
Adjoint Monte Carlo Methods for Kinetic Equation
Constrained Optimization

Yunan Yang
April 25, 2024

Department of Mathematics, Cornell University

• Caflisch, R., Silantyev, D. and Y., 2021. Adjoint DSMC for nonlinear Boltzmann equation constrained
optimization. Journal of Computational Physics.

• Y., Silantyev, D. and Caflisch, R., 2023. Adjoint DSMC for nonlinear spatially-homogeneous Boltzmann
equation with a general collision model. Journal of Computational Physics.

• Li, Q., Wang, L. and Y., 2023. Monte Carlo Gradient in Optimization Constrained by Radiative Transport
Equation. SIAM Journal on Numerical Analysis.

International Conference on Multiscale Modeling based on Physics and Data, IPAM

Collaborators

Russel Caflisch Denis Silantyev Qin Li Li Wang
(NYU) (Univ. of Colorado) (UW Madison) (UMN Twin Cities)

Happy Birthday to Russ!

1

Examples of Kinetic Equations

Nonlinear Boltzmann Equation for f (t, x, v)

∂tf + v · ∇xf =

∫
R3

∫
S2
q(v − v1, σ)

(
f (v′1)f (v′)− f (v1)f (v)

)
dσdv1

Radiative Transfer/Transport Equation (RTE) for f (t, x, v)

∂tf + v · ∇xf = σ(x)

(
1
|Ω|

∫
Ω

f (x, v)dv − f
)

Vlasov–Poisson Equation for f (t, x, v)∂tf + v · ∇xf − (H(x) +∇xVf) · ∇vf = 0
∆Vf = 1−

∫
f dv

Linear Fokker–Planck Equation (FPE) for f (t, x)

∂tf +∇ · (V(x) f) = ∇ · (D(x)∇f)

2

Example: Boltzmann Binary Equation


∂f
∂t

+ v · ∇xf = Q (f , f)
f (0, x, v) = f0 on Ω

f = f eq(ρb,ub, Tb) on ∂Ω

where
Q(f , f) =

∫
R3

∫
S2
q(v − v1, σ)

(
f (v′1)f (v′)− f (v1)f (v)

)
dσdv1,

and
v′ = 1/2(v + v1) + 1/2|v − v1|σ,
v′1 = 1/2(v + v1)− 1/2|v − v1|σ.

This is the “Eulerian” version of the forward problem.
3

Binary Collisions

v1 v

v′1

v′
v1 v

pre-collision velocities

v′1 v′
post-collision velocities

Elastic collision preserves mass, momentum and energy. Assume particles have
equal mass, then

v1 + v = v′1 + v′

|v1|2 + |v|2 = |v′1|2 + |v′|2

|v − v1| = |v′ − v′1| 4

Direct Simulation Monte Carlo (DSMC) Method

Due to splitting, the collision part is based on the spatially homogeneous setting.
∂f
∂t

= Q (f , f) ,
f (0, v) = f0.

Assume q(v − v1, σ) ≤ Σ [Pareschi-Russo, 1999]

∂f
∂t

=

∫∫
f ′f ′1qdσdv1 −

∫∫
�1qdσdv1

=

∫∫
f ′f ′1qdσdv1

real collision

+ f
∫∫

f1(Σ− q)dσdv1

virtual but non-real collision

−
∫∫

Σ�1dσdv1

non-virtual collsion, = µf , µ = 4πΣρ

.

If collision kernel q has a complicated form, we use rejection sampling to
sample q, while the rejected samples are e�ective samples of Σ− q.

5

Direct Simulation Monte Carlo (DSMC) Method for General Collision Kernel

1: Compute the initial velocity particles based on the initial condition, V0 = {v0
1 , . . . , v0

N}.
2: for k = 0 to M− 1 do
3: Given Vk, choose Nc =

⌈
∆tµN/2

⌉
velocity pairs (i`, i`1) uniformly without replacement. The

remaining N− 2Nc particles do not have a virtual (or real) collision and set vk+1
i = vki .

4: for ` = 1 to Nc do
5: Sample σk` uniformly over S2 and compute θk` = arccos(σk` · αk`) and qk` = q(|vki` − v

k
i`1
|, θk`).

6: Draw a random number ξk` from the uniform distribution U([0, 1]).
7: if ξk` ≤ qk`/Σ then
8: Perform real collision between vki` and vki`1

and obtain (vk+1
i`
, vk+1

i`1
) = (vki`

′
, vki`1

′
).

9: else
10: The virtual collision is not a real collision. Set (vk+1

i`
, vk+1

i`1
) = (vki` , v

k
i`1

).
11: end if
12: end for
13: end for

This is the “Lagrangian” version of the forward problem.

6

Direct Simulation Monte Carlo (DSMC) Method for General Collision Kernel

1: Compute the initial velocity particles based on the initial condition, V0 = {v0
1 , . . . , v0

N}.
2: for k = 0 to M− 1 do
3: Given Vk, choose Nc =

⌈
∆tµN/2

⌉
velocity pairs (i`, i`1) uniformly without replacement. The

remaining N− 2Nc particles do not have a virtual (or real) collision and set vk+1
i = vki .

4: for ` = 1 to Nc do
5: Sample σk` uniformly over S2 and compute θk` = arccos(σk` · αk`) and qk` = q(|vki` − v

k
i`1
|, θk`).

6: Draw a random number ξk` from the uniform distribution U([0, 1]).

7: if ξk` ≤ qk`/Σ then
8: Perform real collision between vki` and vki`1

and obtain (vk+1
i`
, vk+1

i`1
) = (vki`

′
, vki`1

′
).

9: else
10: The virtual collision is not a real collision. Set (vk+1

i`
, vk+1

i`1
) = (vki` , v

k
i`1

).
11: end if
12: end for
13: end for

This is the “Lagrangian” version of the forward problem.

6

Direct Simulation Monte Carlo (DSMC) Method for General Collision Kernel

1: Compute the initial velocity particles based on the initial condition, V0 = {v0
1 , . . . , v0

N}.
2: for k = 0 to M− 1 do
3: Given Vk, choose Nc =

⌈
∆tµN/2

⌉
velocity pairs (i`, i`1) uniformly without replacement. The

remaining N− 2Nc particles do not have a virtual (or real) collision and set vk+1
i = vki .

4: for ` = 1 to Nc do
5: Sample σk` uniformly over S2 and compute θk` = arccos(σk` · αk`) and qk` = q(|vki` − v

k
i`1
|, θk`).

6: Draw a random number ξk` from the uniform distribution U([0, 1]).
7: if ξk` ≤ qk`/Σ then
8: Perform real collision between vki` and vki`1

and obtain (vk+1
i`
, vk+1

i`1
) = (vki`

′
, vki`1

′
).

9: else
10: The virtual collision is not a real collision. Set (vk+1

i`
, vk+1

i`1
) = (vki` , v

k
i`1

).
11: end if
12: end for
13: end for

This is the “Lagrangian” version of the forward problem.
6

Common Frameworks for PDE-Constrained Optimization Problems

Optimize-then-Discretize (OTD) and Discretize-then-Optimize (DTO) approaches

the PDE-constrained
optimization problem

the continuous
optimality con-
dition and the

adjoint equation

a Lagrangian based
on the discretized

state equation

solve state and
adjoint equations

numerically

the discrete
optimality and the
adjoint equations

the gradient

optimize
OTD

discretize

approximate

discretize
DTO optimize

approximate

[Caflisch, R., Silantyev, D. and Y., 2021] 7

The DTO Approach

The constrained optimization becomes

min
m
J(f) =⇒ min

m
J
(
{(vki } , {x

k
i }
)
, i = 1, . . . ,N, k = 0, . . . ,M

subject to

h(f ,m) = 0 =⇒ h
(
{(vki } , {x

k
i } ,m

)
= 0 (the constraints for the particles)

That is, all random particles inherit the dependence on the target parameter m.

For gradient-based optimization (necessary for large-scale problems), we need
to di�erentiate all the random particles with respect to m !

8

The DTO Approach

The constrained optimization becomes

min
m
J(f) =⇒ min

m
J
(
{(vki } , {x

k
i }
)
, i = 1, . . . ,N, k = 0, . . . ,M

subject to

h(f ,m) = 0 =⇒ h
(
{(vki } , {x

k
i } ,m

)
= 0 (the constraints for the particles)

That is, all random particles inherit the dependence on the target parameter m.

For gradient-based optimization (necessary for large-scale problems), we need
to di�erentiate all the random particles with respect to m !

8

Monte Carlo Gradient

Here are a few common techniques to handle gradients of Monte Carlo Samples

• Pathwise Derivative Method/ the “the reparameterization trick” (LOTUS)

∂θ

∫
φ(x)dµ(x; θ) = ∂θ

∫
φ(F(x; θ))dπ(x) =

∫
∂θφ(F(x; θ))dπ(x)

if µ = F(x; θ)]π and φ is a test function.

• Likelihood Ratio Method (LRM) / Score Function Method

∂θ

∫
φ(x)ρ(x; θ)dx = ∂θ

∫
φ(x) log ρ(x; θ) ρ(x; θ)dx = Eρ [φ(x) ∂θ log ρ(x; θ)] .

• Coupling Method: run two correlated simulations and use their outcomes to
estimate the gradient
(e.g., fix the random seed, but not practical for large-scale optimization)

9

Monte Carlo Gradient

Here are a few common techniques to handle gradients of Monte Carlo Samples

• Pathwise Derivative Method/ the “the reparameterization trick” (LOTUS)

∂θ

∫
φ(x)dµ(x; θ) = ∂θ

∫
φ(F(x; θ))dπ(x) =

∫
∂θφ(F(x; θ))dπ(x)

if µ = F(x; θ)]π and φ is a test function.
• Likelihood Ratio Method (LRM) / Score Function Method

∂θ

∫
φ(x)ρ(x; θ)dx = ∂θ

∫
φ(x) log ρ(x; θ) ρ(x; θ)dx = Eρ [φ(x) ∂θ log ρ(x; θ)] .

• Coupling Method: run two correlated simulations and use their outcomes to
estimate the gradient
(e.g., fix the random seed, but not practical for large-scale optimization)

9

Monte Carlo Gradient

Here are a few common techniques to handle gradients of Monte Carlo Samples

• Pathwise Derivative Method/ the “the reparameterization trick” (LOTUS)

∂θ

∫
φ(x)dµ(x; θ) = ∂θ

∫
φ(F(x; θ))dπ(x) =

∫
∂θφ(F(x; θ))dπ(x)

if µ = F(x; θ)]π and φ is a test function.
• Likelihood Ratio Method (LRM) / Score Function Method

∂θ

∫
φ(x)ρ(x; θ)dx = ∂θ

∫
φ(x) log ρ(x; θ) ρ(x; θ)dx = Eρ [φ(x) ∂θ log ρ(x; θ)] .

• Coupling Method: run two correlated simulations and use their outcomes to
estimate the gradient
(e.g., fix the random seed, but not practical for large-scale optimization) 9

Example: Boltzmann Binary Collision

Recall the Boltzmann binary collision (α = v−v1
|v−v1| , σ = v′−v′1

|v′−v′1|
)(

v′

v′1

)
= A(σ, α)

(
v
v1

)
, A(σ, α) =

1
2

(
I+ σαT I− σαT

I− σαT I+ σαT

)
.

However, (v, v1, σ) is selected with rejection sampling. We cannot simply use

∂(v′, v′1)

∂(v, v1)
= A(σ, α) ,

(except for Maxwellian gas). It does not take into consideration that the event
(v, v1) collide with a probability depending on parameter .

How do we di�erentiate with respect to “rejection sampling”?!

10

Example: Boltzmann Binary Collision

Recall the Boltzmann binary collision (α = v−v1
|v−v1| , σ = v′−v′1

|v′−v′1|
)(

v′

v′1

)
= A(σ, α)

(
v
v1

)
, A(σ, α) =

1
2

(
I+ σαT I− σαT

I− σαT I+ σαT

)
.

However, (v, v1, σ) is selected with rejection sampling. We cannot simply use

∂(v′, v′1)

∂(v, v1)
= A(σ, α) ,

(except for Maxwellian gas). It does not take into consideration that the event
(v, v1) collide with a probability depending on parameter .

How do we di�erentiate with respect to “rejection sampling”?!
10

How to Di�erentiate Samples from Rejection Sampling

Consider that ξ ∼ U([0, 1]) and v′ =

C(v, v1), if ξ < q(v − v1, σ).

v, otherwise.

Instead of enforcing the relationship pointwisely

v′ = 1ξ<q(v−v1,σ) C(v, v1) +
(
1− 1ξ<q(v−v1,σ)

)
v ,

we enforce the collision relation weakly through expectation. ∀φ,

Ev′ [φ] =

∫
φ(v′)dv′ = qφ(C(v, v1)) + (1− q)φ(v) , q = q(v − v1, σ) .

The derivative of the above weak relation is
∂v (Ev′ [φ]) = ∂v (qφ(C(v, v1))) + ∂v ((1− q)φ(v))

= q ∂v (log qφ(C(v, v1))) + (1− q) ∂v (log (1− q)φ(v))

= Ev′ [(∂v log p) φ] , p = q (if ξ < q), p = 1− q (otherwise).

11

How to Di�erentiate Samples from Rejection Sampling

Consider that ξ ∼ U([0, 1]) and v′ =

C(v, v1), if ξ < q(v − v1, σ).

v, otherwise.

Instead of enforcing the relationship pointwisely

v′ = 1ξ<q(v−v1,σ) C(v, v1) +
(
1− 1ξ<q(v−v1,σ)

)
v ,

we enforce the collision relation weakly through expectation. ∀φ,

Ev′ [φ] =

∫
φ(v′)dv′ = qφ(C(v, v1)) + (1− q)φ(v) , q = q(v − v1, σ) .

The derivative of the above weak relation is
∂v (Ev′ [φ]) = ∂v (qφ(C(v, v1))) + ∂v ((1− q)φ(v))

= q ∂v (log qφ(C(v, v1))) + (1− q) ∂v (log (1− q)φ(v))

= Ev′ [(∂v log p) φ] , p = q (if ξ < q), p = 1− q (otherwise).

11

How to Di�erentiate Samples from Rejection Sampling

Consider that ξ ∼ U([0, 1]) and v′ =

C(v, v1), if ξ < q(v − v1, σ).

v, otherwise.

Instead of enforcing the relationship pointwisely

v′ = 1ξ<q(v−v1,σ) C(v, v1) +
(
1− 1ξ<q(v−v1,σ)

)
v ,

we enforce the collision relation weakly through expectation. ∀φ,

Ev′ [φ] =

∫
φ(v′)dv′ = qφ(C(v, v1)) + (1− q)φ(v) , q = q(v − v1, σ) .

The derivative of the above weak relation is
∂v (Ev′ [φ]) = ∂v (qφ(C(v, v1))) + ∂v ((1− q)φ(v))

= q ∂v (log qφ(C(v, v1))) + (1− q) ∂v (log (1− q)φ(v))

= Ev′ [(∂v log p) φ] , p = q (if ξ < q), p = 1− q (otherwise).

11

How to Di�erentiate Samples from Rejection Sampling

Consider that ξ ∼ U([0, 1]) and v′ =

C(v, v1), if ξ < q(v − v1, σ).

v, otherwise.

Instead of enforcing the relationship pointwisely

v′ = 1ξ<q(v−v1,σ) C(v, v1) +
(
1− 1ξ<q(v−v1,σ)

)
v ,

we enforce the collision relation weakly through expectation. ∀φ,

Ev′ [φ] =

∫
φ(v′)dv′ = qφ(C(v, v1)) + (1− q)φ(v) , q = q(v − v1, σ) .

The derivative of the above weak relation is
∂v (Ev′ [φ]) = ∂v (qφ(C(v, v1))) + ∂v ((1− q)φ(v))

= q ∂v (log qφ(C(v, v1))) + (1− q) ∂v (log (1− q)φ(v))

= Ev′ [(∂v log p) φ] , p = q (if ξ < q), p = 1− q (otherwise). 11

The Adjoint DSMC Algorithm for Gradient Calculation

1: Given final-time velocities from the forward DSMC, set γMi = 1
N∂vr(v

M
i) for all i.

2: for k = M− 1 to 0 do
3: Given {γk+1

1 , . . . ,γk+1
N } and collision parameters from the forward DSMC.

4: if vki ∈ Vk did not virtually collide at tk then
5: Set γki = γk+1

i .
6: else if vki , v

k
i1 ∈ Vk virtually collided at tk then

7: Set
(
γki
γki1

)
= Dki

(
γk+1
i

γk+1
i1

)
+ 1

N

(
r(vMi) + r(vMi1)

)∂ log hki
∂vki

∂ log hki
∂vki1

.

8: end if
9: end for

10: Compute the gradient ∇mJ =
∑N

i=1
∂v0

i
∂m · γ

0
i .

(Similar but simpler adjoint MC methods exists for RTE; see [Li-Wang-Y., 2023])

12

The Adjoint DSMC Algorithm for Gradient Calculation

1: Given final-time velocities from the forward DSMC, set γMi = 1
N∂vr(v

M
i) for all i.

2: for k = M− 1 to 0 do
3: Given {γk+1

1 , . . . ,γk+1
N } and collision parameters from the forward DSMC.

4: if vki ∈ Vk did not virtually collide at tk then
5: Set γki = γk+1

i .
6: else if vki , v

k
i1 ∈ Vk virtually collided at tk then

7: Set
(
γki
γki1

)
= Dki

(
γk+1
i

γk+1
i1

)
+ 1

N

(
r(vMi) + r(vMi1)

)∂ log hki
∂vki

∂ log hki
∂vki1

.

8: end if
9: end for

10: Compute the gradient ∇mJ =
∑N

i=1
∂v0

i
∂m · γ

0
i .

(Similar but simpler adjoint MC methods exists for RTE; see [Li-Wang-Y., 2023]) 12

Numerical Examples

General Collision Kernel

We consider the general collision kernel (both velocity- and angle-dependent)

q(v − v1, σ) ∼ (1 + cos θ)κ|v − v1|β , cos θ = σ · v − v1
|v − v1|

.

κ = 5, β = 1 and M = 20. Left: error compared with central-di�erence gradient. Right: standard
deviations for the central-di�erence gradient (blue) and the adjoint DSMC gradient (red).

13

Numerical Comparison (Memory, Error, Speed)

We compute the gradient numerically after the forward DSMC simulations
solving the Boltzmann equation (N = 106)∗∗∗:

1. finite di�erence method; (0.38s for one parameter∗)
2. adjoint DSMC method; (0.22 s)
3. particle method for the continuous adjoint eqn; (280 s)
4. direct discretization of the continuous adjoint eqn. (overnight)∗∗

∗Computational costs for #2, #3 and #4 are independent of the size of the unknowns, but untrue
for #1 — The beauty of the adjoint-state method.
∗∗This is a result of backward Euler scheme in time and Riemann sum for the RHS integral.
∗∗∗ More details in the paper [Caflisch, R., Silantyev, D. and Y., 2021]

14

Error vs. CPU Timing

101 102 103 104 105

CPU timing, sec

10-4

10-3

10-2

10-1

100
E

rr
o

r

Error in dm4
x
(t=2)/dT

x
0 vs. CPU timing

Forward DSMC + FD

Adjoint DSMC

DSMC-type scheme for adjoint eq.

Direct Integration

15

Summary (Adjoint Monte Carlo Method)

• The OTD approach:

1. The forward PDE MC solve produces trajectories
2. Solving the linear adjoint equation needs to be careful and consistent

• The DTO approach:

1. The forward PDE MC solve produces trajectories
2. Use the same randomness from the forward simulation and back-propagate

adjoint Monte Carlo particles γ (no more sampling!)

Some Remarks

• Both approaches only requires MC forward solve with sampling
• The adjoint MC method is always consistent with the forward MC solves.
• We can di�erentiate random processes
• Main contribution of this sequence of works:

Generalize adjoint-state method to di�erentiate random Monte Carlo particles

16

Summary (Adjoint Monte Carlo Method)

• The OTD approach:
1. The forward PDE MC solve produces trajectories

2. Solving the linear adjoint equation needs to be careful and consistent
• The DTO approach:

1. The forward PDE MC solve produces trajectories
2. Use the same randomness from the forward simulation and back-propagate

adjoint Monte Carlo particles γ (no more sampling!)

Some Remarks

• Both approaches only requires MC forward solve with sampling
• The adjoint MC method is always consistent with the forward MC solves.
• We can di�erentiate random processes
• Main contribution of this sequence of works:

Generalize adjoint-state method to di�erentiate random Monte Carlo particles

16

Summary (Adjoint Monte Carlo Method)

• The OTD approach:
1. The forward PDE MC solve produces trajectories
2. Solving the linear adjoint equation needs to be careful and consistent

• The DTO approach:

1. The forward PDE MC solve produces trajectories
2. Use the same randomness from the forward simulation and back-propagate

adjoint Monte Carlo particles γ (no more sampling!)

Some Remarks

• Both approaches only requires MC forward solve with sampling
• The adjoint MC method is always consistent with the forward MC solves.
• We can di�erentiate random processes
• Main contribution of this sequence of works:

Generalize adjoint-state method to di�erentiate random Monte Carlo particles

16

Summary (Adjoint Monte Carlo Method)

• The OTD approach:
1. The forward PDE MC solve produces trajectories
2. Solving the linear adjoint equation needs to be careful and consistent

• The DTO approach:

1. The forward PDE MC solve produces trajectories
2. Use the same randomness from the forward simulation and back-propagate

adjoint Monte Carlo particles γ (no more sampling!)

Some Remarks

• Both approaches only requires MC forward solve with sampling
• The adjoint MC method is always consistent with the forward MC solves.
• We can di�erentiate random processes
• Main contribution of this sequence of works:

Generalize adjoint-state method to di�erentiate random Monte Carlo particles

16

Summary (Adjoint Monte Carlo Method)

• The OTD approach:
1. The forward PDE MC solve produces trajectories
2. Solving the linear adjoint equation needs to be careful and consistent

• The DTO approach:
1. The forward PDE MC solve produces trajectories

2. Use the same randomness from the forward simulation and back-propagate
adjoint Monte Carlo particles γ (no more sampling!)

Some Remarks

• Both approaches only requires MC forward solve with sampling
• The adjoint MC method is always consistent with the forward MC solves.
• We can di�erentiate random processes
• Main contribution of this sequence of works:

Generalize adjoint-state method to di�erentiate random Monte Carlo particles

16

Summary (Adjoint Monte Carlo Method)

• The OTD approach:
1. The forward PDE MC solve produces trajectories
2. Solving the linear adjoint equation needs to be careful and consistent

• The DTO approach:
1. The forward PDE MC solve produces trajectories
2. Use the same randomness from the forward simulation and back-propagate

adjoint Monte Carlo particles γ (no more sampling!)

Some Remarks

• Both approaches only requires MC forward solve with sampling
• The adjoint MC method is always consistent with the forward MC solves.
• We can di�erentiate random processes
• Main contribution of this sequence of works:

Generalize adjoint-state method to di�erentiate random Monte Carlo particles

16

Summary (Adjoint Monte Carlo Method)

• The OTD approach:
1. The forward PDE MC solve produces trajectories
2. Solving the linear adjoint equation needs to be careful and consistent

• The DTO approach:
1. The forward PDE MC solve produces trajectories
2. Use the same randomness from the forward simulation and back-propagate

adjoint Monte Carlo particles γ (no more sampling!)

Some Remarks

• Both approaches only requires MC forward solve with sampling
• The adjoint MC method is always consistent with the forward MC solves.
• We can di�erentiate random processes
• Main contribution of this sequence of works:

Generalize adjoint-state method to di�erentiate random Monte Carlo particles

16

Summary (Adjoint Monte Carlo Method)

• The OTD approach:
1. The forward PDE MC solve produces trajectories
2. Solving the linear adjoint equation needs to be careful and consistent

• The DTO approach:
1. The forward PDE MC solve produces trajectories
2. Use the same randomness from the forward simulation and back-propagate

adjoint Monte Carlo particles γ (no more sampling!)

Some Remarks

• Both approaches only requires MC forward solve with sampling
• The adjoint MC method is always consistent with the forward MC solves.
• We can di�erentiate random processes
• Main contribution of this sequence of works:

Generalize adjoint-state method to di�erentiate random Monte Carlo particles 16

	Numerical Examples

