Tales of Rotating Convection

Robert Ecke Center for Nonlinear Studies Los Alamos National Laboratory

Structure of Universe

Black Holes

Air less dense

Water

more dense

less dense

Atmosphere/Ocean

more dense

Gravity - Stability

fresh water

salty water Geyer et al 2010

Archimedes 250 BC

Buoyancy

Less dense rises

More dense falls

Gravity - Instability

Hot air rises

fine**art** america

Thunderstorms

Thunderstorms: Lightning & Tornadoes

Atmospheric Circulation

Polar cell

Image/Text/Data from the University of Illinois WW2010 Project."

Coriolis Force: Effect of Rotation

Gravity + Instability + Rotation Weather & Climate

Earth Interior

Planetary Atmospheres

Magnetic field Earthquakes Volcanos

Other

Sun

Supernova

Henri Bénard 1900

Lord Rayleigh 1916

Model Experiment - Beginnings

THE LONDON, EDINBURGH, AND DUBLIN PHILOSOPHICAL MAGAZINE AND

JOURNAL OF SCIENCE.

[SIXTH SERIES]

DECEMBER 1916.

LIX. On Convection Currents in a Horizontal Layer of Fluid, when the Higher Temperature is on the Under Side. By Lord RAYLEIGH, O.M., F.R.S.*

Rayleigh-Bénard Convection

Non-Dimensional Numbers

Buoyancy resisted by drag and thermal diffusion

$F \sim \Delta \rho / \rho \sim \alpha \Delta T$ $v = \sqrt{gH\alpha\Delta T}$

Buoyancy

Time Scales $t_{drag} = H^2 / \nu$ $t_{diffusion} = H^2 / \kappa$

 $t_{buoyancy} = H/v = \sqrt{H/(g\alpha\Delta T)}$

 $Ra = (t_{drag} \ t_{diffusion})/t_{buoyancy}^2 = \frac{g\alpha \Delta TH^3}{\nu \kappa}$

 $Ra < Ra_c \approx 1700$ No motion

 $Ra > Ra_c$

motion

Fourier 1822 *Théorie analytique de la chaleur*

Heat Transport - Convection rocks!

- Makes radiant home heating possible.
- Makes the Earth livable and creates weather
- Generates the Earth's magnetic field
- Controls how fast water boils
- And so much more!

What does turbulent convection look like?

2D Convection: University of Muenster

thin boundary layer

Well Mixed Interior

thin boundary layer

Let's Rotate

No Rotation

Low Rotation

Lateral flow bends to the right

Veronis JFM 1959

High Rotation

Lateral separations shrink

Rotating flow vertical stiffness (Taylor-Proudman 1916) **Rapid Rotation** No Rotation **Top View** "Flow forced over an obstacle **Side View** goes around it in 3D." **Oblique View**

From SpinLabUCLA 2014 (Aurnou) YouTube

From Jon's House 1/23/2024

Rotating flow vertical stiffness

The laminations show how rotating flows sustain vertical stiffness

We'll have some real time demos for you in just a little while - they are fascinating. After my talk please stay around and try them for yourself.

Rotating flow vortex structures

From Jon's Lab 1/24/2024

Rotating flow boundaries matter

From Jon's Lab 1/24/2024

For a rapidly rotating flow, a small change in rotation rate pulls fluid out of the bulk (suction) into a thin layer (an Ekman layer).

Solid Surface

Ekman layer $\sim 1/\Omega^{1/2}$ ≈ 1 mm

Rotating Convection: New Numbers

Buoyancy time ~ Ra^{-1} $Ra \sim \Delta T H^3$

Rotation time Ekman Number $Ek = \frac{\nu}{2H^2\Omega}$

• Ro >>1 buoyancy wins

• Ro<<1 rotation wins

• Ek<<1 & Ro<<1 rapid rotation

Rotation time vs buoyancy time Rossby Number $Ro = \sqrt{Ra/Pr^*} Ek$

Prandtl Number $*Pr = \nu/\kappa$

It's demo time!

"Wheel of Fortune"

Rotating Convection: What happens where

- Rotation produces vertical stiffness and suppresses convection
- Bucket of water 12" high convects for $\Delta T > 0.0000001$ \bigcap
- Bucket of water 12" high rotating at 1 RPS convects for $\Delta T > 1 C$

1.5 cm spacing of rotating structures

100

Rotating Convection: Heat Transport

Two main regions of flow

Region of heat transport enhancement

What happens when $Ra \rightarrow \infty$ and $Ek \rightarrow 0?$

Rotating Convection: The extremes in nature

Earth's Outer Core

 $Ek \sim 10^{-15}$ Ra ~ 10^{25} <u>Jupiter</u>

 $Ek \sim 10^{-12}$

Ra ~ 10^{24}

Solar Convection $Ek \sim 10^{-12}$

Ra ~ 10^{20}

Mathematics to the rescue Keith Julien very rapid rotation Edgar Knobloch $Ek \rightarrow 0$ Many collaborators $\widetilde{Ra} = RaEk^{4/3} = A Ra_c$

very large buoyancy $Ra \rightarrow \infty$

Vertical stiffness ~ H

No Ekman layer

But does it work!?

Lateral Scale $Ek^{1/3} H \ll H$

No fast waves No non-rotating state

Cellular

Taylor Columns

Plumes Cheng 2020

Geostrophic Turbulence

Why do rotating flows make vortices

No Rotation

Rapid Rotation

How about Ekman layers Ekman layers matter for experiments and numerical simulation

Remember how change in Ω caused thin layer that pulled fluid from the bulk

works for differential rotation as well $w \sim Ek \ \omega_z \to 0$ but not very fast!

Why does this matter? It's the heat transport

• Ekman pumping having big effect

• Still running into crossover to nonrotating limit

Experiments and simulations are tall and thin

More buoyancy $Ra \sim H^3$ More rotation $Ek \sim H^{-2}$ Vortex spacing ~ H^{-2/3} H=4 m D = 0.4 mtank water ~ 1/2 ton

H=4 m D = 4 mtank water ~ 50 ton!

Are we happy yet? There is another important state that has been ignored: Wall Modes They appear at lower Ra than the bulk state and add to the heat transport Simulation Experiment

D/H = 10

Experiment

Kunnen J. Turb. 2021

Where are we now? ~2020

nature

Mantle Plastic

1200 km

Outer Core Liquid

ວ/Inner Core solid

Mathematical models help connect

??

 10^{-9}

Ecke & Shishkina Annu. Rev. Fluid Mech 2023

Dedicated to

Charlie Doering 1956-2021

Keith Julien 1965-2024