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A bit of history

J. Fluid Mech. (1969), vol. 36, part 2, pp. 309-335 309
Printed in Great Britain

A study of Bénard convection with and without rotation
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A bit of history
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Ficure 11. Lines of constant Nusselt number as a function of the Rayleigh and Taylor
numbers in water with Prandtl number 6-8. Except for small values of the Nusselt number
at large Taylor numbers the error in the Nusselt number is < +2 %,

10

Water
The dot-dashed line C-C in figure 11 is the marginal stability curve according
to Chandrasekhar (1961). We find excellent agreement between theory and
experiment for the critical Rayleigh number at all Taylor numbers less than
5x 10%; beyond this the fluid becomes unstable at lower Rayleigh numbers
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A bit of history

J.C. Buell and I. Catton, Effect of rotation on the stability of a bounded
cylindrical layer of fluid heated from below, Phys. Fluids 26, 892 (1983):

TABLE L Critical Rayleigh numbers R, X 10~ (and corresponding mode numbers #) as a function of Taylor number (D = Ta'/2) and aspect ratio (4 ) for
conducting walls."

b

A 0.2 0.25 0.35 0.5 0.7 1.0 1.5 20 P
N
00 151.2(1) 66.6(1) 213(1) 8.01(1) 435(1) 2.54(0) 201(0) 1.88(1) 171
50 151.2(1) 66.6(1) 21.4(1) 8.20(1) 4.71(1) 3.46(0) 3.04(1) 2912) 271
100 151.3(1) 66.8(1) 207(1) 8.77(1) 5.76(1) 5.09(2) 4.85(4) 4.90(3) 471
200 151.7(1) 67.4(1) 22.8(1) 109 (1) 9.51(1) 9.22(3) 9.48(4) 9.59(4) 9.80
400 153.2(1) 69.7(1) 27.2(1) 186 (1) 18.8 (2) 19.5 (3) 19.5 (4) 19.9 (4) 222
600 155.7(1) 73.501) 33.9(1) 295 (1) 305 2) 306 (3) 30.8 (4) 313 (4) 36.7
800 159.2(1) 78.7(1) 42.8(1) 425 (1) $30 (@) 426 (3) 430 (4) 437 (4) 531
1000 163.5(1) 85.2(1) 53.5(1) 553 (2) 556 (2) 55.5 (3) 56.1 (4) 57.0 (4) 711
1200 168.8(1) 92.9(1) 65.9(1) 692 (2) 688 (2) 6.2 (3) 69.9 (4) 710 (4) 90.7
1400 174.9(1) 101.7(1) 79.8(1) 83.7 (1) 829 (2) 83.4 (3) 84.4 (4) 857 (4) 117

*Only n<4 is considered here; higher n may be slightly more unstable for the higher aspect ratios.
®The last column(s) list Chandrasekhar’s results (Ref. 1).

Here A = R/H is the aspect ratio, while D = Tal/2 is the inverse Ekman number.

J.C. Buell and I. Catton, The effect of wall conduction on the stability of a
fluid in a right circular cylinder heated from below, J. Heat Transfer 105,
255 (1983), examined the effect of different radial boundary conditions in

the nonrotating case.
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Cylindrical domain: wall modes precess

the rotating frame at constant velocity.

Edgar Knobloch (UC Berkeley)

Zhong et al., PRL67 2473 (1991); Ecke et al., EPL 19, 177 (1992).

Fig. 4. - Shadowgraph image of the m = 5 state for 2 = 2145 and ¢ = 2.6. The entire pattern precesses in
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Linear theory: wall modes precess

Convection in a rotating cylinder. Part 1 591

F16uRE 2. A plot of @ (z =1) for an m = 5 fast mode at Q =500, ¢ = 7.0 in a I" = 1 cylinder,
for boundary conditions A. For this mode R = 35989.6, v = 26.884.

Goldstein et al., JFM 248, 583 (1993)
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Linear theory: wall modes precess

590 H. F. Goldstein, E. Knobloch, 1. Mercader and M. Net
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Linear theory: bulk modes also precess

m=21=184 m=5,T=4.39

The wall and bulk modes display very different behavior with respect to
the domain aspect ratio I':
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Wall modes in a cylinder: theory

To understand the properties of wall modes we employ polar coordinates
(r, ¢, z) and suppose that the wall mode has azimuthal wavenumber

m > 0, i.e. that the mode breaks the azimuthal invariance of the system.
Near onset we may write the temperature departure from the conduction
state in the form

0(r,¢,z,t) = R{am(t) exp(—ime) fm(r,z)} + ...,

where fi(r, z) is the eigenfunction of the mode m and ap, is its amplitude.
When the cylinder does not rotate and the boundary conditions are
¢-independent, the equation satisfied by a;, must commute with the
symmetries

rotations : O —=> o+ do: am — amexp(—imeo),
reflection : o= —0¢: am — am.

It follows that 4, = g(|am|?, €)am, where g is necessarily real. The
parameter ¢ = (Ra — Ra, )/Ra,, measures the distance from onset; Ra,,
also depends on the mode number m.
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Wall modes in a cylinder: theory

Near onset € < 1 and the function g may be expanded in a Taylor series:
am = cam + a|am|2am + ...

Writing ap, = Amexp(i®,) we see that the onset of a steady-state
instability is described by equations of the form

Am =cAm+aAd + .., o, = 0.

The latter is a consequence of neutral stability of the mode with respect to
rotations and shows that the bifurcation is a pitchfork of revolution.

Now suppose that the cylinder rotates with a small angular velocity 2.
The rotation breaks the reflection symmetry but not the rotation
symmetry. The coefficients consequently acquire nonzero imaginary parts:

am = (e +iQ0)am + (a + iQB)|am|am + . . .,

where ¢, §, a and 3 are all functions of Q2 and the mode number m.
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Wall modes in a cylinder: theory
In terms of the real variables we now have

Am:EAm+aA?n+...,

b= Q6+ BAL +...)

and conclude that the bifurcation leads to a precessing state of the form

0 = R{Amexpli(wgt — mo)| fm(r,z)} + ...

with drift frequency
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Cylindrical domain: o < 0.68, E=10"3 T =2

For stress-free top and bottom

: m =0 mode
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Goldstein et al., JFM 262, 293-324 (1994)
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Cylindrical domain: o < 0.68, E=10"3 T =2

For stress-free top and bottom: m = 1 mode
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Goldstein et al., JFM 262, 293-324 (1994)
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Cylindrical domain: wall modes for ¢ < 0.68, m # 0

E. Knobloch: Bifurcations in Rotating Systems 341

Bifurcations in rotating systems, in Lectures on Solar and Planetary Dynamos (M.R.E. Proctor and A.D. Gilbert, eds), pp

331-372 (1994)
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A bit more history: ¢ = 0.68, insulating wall

J. Herrmann and F.H. Busse, Asymptotic theory of wall-attached
convection in a rotating fluid layer, JFM 255, 183 (1993):

Rapu ~ 3(12/2)?2E~*3,  Rayay ~ 72(6V/3)/2E~!

as E — 0, while wy,y &= —59E /o is the asymptotic precession frequency.

M.C. Cross and E. Kuo, Traveling-wave wall states in rotating

Rayleigh-Bénard convection, PRE 47, R2245 (1993):
A A 2A
70 <?)t + sgx> = (1 +ico)A+ €3(1 + icl)gx2 —g(1+ic3)|APA

and calculated the coefficients for a planar wall of finite conductivity:

(a)

0.0

/ 1 10 10° 100 10°  10°
-0.5 Rotation Rate Q
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Cylindrical domain: wall modes vs bulk modes

ePr=08, T =1/2 [17-18] ePr=08 I'=1/2

APr=5.2,T = 1/5 [19] v Pr=1.0,T = 3/2 [22]
oPr=6.4,'=2,510[4,5,7] oPr=08 I'=1/2[12]
106 T

Buoyancy
dominated

Ecke et al., PR Fluids 7, L011501 (2022); cf. Goldstein et al., JFM 248, 583 (1993), Zhang et-al., JFM-915, A62 (2021)
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Boundary zonal flow and walls modes: I = 0.2
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FIGURE 5. Vertical velocity in the mid-plane z=10.5 in a I" =0.2 cylinder rotating at
E =107 with Pr=5.2 and (@) Ra=2 x 10° and (b) Ra =5 x 10'" (this latter case
can be compared with figure 2b of de Wit er al. (2020) at exactly the same parameters).
(c) Drift frequency —w, as a function of Ra. The theoretical value w; = w.~ —63E/Pr
predicted by Herrmann & Busse (1993) for the onset of the instability in the presence of
a planar wall is also reported (open circle). The oblique line corresponds to the scaling
wy~ —6 x 107'°Ra'"'°E reported in de Wit et al. (2020) and obtained at much larger Ra.

Favier and Knobloch, JFM 895, R1 (2020)
Zhang et al., JFM 915, AG2 (2021)

Edgar Knobloch (UC Berkeley) Geostrophic turbulence 29 January, 2025 17 /38



Wall modes: E =107°, ¢
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Midplane vertical velocity w (left) and fluctuating temperature 6 at r = 0.74

(right) at (a) Ra=5 x 107 and (b) Ra =2 x 108. In (b) Ra is reduced to
Ra =5 x 107 at the dashed line to demonstrate multistability.

Favier and Knobloch, JFM 895, R1 (2020)
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Robust wall flow: E=10°% c=1,T=1.5

Wall states persist in the presence of a turbulent bulk state in the interior:

0.74,

s
or

0 2000 4000 6000
Time (rotation units)

°
=1/2)

0.74, =

Time (rotation units)

Midplane vertical velocity w (left) and fluctuating temperature 6 (right) at (c)
Ra =5 x 108 and (d) Ra= 2 x 10°.

Favier and Knobloch, JFM 895, R1 (2020); Zhang et al., JEM 915, A62 (2021) . .
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Robust wall flow: E=10°% c=1,T=1.5

Wall states persist in the presence of a vertical barrier:

_
F N
A T

(a )l;,m. S / (b S (C)L.w,

FI1GURE 5. Vertical velocity in the mid-plane z = 0.5 for a cylinder with a barrier. The Rayleigh
number increases from left to right: (a) Ra =5 x 107, (b) Ra = 5 x 10° and (c) Ra = 2 x 10°.
Parameters are I' = 1.5, E = 107% and Pr = 1.

Favier and Knobloch, JFM 895, R1 (2020)
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Robust wall flow: E =107°, o
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FIGURE 6. Left: spatio-temporal plots showing the temperature fluctuation 6 at z = 0.5 and a
fixed distance § = 1072 from the boundary at Ra = 5x 107 (top panel) and Ra = 5x10% (bottom
panel). The vertical axis represents the arclength along the boundary while the horizontal axis
is time (in rotation units). The dotted lines indicate the positions of the four corners of the
barrier. Parameters are I' = 1.5, E = 107° and Pr = 1. Right: vertical and temporal average
of the velocity component tangential to the boundary at Ra = 5 x 10%. We distinguish between

the cylindrical boundary and the different faces of the barrier. The results are compared to the
case without barrier (see figure 3(b)).

Favier and Knobloch, JFM 895, R1 (2020)
[} = -
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Robust wall flow: E=10°% c=1,T=1.5

Precession frequency with and without barrier:

0.0004 RaZ5 %107 T
Ra=2x10° ——
Ra=5x105 ——

: E} Ra =2 x10°
; 5
= o

B4
B3

0.0002 - A

Ffé ] -0.0002 -

Full cylinder —&— /
Cylinder with barrier —a— o o
_ Hermann & Busse (1993) O 00004 1 * |
(a) 107 108 o 10° 1010 (b) 0.6 0.6375 Rfﬂgr 0.7125 0.75
FIGURE 3. Left: drift frequency wy as a function of Ra for I' = 1.5, E = 107% and Pr = 1.
The results for the full cylinder (O) and the cylinder with a barrier (/\, see section 5 below)
coincide. The theoretical value wg = w. ~ —59E/Pr predicted by Herrmann & Busse (1993)
for the onset of the instability in the presence of a planar wall is also reported (open circle).
Right: azimuthally, vertically and temporally averaged zonal velocity as a function of the radial
coordinate r. Positive values correspond to cyclonic motions while negative values correspond
to anti-cyclonic motions. The two vertical lines indicate the Stewartson layer scales E'/3 and
EY* (Stewartson 1957).

Favier and Knobloch, JFM 895, R1 (2020)
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Sound waves in chiral systems with odd viscosity

(a) (b)
a OB \Q

2—0Qo
(a) (b) > 001

0.01

A\ 7/

FIG. 1. Physical realizations of the minimal model for
topological fluids with odd viscosity. (a) Two-dimensional
plasma under magnetic field B, with cyclotron frequency
wp = gB/M. (b) Chiral active fluid with intrinsic rotation
angular frequency @,, subject to a global rotation with angular
frequency wp = —2Q.

penetration depths vanish while the other half retain a finite
penetration depth set by the gap size.

Model—Consider the odd Navier-Stokes equations
describing a compressible time-reversal and parity violat-
ing fluid,

Op(r,1) = =poV - v(r.1) (1)

v = —c>Vp/py + wpv* + 1°V2v*, (2)

Souslov et al., PRL 122, 128001 (2019)
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Are wall modes topologically protected?

Do topologically protected states exist in driven dissipative 3D flows? Zhang and
Xie, JFM 999, A65 (2024) show that the linearized vector eigenfunction is
associated with a nonzero Chern number, computed by integrating the Berry
curvature over the Brillouin zone. But

@ The eigenfunctions they use do not satisfy the correct boundary conditions
at the top of the layer

@ It is not clear that in forced dissipative systems a nonzero Chern number is
associated with topological protection

Nevertheless, the wall modes behave like they are indeed a protected state. The
recent work by Vasil et al (arXiv:2409.20541.pdf) on wall modes in the limit

E — 0, following earlier work on bulk modes (Julien et al., GAFD 106, 392
(2012)), applies to domains of arbitrary horizontal cross-section:

0 M. Vasi, et .
noslip stress —free

p=H) ple=H)
-25 00 25 50 -2 0 2 4
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Wall mode suppression

Wall modes are a pest when studying geostrophic turbulence in the lab.
The following experimentally realizable procedure eliminates their effect:

17T7=0 T=0
lllIllllll—I O ——

! =] :

| l ! l

T=15t u=O0r

2 \\ & |

2

=
T=0
=
. T=0

o
o [
e; T= 2 : ~
e =) L
B B 8
| |

(a) .....f....? (b)"""“" —

Edgar Knobloch (UC Berkeley) Geostrophic turbulence 29 January, 2025 25/38




Wall mode suppression
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FIG. 2. (a) Critical barrier width e, as a function of its height /
for E=10"* and Ra = 2Ra¥"' ~ 6.8 x 10°. The bottom row
shows side visualizations of the temperature field for (b) the case
without barrier, (¢) 2 = 0.2 and ¢ = 0.02, and (d) 2 = 0.2 and

¢ = 0.04. All three cases are indicated using arrows in (a).
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Wall mode suppression

T
Fixed temperature

s}
Conducting A
10-1) E/3 i
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10721 o Wall mode 4
10-7 10-6 10-° 10-* 1073

Ekman number E

FIG. 3. Critical barrier width ¢, as a function of E for infinitely
thin fixed-temperature or conducting barriers. The Rayleigh
number is fixed at twice its onset value, which itself depends
on E. The red diamond indicates the regime considered for the
experimentally relevant simulations shown in Fig. 6.

Terrien, Favier and Knobloch, PRL 130, 174002 (2023)
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Wall mode suppression

. E=4x10"%
108 Ra =108 3
E=2x10"%

-
=)
=

&= Ra =107 3

E=10"* J
A &< Ra=65x10°

No barrier @
1 barrier A

Effective Rayleigh number Ra,
=
2

10°k :
2 barriers H
3 barrierzs * A
100 Ra, ~ E ‘ )
10-° 1074

Effective Ekman number E,

FIG. 5. Effective Rayleigh number Ra, versus the effective
Ekman number E,. The symbols indicate the number of barriers
starting from N = O where Ra, = Ra and E, = E. Filled (empty)
symbols indicate growing (decaying) wall modes. The thick red
line is the critical curve for the onset of wall modes predicted by
linear theory [35] while the thin gray lines show the Ra, ~ EZ>
scaling.

E,=Ed>=E(N+1)*, Ra,=Rad*=Ra(N+1)™. (4)
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Wall mode suppression: Ra =3 x 10°, E = 107°

40 T T
Homogeneous
Conducting barriers —&—
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30 - N

Nusselt number

ot |
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15 I I I

Number of barriers

Two horizontal barriers reduce Nu to its homogeneous value (no-sidewalls) .
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Wall modes and the Swift-Hohenberg (SH35) equation

VERSCHUEREN, KNOBLOCH, AND UECKER PHYSICAL REVIEW E 104, 014208 (2021)
(@) (b)
05 -0.28
. €l
o -0.30
= 3 3
:N 4 -0.32]
3 1
0: 0.3 1.42 15 U/
: 2 ©
4
0.35 1 -0.30
€
0.3 0.1 -0.32]

0.2

0.15

0.1
FIG. 13. Branches of one- and two-pulse solutions on the half
disk for the case R = 14, ¢ = 1, together with continuation of se-
0.05} lected folds in v. (a) Bifurcation diagram of the daisy branch (blue),

" ' -1 0 T together with the branches of 1-pulse (green) and 2-pulse (magenta)
-0.3 -0.2 -0.1 06 localized daisy states when v = 1.4, with four representative folds -
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Bulk modes and the Swift-Hohenberg (SH35) equation

VERSCHUEREN, KNOBLOCH, AND UECKER PHYSICAL REVIEW E 104, 014208 (2021)
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FIG. 9. Branches of multiarm solutions for R = 14, v =2, ¢ = 1. (a)~(c) m = 2, 3, 4 branches bifurcating from an axisymmetric spot
at low |ju]|,. Stability with respect to perturbations on the full disk is indicated by thick line segments. In each case, illustrative solutions
are bered and shown in cor ding insets. (d) Zoom of the bifurcation diagram with the m = 12 crown branch (magenta) and the
branches of 1-arm (orange), 2-arm (blue), 3-arm (red), and 4-arm (green) states that bifurcate from it; the m = 3, 4-arm states connect to the
corresponding branches in panels (b) and (c). The four critical eigenfunctions on the m = 12 crown branch are shown alongside, together
with the solution profile at location 5 on this branch. See Fig. 10 for further continuation and sample profiles along the m = 1, 2 branches
bifurcating from the first two bifurcation points on the crown branch. APRN G4
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Bulk modes and the Swift-Hohenberg (SH35) equation

LOCALIZED AND EXTENDED PATTERNS IN THE ..

PHYSICAL REVIEW E 104, 014208 (2021)

0.4 0.4 3
2
0.2 > 0.2
-0:8-0.6 0.40.2 0 0.806-0402¢0
(a) (b)

FIG. 10. Continuation of Fig. 9 showing the m = 1, 2 branches
from their origin on the m = 12 crown branch. Stability with respect
to perturbations on the full disk is indicated by thick line segments.

Verschueren et al., PRE 104, 014208 (2;)21)7
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0.4
0.2 1 0.2

-0.8 -0.6 -0.4 -0.2 60 -0.8 -0.6-0.4 -0.2 0
(a)

FIG. 11. Branches of solutions with the symmetry D, emerging
from bifurcations of the trivial state u = 0. Panels (a) and (b) show
the 4 -arm and 6™ -arm states, respectively. The bottom panels show
the corresponding bifurcation diagrams in red and blue. Sample
states at locations indicated by filled dots are shown in the top panels.
Stability with respect to perturbations on the full disk is indicated by
thick line segments.
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Equatorially trapped convection: ¢ = (/R

MIQUEL, XIE, FEATHERSTONE, JULIEN, AND KNOBLOCH

FIG. 1. Shell slices of temperature taken at mid-depth of a shallow shell with aspect ratio £/R = 0.05 in (a)
slow and (b) rapid rotation. Equatorial and meridional slices of the temperature field in case (b) are represented
in a three-dimensional (3D) visualization in (d). In (b) and (d) convective motions adopt the form of anisotropic

Taylor columns localized in the equatorial region. The equatorial reduced coordinates (x,Y,z) [see Eq. (5)] are
represented from the side in (c) and in perspective in (d).

=] F
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Equatorially trapped convection: ¢ ~ E, = ¢/E = O(1)

(a) Temperature profile ©,,(Y, z) (b) Mid-depth profile
mw == 2 mw == 3 8! =5 i\

Reduced latitude Y’

Reduced depth =

Miquel et al., PR Fluids 3, 053801 (2018)
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Equatorially trapped convection

(a) Onset (d) Full shell (e) Remapped full shell (f) Reduced model
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FIG. 6. (a) Normalized threshold Ra} and (b) critical wave number m?* for both the Boussinesq equations
[Egs. (1), color symbols] and the reduced model [Egs. (8), black crosses] as functions of f. (c) Normalized
drift frequency w,/(¢p) at onset. (d)—(f) Meridional temperature profiles of the onset mode in the Boussinesq
equations and in the reduced model for the parameters E = 1072, & = 0.1 (shell), and 8 = 10 (reduced model).
To facilitate comparison, the marginal mode of the full shell is mapped onto the reduced coordinates (¥,z) in

(e).

Miquel et al., PR Fluids 3, 053801 (2018)
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Equatorially trapped convection
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(a) Nusselt number Nu(\) for 3 =5

Equatorially trapped convection

(b) Nusselt number Nu(eY') for 5 =5
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FIG. 9. Top: Heat flux Nu in the six cases plotted as a function of (a) the latitude A and (b) the reduced

latitude Y, for comparison with the reduced heat flux Nuf(Y). Bottom: (c)—(e) Nuyay, the latitudinal extent oy
or oy, [Egs. (18) and (20)], and the scaled wave number M = m /&> selected after saturation, all as functions of
. Dashed lines indicate the predictions from the ESC model.
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Summary

Wall modes are a generic property of pattern-forming systems

In 3D driven dissipative systems like RRBC they exhibit their own
dynamics

In chiral systems they appear to be robust with respect to the onset
of bulk turbulence and domain geometry

This property may be due to topological protection

In 3D the modes may be suppressed via horizontal fins embedded in
the wall, potentially enabling laboratory studies of geostrophic
turbulence

In rotating spheres the equator serves as a boundary supporting wall
modes, cf. Topological origin of equatorial waves, by P. Delplace, J.B.
Marston, A. Venaille, Science 358, 1075-1077 (2017)
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