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A bit of history
J.C. Buell and I. Catton, Effect of rotation on the stability of a bounded
cylindrical layer of fluid heated from below, Phys. Fluids 26, 892 (1983):

Here A = R/H is the aspect ratio, while D = Ta1/2 is the inverse Ekman number.

J.C. Buell and I. Catton, The effect of wall conduction on the stability of a
fluid in a right circular cylinder heated from below, J. Heat Transfer 105,
255 (1983), examined the effect of different radial boundary conditions in
the nonrotating case.
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Cylindrical domain: wall modes precess

Zhong et al., PRL67 2473 (1991); Ecke et al., EPL 19, 177 (1992).
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Linear theory: wall modes precess

Goldstein et al., JFM 248, 583 (1993)
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Linear theory: wall modes precess

Goldstein et al., JFM 248, 583 (1993)
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Linear theory: bulk modes also precess

m = 2, Γ = 1.84 m = 5, Γ = 4.39

The wall and bulk modes display very different behavior with respect to
the domain aspect ratio Γ:

Goldstein et al., JFM 248, 583 (1993)
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Wall modes in a cylinder: theory
To understand the properties of wall modes we employ polar coordinates
(r , φ, z) and suppose that the wall mode has azimuthal wavenumber
m > 0, i.e. that the mode breaks the azimuthal invariance of the system.
Near onset we may write the temperature departure from the conduction
state in the form

θ(r , φ, z , t) = R{am(t) exp(−imφ) fm(r , z)}+ . . . ,

where fm(r , z) is the eigenfunction of the mode m and am is its amplitude.
When the cylinder does not rotate and the boundary conditions are
φ-independent, the equation satisfied by am must commute with the
symmetries

rotations : φ→ φ+ φ0 : am → am exp(−imφ0),

reflection : φ→ −φ : am → ām.

It follows that ȧm = g(|am|2, ε)am, where g is necessarily real. The
parameter ε ≡ (Ra− Raw )/Raw measures the distance from onset; Raw
also depends on the mode number m.
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Wall modes in a cylinder: theory
Near onset ε� 1 and the function g may be expanded in a Taylor series:

ȧm = εam + α|am|2am + . . .

Writing am = Am exp(iΦm) we see that the onset of a steady-state
instability is described by equations of the form

Ȧm = εAm + αA3
m + . . . , Φ̇m = 0.

The latter is a consequence of neutral stability of the mode with respect to
rotations and shows that the bifurcation is a pitchfork of revolution.
Now suppose that the cylinder rotates with a small angular velocity Ω.
The rotation breaks the reflection symmetry but not the rotation
symmetry. The coefficients consequently acquire nonzero imaginary parts:

ȧm = (ε+ iΩδ)am + (α + iΩβ)|am|2am + . . . ,

where ε, δ, α and β are all functions of Ω2 and the mode number m.
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Wall modes in a cylinder: theory
In terms of the real variables we now have

Ȧm = εAm + αA3
m + . . . , Φ̇m = Ω(δ + βA2

m + . . . )

and conclude that the bifurcation leads to a precessing state of the form

θ = R{Am exp[i(ωd t −mφ)] fm(r , z)}+ . . .

with drift frequency

ωd = Ω

(
δ − β

α
ε

)
+O(ε2).

Ecke et al. Europhys. Lett. 19, 177-182 (1992).
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Cylindrical domain: σ < 0.68, E = 10−3, Γ = 2

For stress-free top and bottom: m = 0 mode

Goldstein et al., JFM 262, 293-324 (1994)
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Cylindrical domain: σ < 0.68, E = 10−3, Γ = 2

For stress-free top and bottom: m = 1 mode

Goldstein et al., JFM 262, 293-324 (1994)
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Cylindrical domain: wall modes for σ < 0.68, m 6= 0

Bifurcations in rotating systems, in Lectures on Solar and Planetary Dynamos (M.R.E. Proctor and A.D. Gilbert, eds), pp

331-372 (1994)
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A bit more history: σ & 0.68, insulating wall
J. Herrmann and F.H. Busse, Asymptotic theory of wall-attached
convection in a rotating fluid layer, JFM 255, 183 (1993):

Rabulk ≈ 3(π2/2)2/3E−4/3, Rawall ≈ π2(6
√

3)1/2E−1

as E → 0, while ωwall ≈ −59E/σ is the asymptotic precession frequency.

M.C. Cross and E. Kuo, Traveling-wave wall states in rotating
Rayleigh-Bénard convection, PRE 47, R2245 (1993):

τ0

(
∂A

∂t
+ s

∂A

∂x

)
= ε(1 + ic0)A + ξ20(1 + ic1)

∂2A

∂x2
− g(1 + ic3)|A|2A

and calculated the coefficients for a planar wall of finite conductivity:
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Cylindrical domain: wall modes vs bulk modes

Ecke et al., PR Fluids 7, L011501 (2022); cf. Goldstein et al., JFM 248, 583 (1993), Zhang et al., JFM 915, A62 (2021)
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Boundary zonal flow and walls modes: Γ = 0.2

Favier and Knobloch, JFM 895, R1 (2020)
Zhang et al., JFM 915, A62 (2021)

Edgar Knobloch (UC Berkeley) Geostrophic turbulence 29 January, 2025 17 / 38



Wall modes: E = 10−6, σ = 1, Γ = 1.5

Midplane vertical velocity w (left) and fluctuating temperature θ at r = 0.74

(right) at (a) Ra = 5× 107 and (b) Ra = 2× 108. In (b) Ra is reduced to

Ra = 5× 107 at the dashed line to demonstrate multistability.

Favier and Knobloch, JFM 895, R1 (2020)
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Robust wall flow: E = 10−6, σ = 1, Γ = 1.5
Wall states persist in the presence of a turbulent bulk state in the interior:

Midplane vertical velocity w (left) and fluctuating temperature θ (right) at (c)

Ra = 5× 108 and (d) Ra = 2× 109.

Favier and Knobloch, JFM 895, R1 (2020); Zhang et al., JFM 915, A62 (2021)
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Robust wall flow: E = 10−6, σ = 1, Γ = 1.5
Wall states persist in the presence of a vertical barrier:

Favier and Knobloch, JFM 895, R1 (2020)
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Robust wall flow: E = 10−6, σ = 1, Γ = 1.5

Favier and Knobloch, JFM 895, R1 (2020)
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Robust wall flow: E = 10−6, σ = 1, Γ = 1.5
Precession frequency with and without barrier:

Favier and Knobloch, JFM 895, R1 (2020)

Edgar Knobloch (UC Berkeley) Geostrophic turbulence 29 January, 2025 22 / 38



Sound waves in chiral systems with odd viscosity

Souslov et al., PRL 122, 128001 (2019)
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Are wall modes topologically protected?
Do topologically protected states exist in driven dissipative 3D flows? Zhang and
Xie, JFM 999, A65 (2024) show that the linearized vector eigenfunction is
associated with a nonzero Chern number, computed by integrating the Berry
curvature over the Brillouin zone. But

The eigenfunctions they use do not satisfy the correct boundary conditions
at the top of the layer

It is not clear that in forced dissipative systems a nonzero Chern number is
associated with topological protection

Nevertheless, the wall modes behave like they are indeed a protected state. The

recent work by Vasil et al (arXiv:2409.20541.pdf) on wall modes in the limit

E → 0, following earlier work on bulk modes (Julien et al., GAFD 106, 392

(2012)), applies to domains of arbitrary horizontal cross-section:
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Wall mode suppression
Wall modes are a pest when studying geostrophic turbulence in the lab.
The following experimentally realizable procedure eliminates their effect:

Terrien, Favier and Knobloch, PRL 130, 174002 (2023)
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Wall mode suppression

Terrien, Favier and Knobloch, PRL 130, 174002 (2023)
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Wall mode suppression

Terrien, Favier and Knobloch, PRL 130, 174002 (2023)
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Wall mode suppression

Terrien, Favier and Knobloch, PRL 130, 174002 (2023)
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Wall mode suppression: Ra = 3× 109, E = 10−6

(c) Homogeneous Without barrier With barriers
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Two horizontal barriers reduce Nu to its homogeneous value (no sidewalls)

Terrien, Favier and Knobloch, PRL 130, 174002 (2023)
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Wall modes and the Swift-Hohenberg (SH35) equation

Verschueren et al., PRE 104, 014208 (2021)
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Bulk modes and the Swift-Hohenberg (SH35) equation

Verschueren et al., PRE 104, 014208 (2021)
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Bulk modes and the Swift-Hohenberg (SH35) equation

Verschueren et al., PRE 104, 014208 (2021)
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Equatorially trapped convection: ε2 = `/R

Miquel et al., PR Fluids 3, 053801 (2018)
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Equatorially trapped convection: ε ∼ E , β = ε/E = O(1)

Miquel et al., PR Fluids 3, 053801 (2018)
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Equatorially trapped convection

Miquel et al., PR Fluids 3, 053801 (2018)
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Equatorially trapped convection

Miquel et al., PR Fluids 3, 053801 (2018)
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Equatorially trapped convection

Miquel et al., PR Fluids 3, 053801 (2018)
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Summary

Wall modes are a generic property of pattern-forming systems

In 3D driven dissipative systems like RRBC they exhibit their own
dynamics

In chiral systems they appear to be robust with respect to the onset
of bulk turbulence and domain geometry

This property may be due to topological protection

In 3D the modes may be suppressed via horizontal fins embedded in
the wall, potentially enabling laboratory studies of geostrophic
turbulence

In rotating spheres the equator serves as a boundary supporting wall
modes, cf. Topological origin of equatorial waves, by P. Delplace, J.B.
Marston, A. Venaille, Science 358, 1075-1077 (2017)
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