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Motivation

The 3D Navier-Stokes equations describe the motion of viscous fluid:

ut + (u · ∇)u = −∇p+ ν∆u, ∇ · u = 0. (1)

The special case of ν = 0 corresponds to the 3D Euler equations.
Define vorticity ω = ∇× u, then ω is governed by

ωt + (u · ∇)ω = ∇u · ω + ν∆ω. (2)

Note that ∇u is related to ω by a Riesz transform K: ∇u = K(ω), and
the nonocal vortex stretching term ∇u · ω is formally of the order ω2.

The cancellation between the transport and vortex stretching could
lead to dynamic depletion of nonlinearity, thus prevent blowup.
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A brief review for 3D Euler equations

(Beale-Kato-Majda criterion, 1984) A smooth solution

develops a singularity at T if and only if
∫ T

0 ‖ω(t)‖∞ dt =∞.

Geometry regularity of direction field of ω: Constantin,
Fefferman and Majda (1996). Let ω = |ω|ξ. The solution is
smooth if ‖u(t)‖L∞(Ωt) and

∫ t
0 ‖∇ξ‖2L∞(Ωτ )dτ are bounded.

Localized non-blow-up criteria, Deng-Hou-Yu (2005). Let Lt
be a vortex line segment around maximum vorticity. There is no
blowup if

∫ T
0 maxLt |u|dt <∞ and

∫
Lt

(|κ|+ |∇ · ξ|)ds <∞.

Elgindi (2021): 3D Euler singularity with Cα vorticity for
axisymmetric Euler with no swirl (uθ ≡ 0) and very small α.
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A brief review for the NSE

Global existence for small data (Leray, Ladyzhenskaya, Kato, etc).
If ‖u0‖Lp (p ≥ 3) or ‖u0‖L2‖∇u0‖L2 is small, then the 3D
Navier-Stokes equations have a globally smooth solution.

Non-blowup criteria due to G. Prodi 59, J. Serrin 63. A weak
solution u of the 3D Navier-Stokes equations is smooth on
[0, T ]× R3 provided that ‖u‖LqtLpx([0,T ]×R3) <∞ for some p, q

satisfying 3
p + 2

q ≤ 1 with 3 < p ≤ ∞ and 2 ≤ q <∞.

The critical case of p = 3, q =∞ was proved by L. Escauriaza, G.
Seregin, and V. Sverak in 2003.

Partial regularity theory (Caffarelli-Kohn-Nirenberg 82, F. Lin
98) For any suitable weak solution of the 3D Navier-Stokes
equations on an open set in space-time, the one-dimensional
Hausdorff measure of the associated singular set is zero.
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A brief review for the NSE – continued

For the axisymmetric Navier-Stokes equations,
Chen-Strain-Tsai-Yau (2007) and
Koch-Nadirashvili-Seregin-Sverak (2007) proved that if
|u(x, t)| ≤ C|T − t|−1/2 and |u(x, t)| ≤ C

r for r ≥ r0, then u is
regular up to T .

T. Tao (2014) introduced an averaged NSE in the Fourier space:

ut(x, t) + B̃(u, u) = ∆xu(x, t),

and showed that there exists a symmetric averaged bilinear
operator B̃ such that the solutions to the averaged NSE with a
divergence-free initial data u0 blow up in finite time.
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Stabilizing effect of advection (Hou-Li, CPAM 2008)

The 3D axisymmetric Euler (Hou-Li, 2008) can be reformulated as

u1,t + uru1,r + uzu1,z = 2u1ψ1,z,

ω1,t + urω1,r + uzω1,z = (u2
1)z,

−
[
∂2
r + 3

r∂r + ∂2
z

]
ψ1 = ω1, ur = −rψ1,z, u

z = 2ψ1 + rψ1,r,

for smooth initial data, where u1 = uθ/r, ω1 = ωθ/r, ψ1 = ψθ/r.

In [Hou-Li,2008], we studied the stabilizing effect of advection by
considering a class of initial data uθ0(r, z) = ru0(z), ωθ0(r, z) = rw0(z).

We constructed a Lyapunov function (u1,z)
2 + ω2

1 and showed that

((u1,z)
2 + ω2

1)t + (ur, uz) · ∇r,z((u1,z)
2 + ω2

1) = 0.

Advection cancels vortex stretching exactly, leading to global regularity.
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Review of numerical study of 3D Euler singularity

On the numerical search for the Euler singularity:

Grauer and Sideris (1991): first numerical study of axisymmetric
flows with swirl, blowup reported away from the axis;
Pumir and Siggia (1992): axisymmetric flows with swirl; blowup
reported away from the axis;
Kerr (1993): antiparallel vortex tubes; blowup reported;
E and Shu (1994): 2D Boussinesq; no blowup observed;
Boratav and Pelz (1994): viscous simulations using Kida’s
high-symmetry initial condition; blowup reported;
Grauer et al. (1998): perturbed vortex tube; blowup reported;
Hou and Li (2006): use Kerr’s two anti-parallel vortex tube initial
data; observed only double exponential growth of max vorticity.
Charles Doering (UMich), Bartosz Protas (McMaster) used
numerical optimization in space/time to search for potential blowup
of Navier-Stokes, maximum vorticity grows less than a factor of 2.
Wang-Lai-Gomez-Serrano-Buckmaster (2022), used PINN to
construct self-similar profiles of Hou-Luo blowup scenario.
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The 3D Euler blowup on the boundary, Luo-Hou 2014
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Figure: Vorticity kinematics of the 3D Euler singularity; solid: vortex lines;
straight dashed lines: axial flow; curved dash lines: vortical circulation.
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Applying the Ideas: Computing the Line Fitting
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Figure: Maximum vorticity ‖ω‖∞ and its inverse power-law fitting ĉ(T − t)−γ̂2

with γ2 = 2.4579, ω ∼ 1
(T−t)γ2

W
(

r−1,z
(T−t)cl

)
with cl ≈ 2.9215.
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Main Theorem for 2D Boussinesq and 3D Euler blowup, arXiv preprint, 2022

Theorem 1 (Chen-Hou, 2022, 2023). There is a family of smooth
initial data (θ0, ω0) with finite energy and boundary, such that the 2D
Boussinesq and 3D Euler equations develop a stable and nearly
self-similar finite time singularity.

Compared with the nonlinear Schrödinger equation or the
Keller-Segel system, we do not have an analytic ground state, Q.

Computer assistance is used to construct an approximate
self-similar profile W with a rigorously justified small residual
O(10−7) in some singularly weighted L∞ and C1/2 norm.

We also need computer assistance to obtain sharp upper bounds
for our stability constants involving singular integrals with
singular kernels, singular weights, and the approximate profile.
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The Dynamic Rescaling Formulation

Adding scaling terms to the 2D Boussinesq equation in R2
+:

ωτ+(cl(τ)x+u)·∇ω = θx1 +cω(τ)ω, θτ+(cl(τ)x+u)·∇θ = cθ(τ)θ.

The cl(τ)x · ∇ terms stretch the solutions in space.
The cω(τ)ω and cθ(τ)θ terms scale the solutions in amplitude.

Stretching cl(t)r∂r, cl(t)z∂z

Rescaling in Amplitude

cω(t)ω1, cu(t)u1

Using cθ(τ) = cl(τ)− 2cω(τ), the dynamic rescaling equations are
equivalent to the original Boussinesq up to rescaling.
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The Equivalence Relation for Dynamic Rescaling

Let θ(x, t), ω(x, t) be solutions to the original 2D Boussinesq system,

Cθ(τ)θ (Cl(τ)x, t(τ)) , Cω(τ)ω (Cl(τ)x, t(τ)) ,

are solutions to the dynamic rescaling equations, where

Cθ(τ) = e
∫ τ
0 cθ(s)ds, Cw(τ) = e

∫ τ
0 cω(s)ds, Cl(τ) = e

∫ τ
0 −cl(s)ds

and

t(τ) =

∫ τ

0
exp(

∫ s

0
cω(y)dy)ds.

Remark 1: if cω(τ)→ cω < 0, t(+∞) = T < +∞ is the blowup time.

Remark 2: The dynamic rescaling formulation has been used by
McLaughlin, Papanicolaou, Merle, Raphael, Martel, Zaag and others.
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A general approach to nonlinear stability

Denote v = (ω, θ)T , and write the dynamic rescaling equations as

d

dτ
v = F (v).

Let v̄ be an approximate steady state of the dynamic rescaling
equations:

‖F (v̄)‖ = ε� 1.

Decompose the solution as v = v̄ + ṽ, then the equation for the
perturbation ṽ is

d

dτ
ṽ = F (v̄ + ṽ) = ∇F (v̄) ṽ︸ ︷︷ ︸

Linear:L(ṽ)

+ ṽT∇2F (v̄)ṽ︸ ︷︷ ︸
Nonlinear:N(ṽ)

+F (v̄).

Note that F is bilinear in our problem.
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A general approach to nonlinear stability

The perturbation solution ṽ can be written as

ṽ(τ) =

∫ τ

0
e(τ−s)L(N(ṽ) + F (v̄)

)
ds.

Assume that the linearized operator around the approximate
steady state enjoys certain stability with a suitable norm:

‖eτL‖ ≤ e−λτ , λ > 0,

and assume that the nonlinear term can be bounded as

‖N(ṽ)‖ ≤ C‖ṽ‖2.

Then we have

‖ṽ(τ)‖ ≤
∫ τ

0
e−λ(τ−s)(C‖ṽ(s)‖2 + ε) ds.
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A general approach to nonlinear stability

If 4εC < λ2, there exists some δ > 0 such that

Cδ2

λ
+
ε

λ
≤ δ.

Bootstrapping: suppose that ‖ṽ(s)‖ ≤ δ for all s ∈ [0, τ), then

‖ṽ(τ)‖ ≤
∫ τ

0
e−λ(τ−s)(Cδ2 + ε) ds <

Cδ2

λ
+
ε

λ
≤ δ,

which means that ‖ṽ(τ)‖ ≤ δ for all time given ‖ṽ(0)‖ ≤ δ.
The dynamic rescaling solution v(τ) = v̄ + ṽ(τ) will not escape a
norm ball of radius δ around the approximate steady state v̄.

We turn the problem of proving finite time singularity into the
problem of long time stability of an approximate blowup profile.
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Potential singularity of 3D Euler and 3D NSE, Hou-2022, JFoCM, 9/7/2022

We study potential singularity of the 3D axisymmetric Euler and
potentially singular behavior of the 3D Navier–Stokes equations:

ut + u · ∇u = −∇p+ ν∆u, ∇ · u = 0. (3)

Introduce a change of variables: u1 = uθ/r, ω1 = ωθ/r, and
ψ1 = ψθ/r. The equations (3) can be rewritten in an equivalent
form: 

u1,t + uru1,r + uzu1,z = 2u1ψ1,z + ν∆u1,
ω1,t + urω1,r + uzω1,z = 2u1u1,z + ν∆ω1,
−
(
∂2
r + 3

r∂r + ∂2
z

)
ψ1 = ω1,

ur = −rψ1,z, uz = 2ψ1 + rψ1,r.

(4)
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The axisymmetric formulation

Our smooth initial condition has a very simple form:

uθ(0, r, z) =
12000r(1− r2)18 sin(2πz)

1 + 12.5(sin(πz))2
, ωθ(0, r, z) = 0. (5)

An important feature of this initial data is that it produces nearly
self-similar scaling properties compatible with those of the NSE.

Our new initial condition shares several features with the two-scale
traveling wave singularity using variable diffusion coefficients
ν(r, z) = O(r2 + z2) with De Huang (Physica D, 2022, MMS, 2023).

However, the two-scale travel wave solution does not survive viscous
regularization since the small scale Z(t) ∼ (T − t) and R(t) ∼

√
T − t.

The maximum vorticity with ν = 10−5 increases less than a factor of 2.
The solution also suffers from tail instability.
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Dipole structure of ωθ
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The odd symmetry of ωθ (in z) induces a hyperbolic flow structure
and a vortex dipole, which generate a negative radial velocity field
and push the solution near z = 0 towards to symmetry axis r = 0.

Thomas Y. Hou Applied and Comput, Math.Caltech IPAM Workshop on Multiscale Modeling and Simulation in celebration of Russ Caflisch’s 70th birthday Supported by NSF and the Choi Family Gift FundApril 26, 2024 19 / 53



Rapid growth of maximum vorticity
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Left plot: the amplification of maximum vorticity relative to its initial
maximum vorticity, ‖ω(t)‖L∞/‖ω(0)‖L∞ as a function of time. Right

plot: the time integral of maximum vorticity,
∫ t
0
‖ω(s)‖L∞ds as a

function of time.
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A tornado singularity, a global view of 3D streamlines

Figure: The 3D streamlines of at time t = 0.00227648 with different initial
points. The 3D velocity field (ur, uz, uθ) is a tornado solution with a quiet
wind eye.
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A tornado singularity, a local view of 3D streamlines

Figure: The 3D streamlines of at time t = 0.00227648 with different initial
points. The 3D velocity field (ur, uz, uθ) is a tornado solution with a quiet
wind eye.
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Convergence study
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Relative error and numerical order of ‖ω(t)‖L∞ . The last time instant
shown in the figure is t = 0.00227648.
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Linear fitting of maximum vorticity and velocity
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The linear regression of (a) ‖ω(t)‖−1L∞ vs t, (b) ‖u(t)‖−2L∞ vs t. This
implies that ‖ω(t)‖L∞ ∼ 1

T−t and ‖u(t)‖L∞ ∼ 1
(T−t)1/2 . This suggests

that the vorticity blows up like ω ∼ 1
(T−t)Ω( (r−R(t),z−Z(t))

(T−t)1/2 , t).
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The potentially singular behavior of 3D NSE

Given that the scaling properties of the 3D Euler equations are
compatible with those of the 3D Navier-Stokes equations, it is
natural to investigate whether the Navier-Stokes equations with
the same initial condition would develop a singularity.

It turns out that the choice of the viscosity is important in
producing a nearly singular behavior of the NSE.

We will first use ν = 5 · 10−4 from t = 0 to t1 = 0.00227375, then
increase ν to 5 · 10−3 for t ≥ t1.

This relatively large viscosity enhances the nonlinear alignment of
vortex stretching, producing a relative long stable phase of strong
nonlinear alignment and a nearly singular solution at the origin.
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Dipole structure of ω1
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The odd symmetry of ω1 (in z) induces a flow structure that has
the desirable property of pushing the solution near z = 0 towards
to symmetry axis r = 0.
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Rapid growth of maximum vorticity
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Left plot: the amplification of maximum vorticity relative to its initial
maximum vorticity, ‖ω(t)‖L∞/‖ω(0)‖L∞ as a function of time, growing
by a factor of 107. Right plot: the time integral of maximum vorticity,∫ t
0
‖ω(s)‖L∞ds as a function of time.
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Resolution study

(a): u1 in the whole physical coordinates r, z.

(b): u1 in the transformed coordinates (ρ, η).
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Linear fitting of maximum vorticity and velocity
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The linear regression of (a) log(‖ψ1z(t)‖L∞)‖ω(t)‖−1L∞ vs t, (b) ‖u(t)‖−2L∞

vs t. This implies that ‖ω(t)‖L∞ ∼ | log(T−t)|T−t and ‖u(t)‖L∞ ∼ 1
(T−t)1/2 .

We observe that Z(t) ∼ (T − t)1/2 with a logarithmic correction.
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Further evidence–continued
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Left subplot: ‖u‖
L4,8
loc

= (
∫ t

0 ‖u(s)‖8
L4
loc
ds)1/8. Right subplot: ‖u‖

L6,4
loc

.
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Nearly self-similar scaling properties – continued
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Left plot: Vortex stretching/diffusion. Right plot: Alignment between
ψ1,z and u1 at (R(τ), Z(τ)). We solve (u1)t + u · ∇u1 = 2ψ1,zu1 + ν∆u1

and (ω1)t + u · ∇ω1 = 2u1u1,z + ν∆ω1.
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Generalized Navier–Stokes equations with solution dependent viscosity

We consider a generalized axisymmetric Navier–Stokes equation in n
dimensions with n = 1 + 2R(t)/Z(t) and (R(t), Z(t)) = arg max(u1):

u1,t + uru1,r + uzu1,z = 2ψ1,zu1 + ν∆n+2u1

ω1,t + urω1,r + uzω1,z = (u2
1)z − (n− 3)ψ1,zω1 + ν∆n+2ω1

−∆n+2ψ1 = ω1, ∆n+2 = ∂2
r +

n

r
∂r + ∂2

z ,

where ur = −(rn−2ψθ)z/r
n−2, uz = (rn−2ψθ)r/r

n−2. It satisfies a
generalized incompressibility condition (rn−2ur)r + (rn−2uz)z = 0, the
conservation of total circulation Γ = ruθ, and the energy conservation

d

dt

∫
|u|2rn−2drdz = −ν

∫
|∇u|2rn−2drdz.
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Generalized Boussinesq system with 2 constant viscosity coefficients

We also consider a generalized axisymmetric Boussinesq system in n
dimensions by treating Γ as density and removing (n− 3)ψ1,zω1:

Γt + urΓr + uzΓz = ν1

(
Γrr +

(n− 4)

r
Γr +

(6− 2n)

r2
Γ + Γzz

)
, (6a)

ω1,t + urω1,r + uzω1,z =

(
Γ2

r4

)
z

+ ν2

(
ω1,rr +

n

r
ω1,r + ω1,zz

)
, (6b)

−
(
∂2
r +

n

r
∂r + ∂2

z

)
ψ1 = ω1, (6c)

where ur = −(rm−2ψθ)z/r
m−2, uz = (rm−2ψθ)r/r

m−2, n = 2m− 3,
m = 1 + 2R(t)/Z(t). It satisfies the incompressibility condition
(rm−2ur)r + (rm−2uz)z = 0, the conservation of total circulation. If

n < 7, the energy
∫

(|uθ|2 + (7−n)
4 (|ur|2 + |uz|2)rn−2drdz is conserved.
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Nearly self-similar blowup via a novel two-scale dynamic rescaling formulation

In the case of ν1 = ν2 = ν0‖u1‖∞Z(t)2, we have νiCψ/Clz = ν0, and

ψ̃1, ũ1, ω̃1 satisfy the following dynamic rescaling equations

Γ̃τ + clrξΓ̃ξ + clzηΓ̃η + ũ · ∇(ξ,η)Γ̃ = cΓΓ̃ + ν0∆̃Γ̃,

ω̃1,τ + clrξω̃1,ξ + clzηω̃1,η + ũ · ∇(ξ,η)ω̃1 = cωω̃1 +

(
Γ̃2

ξ4

)
η

+ ν0∆ω̃,

−∆ψ̃1 = ω̃1, ∆ = −
(
δ2∂2

ξ + δ2n

ξ
∂ξ + ∂2

η

)
,

where δ = Clz(τ)/Clr(τ) and (clz, clr, cψ, cu, cω) satisfy the relationship

cψ = cu + clz, cω = cu − clz, cΓ = cu + 2clr = 2(clr − clz).

Thus, the self-similar profile satisfies the generalized Navier–Stokes
equations with constant viscosity ν0.
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Nearly self-similar blowup of generalized Navier-Stokes with vanishing viscosity

We take ν = ν0‖u1(t)‖∞Z(t)2 where (R(t), Z(t)) is where u1 achieves
its maximum and choose n = 1 + 2R(t)/Z(t) so that ur and uz scale
like (R(t)/Z(t))ψ1. We obtain a self-similar blowup with n ≈ 3.188:

ψ1(t, r, z) =
λ(t)

(T − t)1/2
Ψ1

(
τ,

r

λ(t)
√

(T − t)
,

z

λ(t)
√

(T − t)

)
,

u1(t, r, z) =
1

(T − t)V1

(
τ,

r

λ(t)
√

(T − t)
,

z

λ(t)
√

(T − t)

)
,

ω1(t, r, z) =
1

λ(t)(T − t)3/2
Ω1

(
τ,

r

λ(t)
√

(T − t)
,

z

λ(t)
√

(T − t)

)
,

where λ(t) = (T − t)0.023 and R(τ)/Z(τ)→ 1.09 as τ →∞.
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Self-similar blowup of the generalized Navier–Stokes with decaying viscosity
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Left plot: Growth of ‖ω(τ)‖L∞ in τ using 768× 768 vs 1024× 1024.
Right plot: Growth of

∫ τ
0 ‖ω̃(s)‖L∞ds in τ .
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Nearly self-similar blowup of generalized Navier-Stokes with vanishing viscosity

Left subplot: 3D plot of Γ̃ at τ = 185. Right subplot: 3D plot of ω̃1 at
τ = 185.
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Nearly self-similar blowup of generalized Navier-Stokes with decaying viscosity

Left subplot: Streamlines at τ = 185 with (r0, z0) = (4, 2). Right
subplot: Streamlines at τ = 185 with (r0, z0) = (6, 0.5).
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Nearly self-similar blowup of generalized Navier-Stokes with decaying viscosity
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The dipole structure of ω1 and the induced local velocity field at
τ = 185. Left plot: the velocity vector. Right plot: the velocity vector
with the ω1 contour as background.
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Nearly self-similar blowup of generalized Navier-Stokes with decaying viscosity
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Left plot: The ratio between vortex stretching and diffusion for ũ1 at
(R,Z) and for ω̃1 at (Rω, Zω). u1,t + u · ∇u1 = 2ψ1,zu1 + ν(t)∆u1,
ω1,t + u · ∇ω1 = (u2

1)z − (n− 3)ψ1,zω1 + ν(t)∆ω1. Right plot: The
dimension n(τ) = 1 + 2R(τ)/Z(τ) with n(185) = 3.188.
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Nearly self-similar blowup of generalized Navier-Stokes with vdecaying viscosity

Left plot: Contours of ũ1 at τ = 159, 172, 185 during which ‖ω‖∞ has
increased by 1029. Right plot: Contours of ω̃1 at τ = 159, 172, 185.
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Generalized Boussinesq system with 2 constant viscosity coefficients

By taking ν1 = 6× 10−4, ν2 = 10ν1, we obtain a new blowup scenario:

ψ1(t, r, z) =
λ(t)

(T − t)1/2
Ψ1

(
τ,

r

λ(t)
√

(T − t)
,

z

λ(t)
√

(T − t)

)
,

u1(t, r, z) =
1

(T − t)V1

(
τ,

r

λ(t)
√

(T − t)
,

z

λ(t)
√

(T − t)

)
,

ω1(t, r, z) =
1

λ(t)(T − t)3/2
Ω1

(
τ,

r

λ(t)
√

(T − t)
,

z

λ(t)
√

(T − t)

)
,

where λ(t) = (1 + ε| log(T − t)|)−1/2. We vary the dimension
continuously by modifying ur = −rψ1,z and uz = (m− 1)ψ1 + rψ1,r

with (m− 1) = 2R(t)/Z(t). ur and uz now scale like (R(t)/Z(t))ψ1.
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Generalized Boussinesq system with 2 constant viscosity coefficients
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Left plot: Growth of ‖ω(τ)‖L∞ in τ using 768× 768 vs 1024× 1024.
Right plot: Growth of

∫ τ
0 ‖ω̃(s)‖L∞ds in τ .
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Generalized Boussinesq system with 2 constant viscosity coefficients

Left subplot: 3D plot of Γ̃ at τ = 155. Right subplot: 3D plot of ω̃1 at
τ = 155.
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Generalized Boussinesq system with 2 constant viscosity coefficients
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Left plot: The normalized scaling exponent clz for Z(t) ∼ (T − t)clz
and clr for R(t) ∼ (T − t)clr in τ . Right plot: Cψ(τ)/Clz(τ) = 1/λ(τ)2 .
The almost linear growth in τ implies that clz and clr converge to 1/2
and λ = (1 + ετ)−1/2 = (1 + ε| log(T − t)|)−1/2.

Thomas Y. Hou Applied and Comput, Math.Caltech IPAM Workshop on Multiscale Modeling and Simulation in celebration of Russ Caflisch’s 70th birthday Supported by NSF and the Choi Family Gift FundApril 26, 2024 45 / 53



Generalized Boussinesq system with 2 constant viscosity coefficients
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Left plot: The ratio between vortex stretching and diffusion for ω̃1.
Right plot: Contours of ω̃1 with respect to ((ξ−Rω)λ(τ), (η−Zω)λ(τ))
at τ = 139, 147, 155 during which ‖ω‖∞ has increased by 1554.
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Generalized Boussinesq system with 2 constant viscosity coefficients
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Left plot: The dimension n(τ) = 3 + 4(R(τ)/Z(τ)− 1) with
n(155) = 4.73. Right plot: The ratio ψ̃1,η/ũ1 at (R(τ), Z(τ)).
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Generalized Boussinesq system with 2 constant viscosity coefficients
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Serrin-Prodi criteria n/p+ 2/q ≤ 1. Left plot:
∫ τ

0 ‖ũ(s)‖3L3nds in τ .

The linear fitting implies ‖u(τ)‖L3n,3 ∼ O(τ1/3). Right plot:∫ τ
0 ‖ũ(s)‖2L∞ds. The linear fitting implies ‖u(τ)‖L∞ ∼ O(τ1/2).

Thomas Y. Hou Applied and Comput, Math.Caltech IPAM Workshop on Multiscale Modeling and Simulation in celebration of Russ Caflisch’s 70th birthday Supported by NSF and the Choi Family Gift FundApril 26, 2024 48 / 53



Generalized Boussinesq system with 2 constant viscosity coefficients
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Left plot: The end point case with p = n, q =∞: ‖u‖Ln . Right plot:
‖| log(r)|3/2Γ(τ, r, z)‖L∞ in τ . Dongyi Wei (2017) showed that the
axisymmetric NSE cannot blowup if ‖| log(r)|3/2Γ(τ, r, z)‖r≤r0 ≤ 1.
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Solving Navier-Stokes using new initial data– continued
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Left plot: The dynamic growth of ‖rur‖L∞ as a function of τ . Right
plot: The dynamic growth of ‖ruz‖L∞ as a function of τ . This violates
the non-blowup criteria by Sverak (2007) et al and Yau et al (2007).
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Summary

Summary

We presented a new class of initial data that lead to a potentially
singular solution of the axisymmetric Euler at the origin.

An important feature of this potentially singular solution is that
the scaling properties are compatible with those of the NSE.

We demonstrated the potentially singular behavior of 3D
Navier-Stokes with maximum vorticity increased by a factor of 107.

We demonstrated a generalized Naveri–Stokes and a generalized
Boussinesq system with constant viscosity develops a nearly
self-similar blowup with maximum vorticity increased by 1030.

We used a novel two-scale dynamic rescaling formulation and a
conservative formulation to capture the logarithmic correction.
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Happy Birthday, Russ!
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