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Motivation

• Wave scattering in disordered media is an impediment for ap-

plications like imaging and free space communications.

• At distance ≲ scattering mean free path, the wave retains

coherence that can be enhanced by: filtering incoherent com-

ponents (optical coherence tomography, imaging in waveguides

with random boundary); correcting wavefront distortion (adap-

tive optics); coeherent interferometry (CINT).

• Beyond a few scattering mean free paths the wave is basically

incoherent and one uses radiative transfer or diffusion theories.

These do not account for wave interference between multiple

scattering paths that lead to phenomena like enhanced backscat-

tering a.k.a weak localization and also Anderson localization.
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Exploiting interference

• Experimentalists have been exploiting interference to enhance

wave transmission through strongly disordered media.

This requires accurate measurements of the complex wave-field

(frequency by frequency) to get the transmission matrix.

“Open channels” i.e., eigenvectors corresponding to eigenval-

ues ≈ 1 can be identified and used to deliver waves deep inside

strongly scattering media.

• Our motivation: Computations and experiments of Le Mans

group (Chéron, Félix, Pagneaux) show wave transmission en-

hancement in diffusive slabs (waveguides) and cavities filled with

random media that are symmetric about a wave barrier.
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What have we done?

“Enhanced wave transmission in random media with mirror sym-

metry” by L Borcea, J Garnier, preprint arXiv:2401.15757 to

appear in Proceedings of the Royal Society A

• We proved enhancement of the mean transmitted intensity in

two setups where the propagation is along a preferred direction:

1. Randomly layered media, where the problem is 1-D. We quan-

tify explicitly the effect in terms of the opacity of the barrier.

2. Random waveguides. The analysis is more complex due to

complicated expressions of the moments of the reflection and

transmission matrices for the propagating modes.
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Setup in randomly layered media

• One dimensional wave propagation along z− axis

[(
ρ(z) 0
0 K−1(z)

)
∂t +

(
0 1
1 0

)
∂z

](
u(t, z)
p(t, z)

)
= 0, t ∈ R, z ∈ R

• Medium contains barrier at |z| < d/2 and is modeled by density

ρ(z) =

{
ρ0 if |z| ≥ d/2,
ρ1 if |z| < d/2,

and bulk modulus

1

K(z)
=


1
K0

[
1+ 1[d/2,L](|z|)µ(|z|)

]
if |z| ≥ d/2,

1
K1

if |z| < d/2,

Wave speed is c(z) =
√
K(z)/ρ(z) and impedance ζ(z) = c(z)ρ(z)
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Formulation of problem

• Decomposition in forward/back going waves â and b̂ at |z| ≥ d/2

p(t, z) =
ζ
1/2
0

4π

∫
R
dω e−iωt

[
â(ω, z)eiω

z
co − b̂(ω, z)e−iω z

co

]

u(t, z) =
ζ
−1/2
0

4π

∫
R
dω e−iωt

[
â(ω, z)eiω

z
co + b̂(ω, z)e−iω z

co

]

• Goal: Analyze the transmitted wave T (ω) = â(ω,L)
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Model of the barrier

• From continuity of the pressure and velocity at z = ±d/2 ⇝

Lemma 1:

(
â(ω, d/2)
b̂(ω, d/2)

)
= P1(ω)

(
â(ω,−d/2)
b̂(ω,−d/2)

)
with propagator

matrix

P1(ω) =

(
α(ω) γ(ω)
γ(ω) α(ω)

)

where the bar denotes complex conjugate and

α(ω) =

[
cos

(
ωd

c1

)
+

i

2

(
ζ1
ζ0

+
ζ0
ζ1

)
sin

(
ωd

c1

)]
e−iωd/c0

γ(ω) =
i

2

(
ζ0
ζ1

−
ζ1
ζ0

)
sin

(
ωd

c1

)
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Model of the barrier

• Scattering matrix S1 maps incident waves to the outgoing ones

(
â(ω, d/2)
b̂(ω,−d/2)

)
= S1(ω)

(
â(ω,−d/2)
b̂(ω, d/2)

)

Its entries are the transmission and reflection coefficients

S1(ω) =

(
T1(ω) R1(ω)
R1(ω) T1(ω)

)
, R1(ω) = −

γ(ω)

α(ω)
, T1(ω) =

1

α(ω)

• Asymptotic regime

ζ0
ζ1

≫ 1 and
ωd

c1
≪ 1 s.t.

ζ0
ζ1

ωd

2c1
= q(ω) = O(1)

This gives: T1(ω) =
i

i+ q(ω)
and R1(ω) =

q(ω)

i+ q(ω)
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Propagation in right random section

• Propagator P+ defined by(
â(ω, z)
b̂(ω, z)

)
= P+(ω, z)

(
â(ω, d/2)
b̂(ω, d/2)

)
, z ∈

(
d/2, L

]

and equals I at z = d/2

• It is known that P+(ω, z) =

(
α+(ω, z) γ+(ω, z)
γ+(ω, z) α+(ω, z)

)
where

d

dz

(
α+(ω, z)
γ+(ω, z)

)
=

iω

2c0
µ(z)

(
1 −e−2iωz/c0

e2iωz/c0 −1

)(
α+(ω, z)
γ+(ω, z)

)

• It satisfies the energy conservation relation

∂z det[P+(ω, z)] = 0 ⇝ |α+(ω, z)|2 − |γ+(ω, z)|2 = 1.

9



Reflection and transmission coefficients for right section

• Schematic shows:

(
T+(ω)

0

)
= P+(ω,L)

(
1

R+(ω)

)
where

T+(ω) =
1

α+(ω,L)
, R+(ω) = −

γ+(ω,L)

α+(ω,L)

• Conservation of energy:

1 =
1

|α+(ω,L)|2
+

|γ+(ω,L)|2

|α+(ω,L)|2
= |T+(ω)|2 + |R+(ω)|2
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Adjoint setup - needed for mirror symmetry

• Schematic shows:

(
R̃+(ω)

1

)
= P+(ω,L)

(
0

T̃+(ω)

)
where

T̃+(ω) = T+(ω) =
1

α+(ω,L)
, R̃+(ω) =

γ+(ω,L)

α+(ω,L)

• Energy conservation

|T̃+(ω)|2 + |R̃+(ω)|2 = 1
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Reflection and transmission in random sections

Lemma 2: Scattering matrices of random sections defined by

(
â(ω,−d/2)
b̂(ω,−L)

)
= S−(ω)

(
â(ω,−L)
b̂(ω,−d/2)

)
and (

â(ω,L)
b̂(ω, d/2)

)
= S+(ω)

(
â(ω, d/2)
b̂(ω,L)

)

Their algebraic structure is

S±(ω) =

(
T±(ω) R̃±(ω)
R±(ω) T±(ω)

)
and due to the symmetry

T−(ω) = T+(ω), R−(ω) = R̃+(ω), R̃−(ω) = R+(ω).
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Transmission through the system

• Propagator P(ω) of the system satisfies

(
1

R(ω)

)
= P(ω)

(
T (ω)
0

)

• P(ω) = product of the propagators of the three sections

• We can solve for the transmission and reflection coefficients

We are interested in T (ω)
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Transmission through the system

Theorem:∗ The transmission coefficient of the system is

T (ω) = T2
+(ω)T1(ω)[1−R+(ω)]−1

[
1−

(
2R1(ω)− 1

)
R+(ω)

]−1

and the expression of the mean transmitted intensity is

E
[∣∣∣T (ω)

∣∣∣2] = ∞∑
k=0

τk(ω)E
[
|T+(ω)|4

(
1− |T+(ω)|2

)k]
,

where

τk(ω) =
1

4

∣∣∣1− (2R1(ω)− 1)k+1
∣∣∣2
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∗Proof uses Neumann series and known moment formulas



Interpretation of result

• For barrier: |2R1(ω)− 1| =
∣∣∣∣∣q(ω)− i

q(ω) + i

∣∣∣∣∣ = 1 ⇝ |τk(ω)| ≤ 1

This implies

E
[∣∣∣T (ω)

∣∣∣2] ≤ E

|T+(ω)|4
∞∑

k=0

(
1− |T+(ω)|2

)k = E
[
|T+(ω)|2

]

• This says that independent of the barrier, the mean transmitted

intensity cannot exceed that of a single random section

The latter depends on the covariance of the random fluctuations

µ(z), the distance L of propagation and the wavelength
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Moment formulas∗

• For any n ∈ N

E
[
|T+(ω)|2n

]
= exp

(
−

L

4Lloc(ω)

) ∫ ∞

0
e
− Ls2

Lloc(ω)
2πs sinh(πs)

cosh2(πs)
ϕn(s)ds

where

ϕ1(s) = 1, ϕn(s) =
n−1∏
j=1

s2 + (j − 1
2)

2

j2
, n ≥ 2,

and

1

Lloc(ω)
=

ω2

4c20

∫
R
E[µ(0)µ(z)]dz
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∗In strongly heterogeneous white-noise regime



Interpretation of result: Case of no barrier

• If R1(ω) = 0, coefficients τk = 0 for odd k and 1 for even k ⇝

E
[∣∣∣T (ω)

∣∣∣2] = E

|T+(ω)|4
∞∑

k=0

(
1− |T+(ω)|2

)2k
= E

[
|T+(ω)|2

2− |T+(ω)|2

]
< E

[
|T+(ω)|2

]

• Comparison with transmission through independent sections

(red dotted line) shows that symmetry helps
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Effect of barrier opacity

• If the random medium is weak (L ≪ Lloc) we can show that

E[|T (ω)|2] ≈ |T1(ω)|2
{
1+ 2

(
1− 2|T1(ω)|2

)
E[|R+(ω)|2]

}

where due to conservation, E[|R+(ω)|2] = 1− E[|T+(ω)|2]

• This is larger than |T1(ω)|2 if the barrier is opaque enough i.e.,

for |T1(ω)| < 1/
√
2.

Thus, we need strong enough scattering at the barrier to get the

useful interference due to the symmetry

• Conclusion extends to strong media (L > Lloc) where the ex-

pression of the mean intensity is more complicated
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Effect of barrier opacity - strong random media

|T1(ω)|2 = 0.4

|T1(ω)|2 = 0.1

Left plots: Mean transmitted intensity with symmetry (black)
and with independent media (red)

Right plots: Mean transmitted intensity for one random section
(dashed) and for barrier (dot-dash)
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Conclusion

• We analyzed a striking phenomenon of enhanced transmission

through a random system, that does not require any measure-

ments and wavefront shaping

• The enhancement is due entirely to constructive interference

between symmetric scattering processes

• Symmetric random systems do not arise naturally in applica-

tions, but they can be manufactured. In addition, they are quite

relevant when analyzing wave propagation in a half space with

reflecting boundary (method of images Gomez et al)
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