, k10 = 5.

I numerical accuracy maybe far from machine precision for functions
with significant high frequency components even if the network
width goes to ∞.

I relative stable with respect to noise and over-parametrization.

Low pass filter
Assume f(x) =

∫
V σ(w · x − b)h(w, b)dwdb ⇒ ∆f(x) = R∗h(w, b)

h(w, b) =
∞∑

k=1

αkφk (w, x) ⇒ f(x) =
∞∑

k=1

αk ∆−1R∗φk .

Key observations: R∗φk are eigenfunctions of ∆.

I For machine precision ε, Moore-Penrose pseudo-inverse (MATLAB)
maintains leading modes k ≤ m = Θ(ε−

d
2d+3) of h(w, b)⇒ a low

pass filter in the approximation of f(x).

I At most all eigenmodes of the Laplace operator up to frequency
O(ε−

1
2d+3) can be captured accurately and stably in d dimensions.

single precision ε=2−23: k1 ' 24, k2 ' 10, k3 ' 6.
double precision ε=2−52: k1 ' 1351, k2 ' 172, k3 ' 55, k10 = 5.

I numerical accuracy maybe far from machine precision for functions
with significant high frequency components even if the network
width goes to ∞.

I relative stable with respect to noise and over-parametrization.

Low pass filter
Assume f(x) =

∫
V σ(w · x − b)h(w, b)dwdb ⇒ ∆f(x) = R∗h(w, b)

h(w, b) =
∞∑

k=1

αkφk (w, x) ⇒ f(x) =
∞∑

k=1

αk ∆−1R∗φk .

Key observations: R∗φk are eigenfunctions of ∆.

I For machine precision ε, Moore-Penrose pseudo-inverse (MATLAB)
maintains leading modes k ≤ m = Θ(ε−

d
2d+3) of h(w, b)⇒ a low

pass filter in the approximation of f(x).

I At most all eigenmodes of the Laplace operator up to frequency
O(ε−

1
2d+3) can be captured accurately and stably in d dimensions.

single precision ε=2−23: k1 ' 24, k2 ' 10, k3 ' 6.
double precision ε=2−52: k1 ' 1351, k2 ' 172, k3 ' 55, k10 = 5.

I numerical accuracy maybe far from machine precision for functions
with significant high frequency components even if the network
width goes to ∞.

I relative stable with respect to noise and over-parametrization.

Approximation error

I small network: n ≤ O(ε−
d

2d+3).
The dominant error is due to discretization error:
h = O(n−

1
d) ≤ O(ε

1
2d+3). The piecewise approximation error

∼ n−
2
d ‖f‖H2 .

I large network: n > O(ε−
d

2d+3).
The dominant error is due to truncation error ∼ O(ε

p
2d+3 ‖f‖Hp).

Remark
Using a smoother activation function, the spectral decay is even faster. It
leads to larger truncation error for large networks but smaller
discretization error in small network regime.

Approximation error

I small network: n ≤ O(ε−
d

2d+3).
The dominant error is due to discretization error:
h = O(n−

1
d) ≤ O(ε

1
2d+3). The piecewise approximation error

∼ n−
2
d ‖f‖H2 .

I large network: n > O(ε−
d

2d+3).
The dominant error is due to truncation error ∼ O(ε

p
2d+3 ‖f‖Hp).

Remark
Using a smoother activation function, the spectral decay is even faster. It
leads to larger truncation error for large networks but smaller
discretization error in small network regime.

Numerical spectrum for Gram matrix (1D)

0.0 0.5 1.0 1.5 2.0

−8

−6

−4

−2

0

2
(

log10 k, log10 λk
)

(
log10 k,−4 log10 k

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

−12

−10

−8

−6

−4

−2

0

2
(

log10 k, log10 λk
)

(
log10 k,−4 log10 k

)

(a) n=100 (uniform bias) (b) n=1000 (uniform bias)

0.0 0.5 1.0 1.5 2.0

−10

−8

−6

−4

−2

0

2 (
log10 k, log10 λk

)
(

log10 k,−4 log10 k
)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
−14

−12

−10

−8

−6

−4

−2

0

2 (
log10 k, log10 λk

)
(

log10 k,−4 log10 k
)

(a) n=100 (adaptive bias) (b) n=1000 (adaptive bias)

Numerical spectrum for Gram matrix (2D)

0.0 0.8 1.6 2.4 3.2 4.0

−12

−10

−8

−6

−4

−2

0

2

4
(

log10 k, log10 λk
)

(
log10 k,−2.5 log10 k

)

φ1 φ2 φ3 φ4

φ50 φ100 φ200 φ250

Numerical test
f(x)=cos(6πx)−sin(2πx), fj(x)= f(jx). E-value threshold: K =max{k :λk

λ1
≤η}.

f1(x)

−1.0 −0.5 0.0 0.5 1.0
−2

0

2

True function FEM (η = 10−r, r = 3, 6, 9)

−1.0 −0.5 0.0 0.5 1.0
−2

0

2

True function NN (η = 10−3)

−1.0 −0.5 0.0 0.5 1.0
−2

0

2

True function NN (η = 10−6)

−1.0 −0.5 0.0 0.5 1.0
−2

0

2

True function NN (η = 10−9)

f3(x)

−1.0 −0.5 0.0 0.5 1.0
−2

0

2

True function FEM (η = 10−r, r = 3, 6, 9)

−1.0 −0.5 0.0 0.5 1.0
−2

0

2

True function NN (η = 10−3)

−1.0 −0.5 0.0 0.5 1.0
−2

0

2

True function NN (η = 10−6)

−1.0 −0.5 0.0 0.5 1.0
−2

0

2

True function NN (η = 10−9)

f9(x)

−1.0 −0.5 0.0 0.5 1.0
−2

0

2

True function FEM (η = 10−r, r = 3, 6, 9)

−1.0 −0.5 0.0 0.5 1.0
−2

0

2

True function NN (η = 10−3)

−1.0 −0.5 0.0 0.5 1.0
−2

0

2

True function NN (η = 10−6)

−1.0 −0.5 0.0 0.5 1.0
−2

0

2

True function NN (η = 10−9)

Numerical test

Stability with respect to noise and over-parametrization

noise data

−1.0 −0.5 0.0 0.5 1.0

−2

−1

0

1

2
True function

FEM (η = 10−3)

−1.0 −0.5 0.0 0.5 1.0

−2

−1

0

1

2
True function

FEM (η = 10−6)

−1.0 −0.5 0.0 0.5 1.0
−2

−1

0

1

2
True function

NN (η = 10−3)

−1.0 −0.5 0.0 0.5 1.0
−2

−1

0

1

2
True function

NN (η = 10−6)

−1.0 −0.5 0.0 0.5 1.0
−2

−1

0

1

2
True function

NN (η = 10−9)

−1.0 −0.5 0.0 0.5 1.0
−2

−1

0

1

2
True function

NN (Adam1)

over-parametrization with 1000 samples and n = 1500

−1.0 −0.5 0.0 0.5 1.0
−2

−1

0

1

2
True function

FEM (η = 10−15)

−1.0 −0.5 0.0 0.5 1.0
−2

0

2
True function

NN (η = 10−15)

−1.0 −0.5 0.0 0.5 1.0
−2

0

2
True function

NN (Adam)

Adaptive vs uniform biases
Adaptive biases for f(x) = arctan(25x). Define F(x) =

∫ x
−1 |f

′(t)|dt
/ ∫ 1
−1 |f

′(t)|dt , F(bi) = (i − 1)/(n − 1).

Eigenmodes of λk for k = {1, 2, 3}, {4, 5, 6}, 30, 60 with n = 1000.

−1.0 −0.5 0.0 0.5 1.0

−1

0

1

2 λ1 λ2 λ3

−1.0 −0.5 0.0 0.5 1.0

−1

0

1

2 λ4 λ5 λ6

−1.0 −0.5 0.0 0.5 1.0

−1

0

1

λ30

−1.0 −0.5 0.0 0.5 1.0

−1

0

1

2 λ60

Uniformly distributed biases

−1.0 −0.5 0.0 0.5 1.0

−4

−2

0

2
λ1 λ2 λ3

−1.0 −0.5 0.0 0.5 1.0

−1

0

1

λ4 λ5 λ6

−1.0 −0.5 0.0 0.5 1.0

−1

0

1

λ30

−1.0 −0.5 0.0 0.5 1.0

−1

0

1

λ60

adaptively distributed biases

Projection of f on the eigenmodes

0 20 40 60 80 100
−4

−2

0

2

4

0 20 40 60 80 100

−2

0

2

0 200 400 600 800 1000

−1

0

1

0 200 400 600 800 1000

−0.5

0.0

0.5

uniform n = 100 adaptive n = 100 uniform n = 1000 adaptive n = 1000

Learning dynamics based on gradient flow: linear

Training two layer ReLU neural networks: h(x, t) =
∑n

i=1 ai(t)σ(wi · x − bi)
following the gradient flow of E(t) = 1

2‖h(x, t) − f(x)‖2L2(D)

da(t)
dt

= −Ga(t)+f, Gij =< σ(wi ·x−bi), σ(wj ·x−bj) >D , fi =< f(x), σ(wi ·x−bi) >D .

Let (λk ,gk) be the eigen pairs of G and define
âk (t) = aT (t)gk , f̂k = fT gk .

dâk (t)
dt

= −λk âk (t) + f̂k ⇒ âk (t) = (âk (0) −
f̂k
λk

)e−λk t +
f̂k
λk
.

I It takes at least t > λ−1
k for the k th mode to converge.

I Noise will come in eventually in the long run.

I Stopping time plays the role of regularization.

Learning dynamics based on gradient flow: linear

Training two layer ReLU neural networks: h(x, t) =
∑n

i=1 ai(t)σ(wi · x − bi)
following the gradient flow of E(t) = 1

2‖h(x, t) − f(x)‖2L2(D)

da(t)
dt

= −Ga(t)+f, Gij =< σ(wi ·x−bi), σ(wj ·x−bj) >D , fi =< f(x), σ(wi ·x−bi) >D .

Let (λk ,gk) be the eigen pairs of G and define
âk (t) = aT (t)gk , f̂k = fT gk .

dâk (t)
dt

= −λk âk (t) + f̂k ⇒ âk (t) = (âk (0) −
f̂k
λk

)e−λk t +
f̂k
λk
.

I It takes at least t > λ−1
k for the k th mode to converge.

I Noise will come in eventually in the long run.

I Stopping time plays the role of regularization.

Learning dynamics based on gradient flow: nonlinear

In general, training is the most challenging task for NN learning.

Gradient descent for two layer neural networks
h(x, t) =

∑n
i=1 ai(t)σ(x − bi(t))

E(t) =
1
2
‖h(x, t) − f(x)‖2D , D = (−1, 1)

dai

dt
= −

∫
D

(h(x, t)−f(x))σ(x−bi)dx
dbi

dt
= ai

∫
D

(h(x, t)−f(x))σ′(x−bi)dx.

Basic questions:

I can the training process obtain the optimal ai , bi?

I what is the training dynamics and cost?

Learning dynamics based on gradient flow: nonlinear

In general, training is the most challenging task for NN learning.
Gradient descent for two layer neural networks
h(x, t) =

∑n
i=1 ai(t)σ(x − bi(t))

E(t) =
1
2
‖h(x, t) − f(x)‖2D , D = (−1, 1)

dai

dt
= −

∫
D

(h(x, t)−f(x))σ(x−bi)dx
dbi

dt
= ai

∫
D

(h(x, t)−f(x))σ′(x−bi)dx.

Basic questions:

I can the training process obtain the optimal ai , bi?

I what is the training dynamics and cost?

Learning dynamics based on gradient flow: nonlinear

In general, training is the most challenging task for NN learning.
Gradient descent for two layer neural networks
h(x, t) =

∑n
i=1 ai(t)σ(x − bi(t))

E(t) =
1
2
‖h(x, t) − f(x)‖2D , D = (−1, 1)

dai

dt
= −

∫
D

(h(x, t)−f(x))σ(x−bi)dx
dbi

dt
= ai

∫
D

(h(x, t)−f(x))σ′(x−bi)dx.

Basic questions:

I can the training process obtain the optimal ai , bi?

I what is the training dynamics and cost?

Learning dynamics based on gradient flow: nonlinear

In general, training is the most challenging task for NN learning.
Gradient descent for two layer neural networks
h(x, t) =

∑n
i=1 ai(t)σ(x − bi(t))

E(t) =
1
2
‖h(x, t) − f(x)‖2D , D = (−1, 1)

dai

dt
= −

∫
D

(h(x, t)−f(x))σ(x−bi)dx
dbi

dt
= ai

∫
D

(h(x, t)−f(x))σ′(x−bi)dx.

Basic questions:

I can the training process obtain the optimal ai , bi?

I what is the training dynamics and cost?

Learning dynamics based on gradient flow: nonlinear
Learning high frequencies is slow!

Theorem
It takes at least O(m) time steps to get the initial error in (generalized)
Fourier mode m reduced by half.

Main difficulties for the proof:

I fully nonlinear and discrete.

I dounded domain.

Remark

1. The lower bound is not sharp.

2. With some mild conditions, the time step bound is O(m2).

3. With fixed biases, the time step bound is O(m4).

4. Smoother the activation function, the slower the training dynamics
for high frequency components.

5. Experiments suggest Adam following a similar law initially.

Learning dynamics based on gradient flow: nonlinear
Learning high frequencies is slow!

Theorem
It takes at least O(m) time steps to get the initial error in (generalized)
Fourier mode m reduced by half.

Main difficulties for the proof:

I fully nonlinear and discrete.

I dounded domain.

Remark

1. The lower bound is not sharp.

2. With some mild conditions, the time step bound is O(m2).

3. With fixed biases, the time step bound is O(m4).

4. Smoother the activation function, the slower the training dynamics
for high frequency components.

5. Experiments suggest Adam following a similar law initially.

Rashomon set for two layer NN

Given a target function f(x), x ∈ D = Bd(1). Denote QHn to be the
parameter domain for the two-layer ReLU neural network class

Hn = {h(x)|h(x) =
1
n

n∑
j=1

ajσ(wj · x − bj),wj ∈ S
d−1, |aj | ≤ A , |bj | ≤ 1}

The Rashomon set Rε(f) ⊂ QHn

Rε(f) := {(wj , aj , bj) ∈ QHn , s.t .‖h(·; wj , aj , bj) − f(·)‖L2(D) ≤ ε‖f‖L2(D)}

Normalize the measure on QHn , size of Rε(f) characterizes the likelihood
that the loss is under certain threshold of relative error or how ”easy” f
can be approximated by Hn.

Rashomon set for two layer NN

Theorem
Suppose f ∈ C(D) such that there exists g ∈ C2

0 (D) that ∆g = f , then

P(Rε) ≤ exp

−n(1 − ε)2‖f‖4L2(D)

2A2κ2

 , κ := sup
(w,b)

∫
x∈D,w·x=b}

g(x)dHd−1(x).

Remark
I If f oscillates with frequency ν in all directions, then κ ≈ ν−2

⇒ P(Rε) ∼ exp(−O(ν−4)), which makes the approximation of
oscillatory function difficult.

I Similar result holds for other bounded activation functions of the
form σ(w · x − b).

Key observations

h(x) =
1
n

n∑
j=1

ajσ(wj · x − bj) ⇒ ∆h(x) =
1
n

n∑
j=1

ajδ(wj · x − bj)

⇒ 〈h, f〉
∆g=f

= 〈∆h, g〉 =
1
n

n∑
j=1

Xj , Xj = aj

∫
wj ·x=bj

g(x)dHd−1(x)

Xj are i.i.d in [−Aκ,Aκ], E[Xj] = 0, κ := sup(w,b)

∫
{x∈D,w·x=b} g(x)dHd−1(x)

P
[
‖h−f‖L2(D)≤ε‖f‖L2(D)

]
≤P

[
〈h, f〉≥(1−ε)‖f‖2L2(D)

]
≤exp

−n(1−ε)2‖f‖4L2(D)

2A2κ2


by Hoeffding’s inequality

P

1
n

n∑
j=1

Xj − E[Xj] ≥ t

 ≤ exp

(
−

nt2

2A2κ2

)
.

σ(x) does not see oscillations well! 〈σ, f〉 =
∫
{x∈D,w·x=b}∆

−1f(x)dHd−1(x)

Take home messages for two layer networks

I Strongly correlated global activation functions lead to ill-conditioning
of representation and slow learning dynamics for high frequencies.

I Using global activation functions can capture smooth structures with
sparse sampling⇒ global in physical domain while local in
frequency domain.

I Using local activation functions can capture local and fine features
with large degrees of freedom and dense sampling⇒ local in
physical domain while global in frequency domain.

I Approximation in problem specific transformed domain can help.

Remark.

I Training highly adpative w ’s and b ’s is not effective.

I Training a’s with fixed random w, b to approximate smooth functions
is effective.

Reference:
Why Shallow Networks Struggle with Approximating and Learning High Frequency,

S. Zhang, H. Zhao, Y. Zhong and H. Zhou. arXiv:2306.17301, 2023.

Take home messages for two layer networks

I Strongly correlated global activation functions lead to ill-conditioning
of representation and slow learning dynamics for high frequencies.

I Using global activation functions can capture smooth structures with
sparse sampling⇒ global in physical domain while local in
frequency domain.

I Using local activation functions can capture local and fine features
with large degrees of freedom and dense sampling⇒ local in
physical domain while global in frequency domain.

I Approximation in problem specific transformed domain can help.

Remark.

I Training highly adpative w ’s and b ’s is not effective.

I Training a’s with fixed random w, b to approximate smooth functions
is effective.

Reference:
Why Shallow Networks Struggle with Approximating and Learning High Frequency,

S. Zhang, H. Zhao, Y. Zhong and H. Zhou. arXiv:2306.17301, 2023.

Take home messages for two layer networks

I Strongly correlated global activation functions lead to ill-conditioning
of representation and slow learning dynamics for high frequencies.

I Using global activation functions can capture smooth structures with
sparse sampling⇒ global in physical domain while local in
frequency domain.

I Using local activation functions can capture local and fine features
with large degrees of freedom and dense sampling⇒ local in
physical domain while global in frequency domain.

I Approximation in problem specific transformed domain can help.

Remark.

I Training highly adpative w ’s and b ’s is not effective.

I Training a’s with fixed random w, b to approximate smooth functions
is effective.

Reference:
Why Shallow Networks Struggle with Approximating and Learning High Frequency,

S. Zhang, H. Zhao, Y. Zhong and H. Zhou. arXiv:2306.17301, 2023.

Take home messages for two layer networks

I Strongly correlated global activation functions lead to ill-conditioning
of representation and slow learning dynamics for high frequencies.

I Using global activation functions can capture smooth structures with
sparse sampling⇒ global in physical domain while local in
frequency domain.

I Using local activation functions can capture local and fine features
with large degrees of freedom and dense sampling⇒ local in
physical domain while global in frequency domain.

I Approximation in problem specific transformed domain can help.

Remark.

I Training highly adpative w ’s and b ’s is not effective.

I Training a’s with fixed random w, b to approximate smooth functions
is effective.

Reference:
Why Shallow Networks Struggle with Approximating and Learning High Frequency,

S. Zhang, H. Zhao, Y. Zhong and H. Zhou. arXiv:2306.17301, 2023.

Take home messages for two layer networks

I Strongly correlated global activation functions lead to ill-conditioning
of representation and slow learning dynamics for high frequencies.

I Using global activation functions can capture smooth structures with
sparse sampling⇒ global in physical domain while local in
frequency domain.

I Using local activation functions can capture local and fine features
with large degrees of freedom and dense sampling⇒ local in
physical domain while global in frequency domain.

I Approximation in problem specific transformed domain can help.

Remark.

I Training highly adpative w ’s and b ’s is not effective.

I Training a’s with fixed random w, b to approximate smooth functions
is effective.

Reference:
Why Shallow Networks Struggle with Approximating and Learning High Frequency,

S. Zhang, H. Zhao, Y. Zhong and H. Zhou. arXiv:2306.17301, 2023.

Take home messages for two layer networks

I Strongly correlated global activation functions lead to ill-conditioning
of representation and slow learning dynamics for high frequencies.

I Using global activation functions can capture smooth structures with
sparse sampling⇒ global in physical domain while local in
frequency domain.

I Using local activation functions can capture local and fine features
with large degrees of freedom and dense sampling⇒ local in
physical domain while global in frequency domain.

I Approximation in problem specific transformed domain can help.

Remark.

I Training highly adpative w ’s and b ’s is not effective.

I Training a’s with fixed random w, b to approximate smooth functions
is effective.

Reference:
Why Shallow Networks Struggle with Approximating and Learning High Frequency,

S. Zhang, H. Zhao, Y. Zhong and H. Zhou. arXiv:2306.17301, 2023.

Structured Decomposition and Approximation by
Multi-layer Networks

Using large deep over-parametrized black-box type of networks causes
difficulties in optimization, stability, and interpretation. The key idea is to
introduce structure and balance in the network based on

I representation of a complicated function by smooth
decomposition/transformation,

I multilayer network based on composition of structured and
balanced shallow networks,

⇒ small network
⇒ better accuracy and efficiency in terms of degrees of freedom and
more effective training dynamics.

Examples
Example 1: f(x) = e−(10x)2

, x ∈ [−1, 1].

f1(x) =


x−8

9 x ∈ [−1,−0.1]
9x x ∈ [−0.1, 0.1]
x+8

9 x ∈ [0.1, 1]

f2(x) =


e−[10(9x+8)]2

x ∈ [−1. − 0.9]

e−(10x
9)2

x ∈ [−0.9, 0.9]

e−[10(9x−8)]2
x ∈ [0.9, 1]

f(x) = f2 ◦ f1(x) x ∈ [−1, 1]

Example2: f(x) =
(

cos(2nπx) − 1
)
/2, x ∈ [−1, 1]

f1(x) =


(

cos(2nπx) − 1
)
/2 for x ∈ [−1, 0),

x for x ∈ [0, 1].

f2(x) =

x for x ∈ [−1, 0),(
cos(2nπx) − 1

)
/2 for x ∈ [0, 1].

f(x) = f2 ◦ f1(x) x ∈ [−1, 1]

Examples
Example 1: f(x) = e−(10x)2

, x ∈ [−1, 1].

f1(x) =


x−8

9 x ∈ [−1,−0.1]
9x x ∈ [−0.1, 0.1]
x+8

9 x ∈ [0.1, 1]

f2(x) =


e−[10(9x+8)]2

x ∈ [−1. − 0.9]

e−(10x
9)2

x ∈ [−0.9, 0.9]

e−[10(9x−8)]2
x ∈ [0.9, 1]

f(x) = f2 ◦ f1(x) x ∈ [−1, 1]

Example2: f(x) =
(

cos(2nπx) − 1
)
/2, x ∈ [−1, 1]

f1(x) =


(

cos(2nπx) − 1
)
/2 for x ∈ [−1, 0),

x for x ∈ [0, 1].

f2(x) =

x for x ∈ [−1, 0),(
cos(2nπx) − 1

)
/2 for x ∈ [0, 1].

f(x) = f2 ◦ f1(x) x ∈ [−1, 1]

Mathematical formulation

1. divide: −1 = x0 < x1 < · · · < xn = 1, define

ψi(x) = si · ReLU (x − xi−1) − si · ReLU (x − xi) + ai , si =
bi − ai

xi − xi−1

xi−1 xi
ai

bi ψi(x)

2. and conquer (by scaling): Li : [ai , bi]→ [xi−1, xi] a linear function.
fi = f ◦ Li : [ai , bi]→ R is a smoother function which can be
approximated by one hidden layer network more easily.

f(x) =
n∑

i=1

fi ◦ ψi(x) −
n−1∑
i=1

f(xi)︸ ︷︷ ︸
constant

Dividing + scaling + approximation of smooth function can be achieved by
composition of single layer networks!

Mathematical formulation

1. divide: −1 = x0 < x1 < · · · < xn = 1, define

ψi(x) = si · ReLU (x − xi−1) − si · ReLU (x − xi) + ai , si =
bi − ai

xi − xi−1

xi−1 xi
ai

bi ψi(x)

2. and conquer (by scaling): Li : [ai , bi]→ [xi−1, xi] a linear function.
fi = f ◦ Li : [ai , bi]→ R is a smoother function which can be
approximated by one hidden layer network more easily.

f(x) =
n∑

i=1

fi ◦ ψi(x) −
n−1∑
i=1

f(xi)︸ ︷︷ ︸
constant

Dividing + scaling + approximation of smooth function can be achieved by
composition of single layer networks!

Mathematical formulation

1. divide: −1 = x0 < x1 < · · · < xn = 1, define

ψi(x) = si · ReLU (x − xi−1) − si · ReLU (x − xi) + ai , si =
bi − ai

xi − xi−1

xi−1 xi
ai

bi ψi(x)

2. and conquer (by scaling): Li : [ai , bi]→ [xi−1, xi] a linear function.
fi = f ◦ Li : [ai , bi]→ R is a smoother function which can be
approximated by one hidden layer network more easily.

f(x) =
n∑

i=1

fi ◦ ψi(x) −
n−1∑
i=1

f(xi)︸ ︷︷ ︸
constant

Dividing + scaling + approximation of smooth function can be achieved by
composition of single layer networks!

Structured and balanced multi-layer networks
A single hidden layer network is viewed as a mapping: Rd → R,

h(x) =
n∑

j=1

ajσ(wj · x − bj) + c, wj , x ∈ Rd , aj , bj , c ∈ R.

Each layer l is composed of (rank) dl single layer networks,

h l
i (x) =

nl∑
j=1

a l
i,jσ(wl

j · x − b l
j) + c l

i , i = 1, 2, . . . , dl , x ∈ Rdl−1 ,

In matrix form, hl(x)=[h l
1(x), . . . , h l

dl
(x)]T :Rdl−1→Rdl .

hl = Alσ(Wlx + Bl) + cl , Al ∈ Rdl×nl ,Wl ∈ Rnl×dl−1 ,Bl ∈ Rnl , cl ∈ Rdl .

x

x1

x2

ϱ
(
W1[1, :] · x+ b1[1]

)

ϱ
(
W1[2, :] · x+ b1[2]

)

ϱ
(
W1[3, :] · x+ b1[3]

)

ϱ
(
W1[4, :] · x+ b1[4]

)

A1 · ϱ
(
W1 · x+ b1

)
+ c1 =: h1(x) = y

A1[1, :] · ϱ
(
W1 · x+ b1

)
+ c1[1] =: y1

A1[2, :] · ϱ
(
W1 · x+ b1

)
+ c1[2] =: y2

ϱ
(
W2[1, :] · y + b2[1]

)

ϱ
(
W2[2, :] · y + b2[2]

)

ϱ
(
W2[3, :] · y + b2[3]

)

ϱ
(
W2[4, :] · y + b2[4]

)

A2 · ϱ
(
W2 · y + b2

)
+ c2 =: h2(y)

h(x) = h2 ◦ h1(x) = h2(y) = A2 · ϱ
(
W2 · y + b2

)
+ c2

W1, b1, A1, c1

h1

W2, b2, A2, c2

h2

W1, b1 W2, b2A1, c1 A2, c2

first shallow sub-network block h1 second shallow sub-network block h2

Structured and balanced multi-layer networks
A single hidden layer network is viewed as a mapping: Rd → R,

h(x) =
n∑

j=1

ajσ(wj · x − bj) + c, wj , x ∈ Rd , aj , bj , c ∈ R.

Each layer l is composed of (rank) dl single layer networks,

h l
i (x) =

nl∑
j=1

a l
i,jσ(wl

j · x − b l
j) + c l

i , i = 1, 2, . . . , dl , x ∈ Rdl−1 ,

In matrix form, hl(x)=[h l
1(x), . . . , h l

dl
(x)]T :Rdl−1→Rdl .

hl = Alσ(Wlx + Bl) + cl , Al ∈ Rdl×nl ,Wl ∈ Rnl×dl−1 ,Bl ∈ Rnl , cl ∈ Rdl .

x

x1

x2

ϱ
(
W1[1, :] · x+ b1[1]

)

ϱ
(
W1[2, :] · x+ b1[2]

)

ϱ
(
W1[3, :] · x+ b1[3]

)

ϱ
(
W1[4, :] · x+ b1[4]

)

A1 · ϱ
(
W1 · x+ b1

)
+ c1 =: h1(x) = y

A1[1, :] · ϱ
(
W1 · x+ b1

)
+ c1[1] =: y1

A1[2, :] · ϱ
(
W1 · x+ b1

)
+ c1[2] =: y2

ϱ
(
W2[1, :] · y + b2[1]

)

ϱ
(
W2[2, :] · y + b2[2]

)

ϱ
(
W2[3, :] · y + b2[3]

)

ϱ
(
W2[4, :] · y + b2[4]

)

A2 · ϱ
(
W2 · y + b2

)
+ c2 =: h2(y)

h(x) = h2 ◦ h1(x) = h2(y) = A2 · ϱ
(
W2 · y + b2

)
+ c2

W1, b1, A1, c1

h1

W2, b2, A2, c2

h2

W1, b1 W2, b2A1, c1 A2, c2

first shallow sub-network block h1 second shallow sub-network block h2

Structured and balanced multi-layer networks
Multi-layer structure: h = hL ◦ · · · ◦ h2 ◦ h1

hl = Alσ(Wlx + Bl) + cl , Al ∈ Rdl×nl ,Wl ∈ Rnl×dl−1 ,Bl ∈ Rnl , cl ∈ Rdl .

Key features:

I The multi-layer network is composed of single layers through
channels (horizontally) and depth (vertically).

I Learning/optimizing Al for each single layer network with random
(fixed) Wl ,Bl , cl can approximate a smooth function effectively.

I Decomposition through channels and composition through depth is
effective in dealing with complicated features,

I Using ADAM optimization generates interesting learning dynamics.

Remark
Each layer of a standard fully connected network,

hl(x) = σ(Wlx + bl) + cl .

Wl is of dimension nl × nl−1 � nl × dl−1.

Experiments: learning adaptivity
f(x) = 1{|x |<0.02} · sin(50πx) with 1000 uniformly sampled data.
Network: (width, rank, depth)=(10, 3, 5)

epoch 3000 epoch 3500 epoch 4000

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0
true function learned network

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0
true function learned network

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0
true function learned network

epoch 10000 FEM with the same number of d.o.f

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0
true function learned network

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0
true function FEM

Experiments: learning adaptivity
Target function: f(r , θ) =


0 if 25ρ − 25r + 0.5 ≤ 0,
1 if 25ρ − 25r + 0.5 ≥ 1,
5ρ − 5r + 0.5 otherwise,

ρ = 0.1 + 0.02 cos(πθ2) with

400 × 400 samples.
Network: (width, rank, depth)=(100, 10, 6)

original function NN approximation FEM with the same d.o.f.

original function NN error FEM error

Experiments

target function: f(x) = sin(16πx)
NN: (width, depth, rank)=(300, 4, 5)

epoch 1 epoch 2 epoch 3 epoch 4

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.0

0.5

0.0

0.5

1.0

true function learned NN

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.0

0.5

0.0

0.5

1.0

true function learned NN

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.0

0.5

0.0

0.5

1.0

true function learned NN

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.0

0.5

0.0

0.5

1.0

true function learned NN

epoch 10 epoch 20 epoch 25 epoch 30

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.0

0.5

0.0

0.5

1.0

true function learned NN

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.0

0.5

0.0

0.5

1.0

true function learned NN

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.0

0.5

0.0

0.5

1.0

true function learned NN

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.0

0.5

0.0

0.5

1.0

true function learned NN

Experiments

target function: f(x) = sin(16π|x |
3
2)

NN: (width, depth, rank)=(300, 4, 5)
epoch 1 epoch 2 epoch 3 epoch 4

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.0

0.5

0.0

0.5

1.0

true function learned NN

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.0

0.5

0.0

0.5

1.0

true function learned NN

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.0

0.5

0.0

0.5

1.0

true function learned NN

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.0

0.5

0.0

0.5

1.0

true function learned NN

epoch 10 epoch 20 epoch 25 epoch 30

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.0

0.5

0.0

0.5

1.0

true function learned NN

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.0

0.5

0.0

0.5

1.0

true function learned NN

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.0

0.5

0.0

0.5

1.0

true function learned NN

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.0

0.5

0.0

0.5

1.0

true function learned NN

Experiments
NN: (width, depth, rank)=(500,5,3)

epoch 1 epoch 2 epoch 3 epoch 4

epoch 5 epoch 6 epoch 7 epoch 8

epoch 9 epoch 10 epoch 30 true function

Experiments
f(x1 , x2)=

∑2
i=1

∑2
j=1aij sin(bi xi +ci,j xi xj) cos(bj xj +di,j x2

i)

(ai,j)=

[
0.3 0.2
0.2 0.3

]
(bi)=

[
2.4π
4.8π

]
,

(ci,j)=

[
2.4π 4.8π
9.6π 4.8π

]
(di,j)=

[
4.8π 7.2π
9.6π 7.2π

]
.

NN: (width, depth, rank)=(500,5,5)

]

epoch 2 epoch 4 epoch 6 epoch 8

epoch 10 epoch 30 epoch 60 true function

Experiment

f(x1, x2) =
∑2

i=1
∑2

j=1 aij sin(sbixi + sci,jxixj) cos(sbjxj + sdi,jx2
i), s = 3.

with 400 × 400 uniform data samples.
Network: (width, depth, rank)=(600, 15, 30).

original function original function error in MSE

0 200 400 600 800 1000

0.00

0.01

0.02

0.03

0.04

0.05

0.06
training error

test error

epoch 100 epoch 500 epoch 1000

Specifity vs. generality

More questions for multi-layer networks

I How to define the ”complexity” of a function for neural networks?

I How to characterize the approximation error and convergence?

I How to adjust network rank, width, and depth automatically?

I Understand the learning dynamics!

