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Examples of Kinetic Equations

Nonlinear Boltzmann Equation for f (t, x, v)

∂tf + v · ∇xf =

∫
R3

∫
S2
q(v − v1, σ)

(
f (v′1)f (v′)− f (v1)f (v)

)
dσdv1

Radiative Transfer/Transport Equation (RTE) for f (t, x, v)

∂tf + v · ∇xf = σ(x)

(
1
|Ω|

∫
Ω

f (x, v)dv − f
)

Vlasov–Poisson Equation for f (t, x, v)∂tf + v · ∇xf − (H(x) +∇xVf ) · ∇vf = 0
∆Vf = 1−

∫
f dv

Linear Fokker–Planck Equation (FPE) for f (t, x)

∂tf +∇ · (V(x) f ) = ∇ · (D(x)∇f )
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Example: Boltzmann Binary Equation


∂f
∂t

+ v · ∇xf = Q (f , f )
f (0, x, v) = f0 on Ω

f = f eq(ρb,ub, Tb) on ∂Ω

where
Q(f , f ) =

∫
R3

∫
S2
q(v − v1, σ)

(
f (v′1)f (v′)− f (v1)f (v)

)
dσdv1,

and
v′ = 1/2(v + v1) + 1/2|v − v1|σ,
v′1 = 1/2(v + v1)− 1/2|v − v1|σ.

This is the “Eulerian” version of the forward problem.
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Binary Collisions

v1 v

v′1

v′
v1 v

pre-collision velocities

v′1 v′
post-collision velocities

Elastic collision preserves mass, momentum and energy. Assume particles have
equal mass, then

v1 + v = v′1 + v′

|v1|2 + |v|2 = |v′1|2 + |v′|2

|v − v1| = |v′ − v′1| 4



Direct Simulation Monte Carlo (DSMC) Method

Due to splitting, the collision part is based on the spatially homogeneous setting.
∂f
∂t

= Q (f , f ) ,
f (0, v) = f0.

Assume q(v − v1, σ) ≤ Σ [Pareschi-Russo, 1999]

∂f
∂t

=

∫∫
f ′f ′1qdσdv1 −

∫∫
�1qdσdv1

=

∫∫
f ′f ′1qdσdv1

real collision

+ f
∫∫

f1(Σ− q)dσdv1

virtual but non-real collision

−
∫∫

Σ�1dσdv1

non-virtual collsion, = µf , µ = 4πΣρ

.

If collision kernel q has a complicated form, we use rejection sampling to
sample q, while the rejected samples are e�ective samples of Σ− q.
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Direct Simulation Monte Carlo (DSMC) Method for General Collision Kernel

1: Compute the initial velocity particles based on the initial condition, V0 = {v0
1 , . . . , v0

N}.
2: for k = 0 to M− 1 do
3: Given Vk, choose Nc =

⌈
∆tµN/2

⌉
velocity pairs (i`, i`1 ) uniformly without replacement. The

remaining N− 2Nc particles do not have a virtual (or real) collision and set vk+1
i = vki .

4: for ` = 1 to Nc do
5: Sample σk` uniformly over S2 and compute θk` = arccos(σk` · αk`) and qk` = q(|vki` − v

k
i`1
|, θk`).

6: Draw a random number ξk` from the uniform distribution U([0, 1]).
7: if ξk` ≤ qk`/Σ then
8: Perform real collision between vki` and vki`1

and obtain (vk+1
i`
, vk+1

i`1
) = (vki`

′
, vki`1

′
).

9: else
10: The virtual collision is not a real collision. Set (vk+1

i`
, vk+1

i`1
) = (vki` , v

k
i`1

).
11: end if
12: end for
13: end for

This is the “Lagrangian” version of the forward problem.
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Common Frameworks for PDE-Constrained Optimization Problems

Optimize-then-Discretize (OTD) and Discretize-then-Optimize (DTO) approaches

the PDE-constrained
optimization problem

the continuous
optimality con-
dition and the

adjoint equation

a Lagrangian based
on the discretized

state equation

solve state and
adjoint equations

numerically

the discrete
optimality and the
adjoint equations

the gradient

optimize
OTD

discretize

approximate

discretize
DTO optimize

approximate

[Caflisch, R., Silantyev, D. and Y., 2021] 7



The DTO Approach

The constrained optimization becomes

min
m
J(f ) =⇒ min

m
J
(
{(vki } , {x

k
i }
)
, i = 1, . . . ,N, k = 0, . . . ,M

subject to

h(f ,m) = 0 =⇒ h
(
{(vki } , {x

k
i } ,m

)
= 0 (the constraints for the particles)

That is, all random particles inherit the dependence on the target parameter m.

For gradient-based optimization (necessary for large-scale problems), we need
to di�erentiate all the random particles with respect to m !
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Monte Carlo Gradient

Here are a few common techniques to handle gradients of Monte Carlo Samples

• Pathwise Derivative Method/ the “the reparameterization trick” (LOTUS)

∂θ

∫
φ(x)dµ(x; θ) = ∂θ

∫
φ(F(x; θ))dπ(x) =

∫
∂θφ(F(x; θ))dπ(x)

if µ = F(x; θ)]π and φ is a test function.

• Likelihood Ratio Method (LRM) / Score Function Method

∂θ

∫
φ(x)ρ(x; θ)dx = ∂θ

∫
φ(x) log ρ(x; θ) ρ(x; θ)dx = Eρ [φ(x) ∂θ log ρ(x; θ)] .

• Coupling Method: run two correlated simulations and use their outcomes to
estimate the gradient
(e.g., fix the random seed, but not practical for large-scale optimization)
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Example: Boltzmann Binary Collision

Recall the Boltzmann binary collision (α = v−v1
|v−v1| , σ = v′−v′1

|v′−v′1|
)(

v′

v′1

)
= A(σ, α)

(
v
v1

)
, A(σ, α) =

1
2

(
I+ σαT I− σαT

I− σαT I+ σαT

)
.

However, (v, v1, σ) is selected with rejection sampling. We cannot simply use

∂(v′, v′1)

∂(v, v1)
= A(σ, α) ,

(except for Maxwellian gas). It does not take into consideration that the event
(v, v1) collide with a probability depending on parameter .

How do we di�erentiate with respect to “rejection sampling”?!
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How to Di�erentiate Samples from Rejection Sampling

Consider that ξ ∼ U([0, 1]) and v′ =

C(v, v1), if ξ < q(v − v1, σ).

v, otherwise.

Instead of enforcing the relationship pointwisely

v′ = 1ξ<q(v−v1,σ) C(v, v1) +
(
1− 1ξ<q(v−v1,σ)

)
v ,

we enforce the collision relation weakly through expectation. ∀φ,

Ev′ [φ] =

∫
φ(v′)dv′ = qφ(C(v, v1)) + (1− q)φ(v) , q = q(v − v1, σ) .

The derivative of the above weak relation is
∂v (Ev′ [φ]) = ∂v (qφ(C(v, v1))) + ∂v ((1− q)φ(v))

= q ∂v (log qφ(C(v, v1))) + (1− q) ∂v (log (1− q)φ(v))

= Ev′ [(∂v log p) φ] , p = q (if ξ < q), p = 1− q (otherwise).
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The Adjoint DSMC Algorithm for Gradient Calculation

1: Given final-time velocities from the forward DSMC, set γMi = 1
N∂vr(v

M
i ) for all i.

2: for k = M− 1 to 0 do
3: Given {γk+1

1 , . . . ,γk+1
N } and collision parameters from the forward DSMC.

4: if vki ∈ Vk did not virtually collide at tk then
5: Set γki = γk+1

i .
6: else if vki , v

k
i1 ∈ Vk virtually collided at tk then

7: Set
(
γki
γki1

)
= Dki

(
γk+1
i

γk+1
i1

)
+ 1

N

(
r(vMi ) + r(vMi1 )

)∂ log hki
∂vki

∂ log hki
∂vki1

.

8: end if
9: end for

10: Compute the gradient ∇mJ =
∑N

i=1
∂v0

i
∂m · γ

0
i .

(Similar but simpler adjoint MC methods exists for RTE; see [Li-Wang-Y., 2023])

12



The Adjoint DSMC Algorithm for Gradient Calculation

1: Given final-time velocities from the forward DSMC, set γMi = 1
N∂vr(v

M
i ) for all i.

2: for k = M− 1 to 0 do
3: Given {γk+1

1 , . . . ,γk+1
N } and collision parameters from the forward DSMC.

4: if vki ∈ Vk did not virtually collide at tk then
5: Set γki = γk+1

i .
6: else if vki , v

k
i1 ∈ Vk virtually collided at tk then

7: Set
(
γki
γki1

)
= Dki

(
γk+1
i

γk+1
i1

)
+ 1

N

(
r(vMi ) + r(vMi1 )

)∂ log hki
∂vki

∂ log hki
∂vki1

.

8: end if
9: end for

10: Compute the gradient ∇mJ =
∑N

i=1
∂v0

i
∂m · γ

0
i .

(Similar but simpler adjoint MC methods exists for RTE; see [Li-Wang-Y., 2023]) 12



Numerical Examples



General Collision Kernel

We consider the general collision kernel (both velocity- and angle-dependent)

q(v − v1, σ) ∼ (1 + cos θ)κ|v − v1|β , cos θ = σ · v − v1
|v − v1|

.

κ = 5, β = 1 and M = 20. Left: error compared with central-di�erence gradient. Right: standard
deviations for the central-di�erence gradient (blue) and the adjoint DSMC gradient (red).

13



Numerical Comparison (Memory, Error, Speed)

We compute the gradient numerically after the forward DSMC simulations
solving the Boltzmann equation (N = 106)∗∗∗:

1. finite di�erence method; (0.38s for one parameter∗)
2. adjoint DSMC method; (0.22 s)
3. particle method for the continuous adjoint eqn; (280 s)
4. direct discretization of the continuous adjoint eqn. (overnight)∗∗

∗Computational costs for #2, #3 and #4 are independent of the size of the unknowns, but untrue
for #1 — The beauty of the adjoint-state method.
∗∗This is a result of backward Euler scheme in time and Riemann sum for the RHS integral.
∗∗∗ More details in the paper [Caflisch, R., Silantyev, D. and Y., 2021]
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Error vs. CPU Timing

101 102 103 104 105

CPU timing, sec

10-4

10-3

10-2

10-1

100
E

rr
o

r

Error in dm4
x
(t=2)/dT

x
0 vs. CPU timing

Forward DSMC + FD

Adjoint DSMC

DSMC-type scheme  for adjoint eq.

Direct Integration
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Summary (Adjoint Monte Carlo Method)

• The OTD approach:

1. The forward PDE MC solve produces trajectories
2. Solving the linear adjoint equation needs to be careful and consistent

• The DTO approach:

1. The forward PDE MC solve produces trajectories
2. Use the same randomness from the forward simulation and back-propagate

adjoint Monte Carlo particles γ (no more sampling!)

Some Remarks

• Both approaches only requires MC forward solve with sampling
• The adjoint MC method is always consistent with the forward MC solves.
• We can di�erentiate random processes
• Main contribution of this sequence of works:

Generalize adjoint-state method to di�erentiate random Monte Carlo particles
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