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FIGURE 1. Illustration of the Rayleigh-Benard convection cell. 

Rotation was provided by a stepping motor that drove a flexible belt attached to 
the shaft, A gear assembly allowed the motor to operate at reasonably high 
frequency so as to avoid the jitter associated with digital stepping motors. In 
addition, microstepping reduced this effect so that i t  was not a factor in the rotation. 
Rotation frequencies were in the range 0.01 to 0.5 Hz with the speed determined to 
be steady to &O.OOOl Hz. Early in the experiment the stepping motor was driven by 
a separate controller board, whereas later a module was driven directly from a 
frequency generator in the computer thereby allowing for programmed control of the 
rotation speed. 

Flow visualization was achieved using optical shadowgraph visualization of the 
temperature field. Recent enhancements of this standard technique including digital 
image processing have made it a powerful tool for studying the convective 
instability. Until this work, however, optical shadowgraph visualization has been 
used almost exclusively (for an exception see Busse 1981) for convection in thin fluid 
layers, 1-5 mm. We have used the technique to study patterns and vortex structures 
in deep cells of water where d = 5 cm. The sensitivity of the shadowgraph method is 
lower for deep layers and therefore the distance from onset that a pattern can be 
detected is substantially greater than for thin layers. Whereas it has become 
straightforward to detect patterns in thin layers to within better than 0.2 % of onset, 
our visualization is limited to about 30% above onset. This is adequate for our 
purposes and is much better than visualization with dye or aluminium flakes. We use 
the afocal shadowgraph arrangement (Croquette 1986 ; Kolodner & Williams 1990) 
and a CCD video camera, figure 2, t o  obtain images of the flow. As a consequence of 
the rotation of the convection cell and the stationary structure of the shadowgraph 
optics and video camera, we captured a single frame each full revolution of the cell. 

Zhong, Ecke, Steinberg: PRL 1991, JFM 1993

140 P.  Zhong, R. E .  Ecke and V .  Skin,herg 

Pin hole 

Reflecting 

I b 

Pin hole $ . I  
I I - Collimating lens 

Thermal 
vortex 

PICURE 2 .  Illuvtration of shadowgraph visualizat,ion optics 

This was accomplished by strobing the digitizer with a signal from a shaft encoder. 
The evolution times for the convective states were sufficiently long that this was not 
a problem except for the most dynamic states in the turbulent regime. 

Several comments should be made about the evaluation of fluid parameters used 
in the analysis of the results presented. Because a constant heat current was applied 
to the bottom plate, its temperature was time dependent for time-dependent heat 
transport. Rayleigh numbers were therefore evaluated as a time average over AT(t). 
Second, the top-plate temperature was fixed and thus Tbot increased monotonically 
with increased heat current. This resulted in an increasing mean cell temperature. 
Most fluid parameters were evaluated a t  the mean cell temperature for a particular 
heat current, the exceptions being D and n. 52 was calculated from the fixed angular 
frequency 52, using v(T) evaluated at the mean temperature a t  onset. Because v for 
water is a rather strongly decreasing function of T the values for 52 will be slightly 
higher above onset. The deviation arising from this is less than 1 % for all data for 
which e < 10. At the highest values of R z lo7 this correction can be as large as 10 %. 
The Prandtl number was ~7 = 6.4 evaluated for Tbot = 23.8 "C. 

One final feature was added to the convection cell to help resolve questions about 
the time dependence of the onset states. Two high-sensitivity thermistors were 
embedded in the sidewall at  the midplane. These local sensors were used to  measure 
time-dependent convection and to detect any convective structures travelling in the 
azimuthal direction. We describe them in more detail below after we have discussed 
the onset modes. 

3. Convective onset and azimuthal modes 
The onset of convection in the r= 1 cylindrical cell used in this study was 

determined by measurement of the heat transport. In figure 3, the Nusselt number 
is shown for 52 = 2145 as a function of a reduced bifurcation parameter E = 
(R-R , (Q) ) /R , (D) .  The onset is a forward bifurcation a t  R, (e = 0) and there are 
several different branches above onset which are reproducible and correspond to 
states with different azimuthal wavenumber as discussed below. The values of R, 
determined from a series of such measurements a t  numerous 52-values define the 
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FIGURE 6. Shadowgraph images for 52 = 2145 showing localized wall states with azimuthal m-fold 
periodicity: (a )  m = 4, E = 1.05; ( b )  rn = 5 ,  e = 0.84; ( c )  m = 6, E = 0.80; (d )  m = 7 ,  E = 0.66. 

behaviour was not expected and in fact the linear stability calculations of Buell & 
Catton (1983) assumed a stationary bifurcation. Relaxing that constraint, Goldstein 
et al. (1993) have recently shown that the solutions have a complex part and that the 
calculated precession frequencies are in good agreement with the experimental 
values. Their calculated critical onset values R,(Q) are also quite close to the 
experimental data, figure 4, whereas the results of Buell & Catton (1983) do not agree 
quantitatively with our data. In figure 7, the precession is illustrated in a spacetime 
plot of the azimuthal intensity determined from images such as in figure 6. The 
shadowgraph intensity was taken near the outer sidewall at O.9r0 over a radial band 
with 6r = 0.08r0. For E < 2.80 the precession was constant, figure 7(a ) ,  whereas for 
higher E modulation of the precession speed was observed, figure 7 ( b ) .  

The slope of the curve in these plots measures the phase velocity up of an azimuthal 
travelling wave of the form T(r,  9, t )  = f ( r )  exp [i(m+--o; t ) ]  where or is the 
precession frequency of the mth mode and the phase velocity is given by w;/m. In  
figure 8, we plot wp (dropping the explicit dependence on m) obtained from up” m; the 
frequency appears to asymptote to a finite value at  onset although the data only 
extend down to about E = 0.3. To expand this range we used two thermistors 
imbedded in the sidewall at  the midplane, see figure 9, and oriented at about 27~113 
radians from each other. As the wave propagated past the probes, the frequency was 
determined from a time series of either sensor and the mode number was obtained 
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FIGURE 8. Azimuthal precession frequency wp vs. B for Q = 2145 for different modes: rn = 4 (a), 
m = 5 (+), rn = 6 (e), and m = 7 (A). Arrows indicate transitions between different modes. 
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FIGURE 9. Schematic illustration of convection cell showing local temperature sensors located at 
the midplane. The physical angular separation of the probes is 2rr/13 radians. 

figure lO(d). Recent measurements (Li & Ecke 1993) have verified this conjecture for 
SZ > 20 in an aspect-ratio-2.5 convection cell. The data for R,, q,, and m, a t  r= 1 
are tabulated in table 1.  

The precession frequency depends only weakly on the mode number m when e 6 
1.5 for D = 2145. For higher c ,  however, large variations ofw, with m are seen, figure 
8. In  addition, transitions occur between states with different m. An example of a 
transition from an m = 5 state to an m = 4 state is shown in figure 7(c) where it 
appears as a space-time dislocation. These transitions define secondary stability 
boundaries in the parameter space of azimuthal wavenumber and c .  These secondary 
instabilities are coincident with the convection pattern filling the entire cell, as 
opposed to being localized near the boundary, and with a change in slope of the 
Nusselt number curve. In the next section we describe the evolution of the centre- 
filling processes, the formation of thermal vortices, and the development of turbulent 
flow. 
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FIGURE 7. Spacetime plots of the precession of the azimuthal state showing the radially averaged 
(&r/ro = 0.08) angular shadowgraph intensity a t  r = 0 . 9 ~ ~  and for several values of E :  (a)  uniform 
precession, m = 5 ,  E = 2.80, ( b )  modulated precession, rn = 5, E = 3.24. (c) transition from m = 5 to 
m = 4 via a space-time dislocation, E = 3.69. 

from the phase difference between the two signals. Using these probes we measured 
the amplitude, frequency, and mode number of the travelling wave down to E = 0.01. 
The amplitude varies like the square root of E ,  consistent with a Hopf bifurcation, 
figure 10(a), and the Nusselt number is linear in E ,  figure 10(b). The frequency varies 
linearly with e with a finite intercept q, a t  onset, figure lO(c). This is different from 
the commonly observed Hopf bifurcation with 0 2  symmetry in which travelling 
waves in both directions are allowed. One can describe it, however, as a Hopf 
bifurcation arising when rotation breaks the reflection symmetry of the azimuthal 
mode (Ecke et ul. 1992). This theory predicts that  w,, should vary linearly with Q for 
small D and our measurements are consistent with that prediction and in 
quantitative agreement with the linear calculations of Goldstein et al. (1993), see 
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FIGURE 11. Shadowgraph images for 52 = 2145 showing m-fold symmetric patterns: (a) m = 4, 
E = 2.61; (b )  m = 5 ,  E = 2.59; ( c )  m = 6, F = 2.74; (d )  m = 7, E = 2.56. 

the end of each arm a vortex forms as the cell fills completely so that a regular array 
of these vortices is present with the m-fold symmetry of the wall state, see figure 11.  
At about the same €-value, other signs that convection has been established 
throughout the cell are observed. In the heat transport measurements there is a 
distinct break in slope for E FZ 2.8, figure 3. Close to this parameter value the heat 
transport develops noisy time dependence as shown in figure 12 for different modes 
at  SZ = 2145. These secondary instability values RCo are plotted in figure 4 and fall 
close to the linear stability curve for a laterally infinite system. It was not clear from 
these data whether this was a coincidence or indicative of ghosts of the axisymmetric 
or cell-filling states that are linearly unstable close to these parameter values. Recent 
investigation of this point in a cell with r = 2.5 show that this secondary instability 
is an indication of the linear instability of the inner regions of the cell where the 
sidewall-state amplitude is small and that the noisy time dependence arises from the 
KL instability (Li & Ecke 1993). We thus believe that the noisy time dependence in 
this more restricted geometry is a result of a finite-size KL transition. Also, the 
rotation is causing a vortex-like circulation of the flow for the centre-filling states so 
that we sometimes refer to this state as tthe vortex state. 

The transitions between different mode-number states, the modulation of the 
precession frequency of the sidewall states, the appearance of aperiodic time- 
dependent heat transport, and the distinct change in slope in the Nusselt number 
curves indicate regions of stability for the states with different m. In figure 13, these 
primary and secondary instability boundaries are indicated for S2 = 2145 in the 
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FIGURE 16. Shadowgraph images for 0 = 2145 showing evolution of the convective state with 
increasing E .  Mode 6 is the azimuthal mode number for states with E < 3.2 (note that while the 
critical mode number is 5, mode 6 exists over a large range 0.1 < E < 3.7). For 8 = 3.97 there has 
been a transition to a mode-5 state. (a) E = 0.8, Nu = 1.59; (b )  E = 1.58, Nu = 2.23; (6) 6 = 2.74, 
Nu=3.14; ( d )  ~ = 3 . 1 9 , N u = 3 . 5 9 ;  (e) s=3.97, Nu=4.30; (f) E =  15.SO,Nu= 11.76. 

4.2. Vortex interactions 
Further increases of R produce increasingly complex states where the patterns are 
constantly changing. In figure 16, a series of shadowgraph images for SZ = 2145 a t  
successively larger E in the range 0.80 < E < 12, shows a progressive evolution of 
behaviour. At the highest E = 15.80 (R = 2.6 x lo6) the flow is turbulent and the 
remaining thermal vortices undergo significant interactions resulting in complex 
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FIGURE 3. Nusselt numbers 11s. E at D = 2145 for states starting at high E with mode number 4 (IJ), 
5 (+), 6 (a), and 7 (A). The transition to noisy time dependence for mode 5 is indicated by a 
vertical arrow a t  et = 2.81. 
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FIGURE 4. Stability diagram in R vs. SZ parameter space. Solid line shows the prediction of linear 
stability calculations for the laterally infinite system and dashed line is linear analysis for 
asymmetric states in an r = 1 cylindrical container with insulating sidewall boundary conditions 
and for CT = 6.7 (after Goldstein et al. 1993). Data show the convective onset (a) and the onset of 
noisy time dependence (0). For comparison the onset data ( + )  of Rossby (1969) and calculations 
(A) for axisymmetric states (Homsy 85 Hudson 1972) are shown. 

experimental marginal stability curve. Rotation is predicted to suppress the onset of 
convection, pushing R, above its non-rotating value. In figure 4, the marginal 
stability curve for a laterally infinite system is shown in the parameter space of R and 
SZ (Chandrasekhar 1961). Our results for the onset fall uniformly below those 
predictions but in good agreement with the data of Rossby (1969) for convection in 
water. This shift arises from the finite size geometry of the convection cell and agrees 
qualitatively (but not quantitatively, see below) with linear calculations of Buell & 
Catton (1983). Buell & Catton showed that modes localized near the outer boundary 
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FIGURE 12. RMS temperature fluctuations ST,,, in the bottom plate vs. B showing the transition 
to noisy time dependence. Data for different mode numbers are shown: m = 4 (O), m = 5 (+), 
m = 6 (O) ,  and m = 7 (A). 
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FIGURE 13. Experimental stability diagram in parameter space of reduced Rayleigh number 

and azimuthal wavenumber qe for a = 2145. Solid and dashed lines are guides to the eye. 

parameter space of E and dimensionless azimuthal wavenumber, defined as qs = 
m(d/r,) = m / r ,  where m is the periodicity of the azimuthal mode. The bottom 
boundary separates convection and conduction regions and was obtained by 
decreasing 8 from above onset while in a particular m-fold symmetric state. Thus the 
boundary is the nonlinear stability boundary for the convection state. The other 
boundaries are the transition to aperiodic time dependence, for which there is not 
much 6 variation with m, the observed transitions between states with different m 
such as illustrated in figures 7(c) and 8, and the modulation of the precession 
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FIGURE 15. Ratio of Rayleigh number for onset of time dependence R, to onset Rayleigh number 
R, for various values of Q. Numbers in brackets show the critical values of m at onset. 

frequency of the sidewall states, figure 7 ( b ) .  The slope-change boundary is not 
distinguishable from that determined by the appearance of aperiodic heat transport 
on the scale presented here. 

A partial characterization of these states for different Q-values is provided by heat 
transport data. In figure 14, we show Nu versus AT for different SZ in the range of 
control parameter close to the transition to the vortex states. From these data and 
the noisy-onset data we determine the onset values for convection, R, and for the 
vortex state, RCo. The ratio of these two values is plotted in figure 15 and shows a 
distinct change for SZ rz: 1000. This change most likely corresponds to the increase in 
the critical value of m at onset from 4 to 5, which strongly affects the primary 
bifurcation but only weakly shifts the secondary transition. 
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R = RDd2 /v ,  where RD is the physical angular rotation frequency and d 2 / v  = 2711 s. We 
define a reduced bifurcation parameter E = (R - R,(Q))/R,(R), where R,(Q) is the critical 
value of R a t  fEed Q. From the measurement of heat transport (see fig. 2) the onset values 
R, (Q) are determined much more accurately than is possible using shadowgraph visualization 
which is limited to E > 0.3. Centrifugal effects are negligible for this experiment, since the 
ratio of centrifugal-to-gravitational forces, Sa: r/g, is 0.005. 

Rotation generally suppresses the onset of convection but in small-aspect-ratio cylindrical 
cells, the onset is substantially shifted to smaller values of R, (see fig. 3) because the onset 
state is an azimuthally periodic state localized near the lateral boundaries [9,10] instead of 
the spatially homogeneous planform assumed in the theory for a laterally unbounded system. 
Figure 4 shows a state with 5-fold periodicity (azimuthal wave number m = 5) for Q = 2145 
and E = 2.6. This particulr state is quite far above onset and the structure has grown into the 
central region but the azimuthally periodic sidewall structure is clearly visible. The entire 
structure precesses uniformly in the rotating frame. Other states with m = 3 , 4 , 6  and 7 have 
been observed for different values of Q and/or initial conditions [9-111. An interesting 
property of these states is that they propagate in the rotating frame, always in a direction 
opposite to the rotation direction. The question then arises whether this transition to time 
dependence is a Hopf bifurcation or not. 

We begin with our experimental characterization of the transition to such a precessing 
wave. Using the local sensors we have determined the Rayleigh number dependence of its 
amplitude and frequency. The mode amplitude varies as fi (see fig. 5a)) and the Nusselt 
number, which is expected to behave like the square of the amplitude, varies linearly with E ,  

fig. 5b). Further, the frequency varies linearly with E and has a finite intercept coo a t  onset 
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Fig. 5 .  - Plot of the a)  amplitude, b) Nusselt number, and c) frequency, U, ws. E close to onset. The linear 
dependences of the frequency and Nusselt number and the square-root dependence of the amplitude 
indicate a Hopf bifurcation. The E = 0 intercept of w is denoted oo and is shown vs. Q in d). The behavior 
of wo is consistent with a linear relationship for Q < 100. The precession frequency calculated from linear 
theory [ll] is shown for comparison (--). The discontinuities in the theoretical curve reflect changes in 
the preferred azimuthal wave number (0 r =  1). 
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the image and (x0 ,y0). The shadowgraph optics were ad-
justed to obtain as round an image as possible, but the im-
ages were sometimes out of round by one or two pixels. We
averaged the shadowgraph signal over 0.98r0�r�0.99r0 to
yield a smoother signal but the slight azimuthal asymmetry
of the images and uncertainty in (x0 ,y0) could cause a sys-
tematic, artificial nonuniformity in I(r ,� ,t). This nonunifor-
mity was taken out when necessary by dividing I(r ,� ,t) by
its long-time average.
The experimental control parameters for rotating

Rayleigh-Bénard convection are �T which is proportional to
R and the physical angular rotation rate �D represented in
dimensionless form by the dimensionless rotation rate �
��Dd2/� . During the experiments, the top-plate tempera-
ture Tt was held constant at Tt�24.1 °C, and the bottom-
plate temperature (Tb) varied with the heat input. The fluid
parameters used to compute dimensionless control param-
eters were evaluated at the mean cell temperature. For most
measurements reported below, the rotation rate was fixed at
��274 (�D�2.512 rad/s). For this rotation rate, the ratio
of the centrifugal-to-gravitational force was about 0.03 so
centrifugal effects can be ignored.
To prepare states with different wave numbers, we took

advantage of transients which enabled us to generate travel-
ing waves with 17�m�32 at ��274. The basic idea is that
lower �higher� rotation produces smaller �larger� wave num-
ber in both the bulk and sidewall modes relative to the side-
wall wave number that is selected by quasistatically ramping
� at fixed � . The other factor is that at higher � the bulk
mode is present, which can affect the mode selected as the
sidewall state. A typical scenario for generating different
modes is as follows: For low modes, a bulk mode was sta-
bilized at ��68 and ��1, then � was increased to about
274 and � was decreased to about 0.25, both at a quasistatic
rate. For high modes, we generated a mode with ��414 at
��1, then quickly �about 40 s� ramped � down to 274. The
mode was initially suppressed by the rapid deceleration, and
reappeared later with a higher mode number. The ability to
prepare different mode numbers enabled us to determine the
marginal-stability and the Eckhaus-Benjamin-Feir-stability
boundaries. Once a state at a particular � and � was gener-
ated, we waited at least five or six vertical thermal diffusion
times ���d2/��680 s before determining steady-state
quantities.

III. EXPERIMENTAL RESULTS

A. Primary and secondary bifurcations

The first two bifurcations in this system are from conduc-
tion to sidewall-traveling-wave convection and then, at
higher � to a state with both sidewall and bulk convection.
These bifurcations were previously identified and studied for
convection cells with ��1 �17,19� and ��2.5 �20�. The
best indication of these bifurcations is the heat transport
which we present as the Nusselt number N which is the ef-
fective fluid conductivity normalized by the thermally diffu-
sive fluid conductivity. For our convection cell with �
�5.0, we measured the Nusselt number as a function of �T
for ��68,136,205,274,344,414. The results are plotted in
Fig. 2 as a function of � and have several distinct features.

The change from N�1 at ��0 indicates the onset of con-
vection. For most of the data sets, there is a linear section in
N which is indicative of the sidewall mode. The second
change in slope indicates the onset of bulk convection. As �
decreases the first linear section also decreases in size so that
for the lowest rotation rate ��68 the interval has decreased
to zero and the transition is to coexisting sidewall and bulk
convection. From the N measurements, the critical Rayleigh
numbers for the sidewall mode and for the bulk convection
state were determined and the results are shown in Fig. 3.
Our results agree well with those measured previously �20�,
indicating that the initial bifurcation to the sidewall state
depends only weakly on � . For the onset to bulk convection
state, the critical Rb decreases slightly as � increases.
A further characterization of sidewall and bulk onsets is

the critical frequency of the sidewall mode �c and critical
wave numbers kc and kb for the sidewall and bulk states.
Figure 4 shows the measured precession frequency �c at
onset scaled by �� . In the � range we studied, there is no
noticeable difference between our results in a ��5.0 cell
and the results for ��2.5 �20�. Calculations by Goldstein
et al. support the experimental results that the frequency
changes little with increasing � when ��1 for moderately

FIG. 2. N vs � for different dimensionless rotation rates: �
�68(�), 136 (�), 205 (�), 274 (�), 344 (*), and 414 (�).
The lines show the linear dependence of N on � for the sidewall
traveling-wave and bulk states.

FIG. 3. Rc(�) and Rb(�) vs � for ��5. For comparison,
previous data for other values of � are shown: ��1.0 �Zhong,
Ecke, and Steinberg� Rc(�) and Rb(�); ��2.5 �Ning and Ecke�
Rc(�) and Rb ���. Also shown are Chandrasekhar’s linear-
stability calculation for a laterally infinite system �solid line� and
calculation of Goldstein et al. for a ��1 cell with insulating side-
walls �dashed line�.
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hanced shadowgraph images with modes 17, 23, 28, and 31
for eq'0.23. The second and even the third structure away
from the wall are visible for all of these modes. Quantita-
tively, we characterize the radial distribution of the wave by
calculating the standard deviation of shadowgraph intensity
as a function of radius, s I(r). The wave is separable into
radial and azimuthal functions so that in the linear shadow-
graph regime, we have

I~u ,r !51.01A2s I~r !sin~mu!}T01T~r !sin~mu! ~6!

so s I(r) is directly proportional to temperature amplitude.
Figure 14 shows s I(r) for four selected modes (m
517,23,28,31) at constant eq'0.19. The position of the sec-
ond peak moves further from the wall for higher mode num-
bers. It also moves further from the wall at higher e at a
constant mode number, as illustrated in Fig. 15. The depen-
dence of the position on the mode number and e is summa-
rized in Fig. 16. There is no evidence that the radial structure
is a necessary degree of freedom to consider in our analysis,
which assumes a one-dimensional wave in the azimuthal di-
rection and thus we ignore it in future discussion.

C. Description of the complex Ginzburg-Landau equation

The one-dimensional ~1D! CGL equation, Eq. ~1!, was
used successfully to describe some of the experimental re-

sults for a G52.5 convection cell @20# and was proposed
theoretically @22# for the weakly nonlinear traveling waves in
rotating convection. Here we write a more general equation
~denoted HOCGL for higher-order CGL! which includes
some higher-order terms in a perturbation expansion of the
rotating convection wall mode. These will be important in
accounting for differences between the experimental results
and the pure CGL equation

t0~] tA1s]xA !5e~11ic0!A1j0
2~11ic1!]xxA

2g~11ic3!uAu2A1h~11id1!]xxxA

1 j~11id2!]xAuAu22iwuAu4A . ~7!

In order to keep track of signs properly we now define the
correspondence between the experiments and the CGL form:
the coordinate x is the azimuthal angle taken to be positive in
the counterclockwise direction as viewed from above. The
sense of rotation is also counterclockwise so rotation is posi-

FIG. 10. Dimensionless frequency vk vs DT for mode number
m523 (d k54.6), 27 (n k55.4), 31 (h k56.2), and 18
(* k53.6). The lines are least-squares quadratic fits to the data.

FIG. 11. Dimensionless frequency vq
0 vs q. The solid line is a

least-squares quadratic fit to the data. The dashed line shows an
additional cubic correction consistent with measurements of the
nonlinear group velocity vg .

FIG. 12. Dimensionless coefficients gq and hq vs q. Solid lines
are least-squares fits to the data. Dashed lines are the best determi-
nation of the slope from comparison with all sets of data.

FIG. 13. Shadowgraph images for m517 (q521.25,
eq50.22, e 50.27), m 5 23 (q 5 20.05, eq 50.22, e 5 0.22),
m528 (q50.95, eq50.23, e50.26), and 31 (q51.55, eq
50.27, e50.35).
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Fig. 3. Schematic illustration of experiments testing robustness of wall modes to geometry and sidewall boundary conditions: (a) Rotation direction is CCW. Wall
modes on outer (inner) boundaries propagate in retrograde (prograde) direction, i.e., in the ω̂ → n̂ direction where n̂ is the sidewall normal unit vector. In the interior
region, the wall mode propagates up and back along the perpendicular fin. This effect was tested in DNS [30] as shown in (c) for Pr = 1, ε = 3/2, and Ek = 10↑6.
(b) This configuration demonstrated the robustness of wall mode propagation for different geometries and also showed that one could suppress the wall mode using
a conducting sidewall boundary section.

Fig. 4. Selected wavenumber for azimuthally non-periodic BC for ε = 5, Pr = 6.3, Ek = 0.9 → 10↑3. (a) Space–time plot showing traveling wall mode with small
section of aluminum tape to suppress the wall mode and break the azimuthal periodicity. (b) Stability diagram ϑ vs k for azimuthally periodic case [19,35] showing
the marginal stability boundary ϑM ↓ (k ↑ kc )2 and the Eckhaus boundary ϑEckhaus ↔ 3ϑM . Breaking the azimuthal periodicity leads to wavenumber selection ks(ϑ)
indicated by the black data points located very close to the center of the stability boundary. Regions of convective (CU) and absolute (AU) instability are indicated.
(c) ks vs ϑ where solid line is kc . Solid line is kc = 4.65 and dashed line is quadratic least-squares fit to the data.

In azimuthally periodic conditions, discrete modes are selected
and the boundaries of marginal stability and of nonlinear Eck-
haus instability can be determined. Within the band of stable
states, perturbations of the wavenumber decay via very slow
phase diffusion [19]. Breaking the azimuthal periodicity using a
small angular region of conducting sidewall boundary conditions
produced by copper or aluminum tape relaxes the discrete mode
number of the traveling wave and leads to a wavenumber se-
lection process [2]. In Fig. 4(a), a space–time plot is shown of a
traveling wall mode for ε = 10, Pr = 6.3, Ek = 1.8 → 10↑3.
The directions of rotation and retrograde precession direction are

indicated. The section with aluminum tape is labeled. Fig. 4(b)
shows the stability boundaries owing to linear stability ϑM =

ϖ 2
0 (k ↑ kc)2 and nonlinear Eckhaus instability ϑEckhaus ↔ 3ϑM as
determined from azimuthally-periodic conditions [18,19,35,35].
The selected wavenumber ks(ϑ) is revealed from the broken az-
imuthal periodicity conditions with the result that ks ↔ kc , see
also Fig. 4(c). It is not clear what the selection mechanism should
be [2] given the uncertain nature of the transitional boundary
conditions between the approximately insulating sidewall BC
and the conducting BC produced by the aluminum tape. The
approximately discontinuous transition achieved with this setup
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states, perturbations of the wavenumber decay via very slow
phase diffusion [19]. Breaking the azimuthal periodicity using a
small angular region of conducting sidewall boundary conditions
produced by copper or aluminum tape relaxes the discrete mode
number of the traveling wave and leads to a wavenumber se-
lection process [2]. In Fig. 4(a), a space–time plot is shown of a
traveling wall mode for ε = 10, Pr = 6.3, Ek = 1.8 → 10↑3.
The directions of rotation and retrograde precession direction are

indicated. The section with aluminum tape is labeled. Fig. 4(b)
shows the stability boundaries owing to linear stability ϑM =

ϖ 2
0 (k ↑ kc)2 and nonlinear Eckhaus instability ϑEckhaus ↔ 3ϑM as
determined from azimuthally-periodic conditions [18,19,35,35].
The selected wavenumber ks(ϑ) is revealed from the broken az-
imuthal periodicity conditions with the result that ks ↔ kc , see
also Fig. 4(c). It is not clear what the selection mechanism should
be [2] given the uncertain nature of the transitional boundary
conditions between the approximately insulating sidewall BC
and the conducting BC produced by the aluminum tape. The
approximately discontinuous transition achieved with this setup
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Where have all the wall modes gone?

2010: Some new experiments with more rapid rotation rates

2014: Me: “But you have to include the wall mode 
contribution to the heat transport.”  Jon: “We don’t 
see any wall modes!”  Hmmm.  I wondered why?

2018: Confusing results from Göttingen SF6 rotating 
convection experiment 𝛤=1/2  - bimodal distribution.  
DNS by Zhang and Shishkina. 
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For rapidly rotating turbulent Rayleigh–Bénard convection in a slender cylindrical cell, experiments and
direct numerical simulations reveal a boundary zonal flow (BZF) that replaces the classical large-scale
circulation. The BZF is located near the vertical side wall and enables enhanced heat transport there.
Although the azimuthal velocity of the BZF is cyclonic (in the rotating frame), the temperature is an
anticyclonic traveling wave of mode one, whose signature is a bimodal temperature distribution near the
radial boundary. The BZF width is found to scale like Ra1=4Ek2=3 where the Ekman number Ek decreases
with increasing rotation rate.

DOI: 10.1103/PhysRevLett.124.084505

Turbulent fluid motion driven by buoyancy and influ-
enced by rotation is a common phenomenon in nature and
is important in many industrial applications. In the widely
studied laboratory realization of turbulent convection,
Rayleigh-Bénard convection (RBC) [1,2], a fluid is con-
fined in a convection cell with a heated bottom, cooled top,
and adiabatic vertical walls. For these conditions, a large
scale circulation (LSC) arises from cooperative plume
motion and is an important feature of turbulent RBC [1].
The addition of rotation about a vertical axis produces a
different type of convection as thermal plumes are trans-
formed into thermal vortices, over some regions of param-
eter space, heat transport is enhanced by Ekman pumping
[3–10], and statistical measures of vorticity and temper-
ature fluctuations in the bulk are strongly influenced
[11–17]. A crucial aspect of rotation is to suppress, for
sufficiently rapid rotation rates, the LSC of nonrotating
convection [12,13,18,19], although the diameter-to-height

aspect ratio Γ ¼ D=H appears to play some role in the
nature of the suppression [20].
In RBC geometries with 1=2 ≤ Γ ≤ 2, the LSC usually

spans the cell in a roll-like circulation of size H. For
rotating convection, the intrinsic linear scale of separation
of vortices is reduced with increasing rotation rate [21,22],
suggesting that one might reduce the geometric aspect
ratio, i.e., Γ < 1 while maintaining a large ratio of lateral
cell size to linear scale [5]; such convection cells are being
implemented in numerous new experiments [23]. Thus, an
important question about rotating convection in slender
cylindrical cells is whether there is a global circulation that
substantially influences the internal state of the system and
carries appreciable global heat transport. Direct numerical
simulations (DNS) of rotating convection [24] in cylindrical
geometrywithΓ ¼ 1, inverseRossby number 1=Ro ¼ 2.78,
Rayleigh number Ra ¼ 109, and Prandtl number Pr ¼ 6.4
(Ro, Ra, and Pr defined below) revealed a cyclonic
azimuthal velocity boundary-layer flow surrounding a core
region of anticyclonic circulation and localized near the
cylinder sidewall. The results were interpreted in the context
of sidewall Stewartson layers driven by active Ekman layers
at the top and bottom of the cell [25,26].
Here, we show, through DNS and experimental mea-

surements for a cylindrical convection cell with Γ ¼ 1=2 at
large Ra and for a range of rotation rates from slow to rapid,
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that a wider (several times the Stewartson layer width)
annular flow, denoted as boundary zonal flow (BZF), has
profound effects on the overall flow structure and on the
spatial distribution of heat flux. In particular, this cyclonic
zonal flow surrounds an anticyclonic core. The BZF has
alternating temperature sheets that produce bimodal tem-
perature distributions for radial positions r=R > 0.7 and
that contribute greatly to the overall heat transport; 60% of
heat transport are carried in the BZF. Although the location
of the azimuthally averaged maximum cyclonic azimuthal
velocity, the root-mean-square (rms) vertical velocity
fluctuations, and the normalized vertical heat transport at
the midplane are consistent with a linear description of a
Stewartson-layer scaling [24], the dynamics of temperature,
vertical velocity, and heat transport in the BZF are more
complex and interesting. The robustness of the BZF state as
evidenced by its existence over 7 orders of magnitude in Ra
in DNS and experiment and over a range 1=2 ≤ Γ ≤ 2 and
0.1 ≤ Pr ≤ 4.4 (results to be presented elsewhere) suggests
that this is a universal state of rotating convection that needs
a physical understanding.
The dimensionless control parameters in rotating

RBC are the Rayleigh number Ra ¼ αgΔH3=ðκνÞ, Prandtl
number Pr ¼ ν=κ, cell aspect ratio Γ, and Rossby number
Ro ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
αgΔH

p
=ð2ΩHÞ or, alternatively, Ekman number

Ek ¼ ν=ð2ΩH2Þ. Here, α is isobaric thermal expansion
coefficient, ν kinematic viscosity, κ fluid thermal diffusiv-
ity, g acceleration of gravity, Ω angular rotation rate, and Δ
temperature difference between the hotter bottom and
colder top plates. The main integral response parameter
we consider is the Nusselt number Nu≡ hF zit;V, where
h·it;V denotes the time and volume averaging and F z ≡
½uzðT − T0Þ − κ∂zT%=ðκΔ=HÞ is the normalized vertical
heat flux with uz being the vertical component of the
velocity and T0 the average of the top and bottom
temperatures.
We present numerical and experimental results [27] for

rotating RBC in a Γ ¼ 1=2 cylindrical cell and 1=Ro ¼ 0,
0.5, and 10. The DNS used the GOLDFISH code [28,29] with
Pr ¼ 0.8 and Ra ¼ 109. The experiments used pressurized

sulfur hexafluoride (SF6) and were performed over a large
parameter space in the High Pressure Convection Facility
(HPCF, 2.24 m high) at the Max Planck Institute for
Dynamics and Self-Organization in Göttingen [30]. In
the studied parameter range, the Oberbeck–Boussinesq
approximation is valid [31–33], and the centrifugal force
is negligible [8,34,35].
First, we consider the azimuthal variation of the temper-

ature measured by thermal probes at or near the sidewall, a
commonly used technique for parametrizing the LSC in
RBC [18,20,36–38]. We measured, experimentally and in
corresponding DNS, the temperature at eight equidistantly
spaced azimuthal locations of the sensors for each of three
distances from the bottom plate: z=H ¼ 1=4, 1=2, and 3=4.
The probability density functions (PDFs) of the experi-
mental data without rotation (1=Ro ¼ 0, Ra ¼ 8 × 1012) in
Fig. 1(a) show a distribution with a single peak and slight
asymmetry to hotter (colder) fluctuations for heights
smaller (larger) than z=H ¼ 1=2, whereas the PDFs for
rapid rotation [1=Ro¼ 10, Fig. 1(b)], show a bimodal
distribution that is well fit by the sum of two Gaussian
distributions. The corresponding PDFs of the DNS data (at
Ra ¼ 109) show the same qualitative transition from a
single peak without rotation to a bimodal distribution in the
rapidly rotating case with similar hot-cold asymmetry for
different z [Figs. 1(c) and 1(d)]. To understand the nature of
the emergence of a bimodal distribution near the radial
boundary, we consider the DNS data in detail.
The LSC for nonrotating convection in cells with 1=2 ≤

Γ ≤ 2 and at largeRa extends throughout the entire cell with
a large roll-like circulation [39]. With slow rotation, Coriolis
forces induce anticyclonic motion close to the plates owing
to the diverging flow between the LSC and the corner rolls.
At the midplane, the LSC is tilted with a small inward radial
velocity component that rotation spins up into cyclonic
motion. These tendencies are illustrated for 1=Ro ¼ 0.5 in
Figs. 2(a) and 2(c), respectively, where streamlines
of time-averaged velocity are overlaid on the field of
azimuthal velocity. Figure 2(a) shows fields evaluated at
the thermal boundary layer (BL) height z ¼ δθ ≡H=ð2NuÞ,

FIG. 1. Sidewall temperature PDFs, r=R ¼ 1, for z=H ¼ 1=4 (diamonds), z=H ¼ 1=2 (circles), and z=H ¼ 3=4 (squares), with
1=Ro ¼ 0 (a), (c) and 10 (b), (d). Experimental measurements with Ra ¼ 8 × 1012 (a), (b) and DNS with Ra ¼ 109 (c), (d), both with
Pr ¼ 0.8. Bimodal Gaussian distributions (solid lines), the sum of two normal distributions (dashed lines), are observed for rapid
rotation (b), (d). h·izs denotes average in time and over all sensor positions at distance z from the hot plate.
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Experiment DNS

mode-1 (m ¼ 1) anticyclonic circulation in ϕ with a warm
upflow on one side of the cell balanced by a cool downflow
on the other side of the cell (for Γ ¼ 1, 2, the dimensionless
wave numberm=Γ ¼ 2 is independent of Γ, to be presented
elsewhere). The anticyclonic circulation is the speed of the
anticyclonic horizontal BL, suggesting that the thermal
wave is anchored at the horizontal BLs so that it travels
against the cyclonic circulation near the sidewall. The
coherence between T and uz leads to localization of vertical
heat flux near the sidewall shown in Fig. 4(c) where the
heat flux within the annular area defined by δ0 is ≈60% of
the total heat flux.
We arrive at a compact description of the BZF. The radial

distances from the sidewall δurms
z
, δFmax

z
, and δumax

ϕ
of maxima

of uz-rms, heat fluxF z, and uϕ, respectively, scale as Ek1=3,
Fig. 5(a), consistent with the expectations of Ekman-
Stewartson BL theory [24,42]. On the other hand, the
cyclonic zone width δ0 decreases more rapidly with Ek, i.e.,
as Ek2=3 with a Ra1=4 dependence (presented elsewhere).
Thus, the inner layer is consistent with Stewartson theory
whereas the outer structure reflects the more complex
character of interacting thermal and velocity fields. The
bimodal temperature distribution is now explained by the
alternating thermal field. We plot the radial dependence of
the mean values of the bimodal distributions (the bimodal
PDFs are well fit by the sum of two Gaussians) from the
DNS for Ra ¼ 109, 1=Ro ¼ 10 in Fig. 5(b). The unimodal
distribution for small r=R bifurcates sharply to a bimodal
distribution for r=R ≈ 0.72. The corresponding experimen-
tal measurements do not provide data at intermediate r=R,
but are consistent (dashed curve) with a scaled BZF width
based on the scaling Ra1=4Ek2=3. Finally, the transition
value of 1=Ro ≈ 2 from unimodal to bimodal distributions
is roughly independent of Ra as indicated in Fig. 5(c).
Our observations provide insight into experimental

results for Γ ¼ 1=2 in water with Pr ¼ 4.38 [20], where
the mode-1 LSC for nonrotating convection was reported to

FIG. 4. For Ra ¼ 109 and 1=Ro ¼ 10: (a), (b) angle-time plots
at r ¼ rumax

ϕ
, z ¼ H=2 of (a) T and (b) uz; (c) normalized time-

averaged vertical heat flux hF zit at z ¼ H=2. In (c), location of r
where hF zjz¼H=2it ¼ Nu (dashed-dotted line) and locations r ¼
r0 of huϕit ¼ 0 (solid line) and r ¼ rumax

ϕ
of the maximum of huϕit

(dashed line) are shown. Color scale from blue (min values) to
pink (max values) ranges (a) between the top and bottom
temperatures, (b) in ½−uff=2; uff=2#, (c) from 0 to midplane
magnitude of hF zit, which is ≈3.4Nu.

FIG. 5. (a) Scaling of BZF widths δ0, δumax
ϕ
, δurms

z
, and δFmax

z
with Ek (DNS for Ra ¼ 109); (b) Fitted peak values of bimodal PDF

distributions (normalized by σ, standard deviation of T) at z=H ¼ 1=2 vs r=R: DNS (Ra ¼ 109) and measurements (Ra ¼ 8 × 1012),
both for 1=Ro ¼ 10; (c) diagram of the bimodal and unimodal temperature distributions at r ¼ R, according to our DNS (Ra ¼ 109) and
experiments (larger Ra) of rotating RBC for Pr ≈ 0.8 and Γ ¼ 1=2. Critical inverse Rossby number equals 1=Roc ¼ 2$ 1 (shown with
a dashed line).
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mode-1 (m ¼ 1) anticyclonic circulation in ϕ with a warm
upflow on one side of the cell balanced by a cool downflow
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wave numberm=Γ ¼ 2 is independent of Γ, to be presented
elsewhere). The anticyclonic circulation is the speed of the
anticyclonic horizontal BL, suggesting that the thermal
wave is anchored at the horizontal BLs so that it travels
against the cyclonic circulation near the sidewall. The
coherence between T and uz leads to localization of vertical
heat flux near the sidewall shown in Fig. 4(c) where the
heat flux within the annular area defined by δ0 is ≈60% of
the total heat flux.
We arrive at a compact description of the BZF. The radial

distances from the sidewall δurms
z
, δFmax

z
, and δumax

ϕ
of maxima

of uz-rms, heat fluxF z, and uϕ, respectively, scale as Ek1=3,
Fig. 5(a), consistent with the expectations of Ekman-
Stewartson BL theory [24,42]. On the other hand, the
cyclonic zone width δ0 decreases more rapidly with Ek, i.e.,
as Ek2=3 with a Ra1=4 dependence (presented elsewhere).
Thus, the inner layer is consistent with Stewartson theory
whereas the outer structure reflects the more complex
character of interacting thermal and velocity fields. The
bimodal temperature distribution is now explained by the
alternating thermal field. We plot the radial dependence of
the mean values of the bimodal distributions (the bimodal
PDFs are well fit by the sum of two Gaussians) from the
DNS for Ra ¼ 109, 1=Ro ¼ 10 in Fig. 5(b). The unimodal
distribution for small r=R bifurcates sharply to a bimodal
distribution for r=R ≈ 0.72. The corresponding experimen-
tal measurements do not provide data at intermediate r=R,
but are consistent (dashed curve) with a scaled BZF width
based on the scaling Ra1=4Ek2=3. Finally, the transition
value of 1=Ro ≈ 2 from unimodal to bimodal distributions
is roughly independent of Ra as indicated in Fig. 5(c).
Our observations provide insight into experimental

results for Γ ¼ 1=2 in water with Pr ¼ 4.38 [20], where
the mode-1 LSC for nonrotating convection was reported to

FIG. 4. For Ra ¼ 109 and 1=Ro ¼ 10: (a), (b) angle-time plots
at r ¼ rumax

ϕ
, z ¼ H=2 of (a) T and (b) uz; (c) normalized time-

averaged vertical heat flux hF zit at z ¼ H=2. In (c), location of r
where hF zjz¼H=2it ¼ Nu (dashed-dotted line) and locations r ¼
r0 of huϕit ¼ 0 (solid line) and r ¼ rumax

ϕ
of the maximum of huϕit

(dashed line) are shown. Color scale from blue (min values) to
pink (max values) ranges (a) between the top and bottom
temperatures, (b) in ½−uff=2; uff=2#, (c) from 0 to midplane
magnitude of hF zit, which is ≈3.4Nu.

FIG. 5. (a) Scaling of BZF widths δ0, δumax
ϕ
, δurms

z
, and δFmax

z
with Ek (DNS for Ra ¼ 109); (b) Fitted peak values of bimodal PDF

distributions (normalized by σ, standard deviation of T) at z=H ¼ 1=2 vs r=R: DNS (Ra ¼ 109) and measurements (Ra ¼ 8 × 1012),
both for 1=Ro ¼ 10; (c) diagram of the bimodal and unimodal temperature distributions at r ¼ R, according to our DNS (Ra ¼ 109) and
experiments (larger Ra) of rotating RBC for Pr ≈ 0.8 and Γ ¼ 1=2. Critical inverse Rossby number equals 1=Roc ¼ 2$ 1 (shown with
a dashed line).
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Pr = 5.2 Ek = 10-7 𝛤 = 1/5

TURBULENT ROTATING CONVECTION CONFINED IN A …

FIG. 2. Snapshots of vertical velocity uz/U from the simulations at (a) and (b) Ra = 5 × 1010 and (c) and
(d) Ra = 4.3 × 1011. Panels (a) and (c) display vertical cross sections where the horizontal direction has been
stretched by a factor two for clarity; panels (b) and (d) are horizontal cross sections at z/H = 0.5.

chimneys connecting both boundary layers and shielded with patches of opposite vorticity. The
“torsional” nature of the columns [30,31], with vertical vorticity changing sign from cyclonic to
anticyclonic while crossing the vertical extent of the domain, is confirmed with plots of vertical
vorticity (not shown here). The simulation at Ra = 7.0 × 1010 also renders a CTC-type flow. At
higher Ra ! 1.5 × 1011 the vertical coherence is relaxed, but still the dominant force balance is
the geostrophic balance between Coriolis and pressure gradient. This flow regime is referred to as
plumes [7,12,18]. At Ra = 1.4 × 1011 (not shown) some columns can be found but the columnar
structure is falling apart, hence a transitional state. For the two highest-Ra cases considered here
we recover a flow as displayed in Figs. 2(c) and 2(d), belonging to either plumes or geostrophic-
turbulence regimes [1,10,12,18] that are difficult to discern by eye (and which is not our current
objective).

However, all simulations share a predominant flow feature: there is a region of large vertical
velocity near the sidewall. This represents a structure of fluid flowing up along one side of the wall
and down along the opposite side. It can be observed throughout almost the full vertical extent of
the domain; it is only close to the Ekman layers that the prominence of this flow is reduced. We
will refer to this flow feature as the sidewall circulation. Zhang et al. [24] coined it the boundary
zonal flow (BZF); here we shall not adopt that name given the different results from the analysis of
the sidewall flow feature that we will indicate later, which could also indicate different structures.
Nevertheless, here, as in Ref. [24], the sidewall circulation contributes significantly to the overall
heat transfer.

B. Size of the sidewall circulation

The definition of the size of a boundary layer like this is quite ambiguous. Different definitions
may be used; see, e.g., the various definitions of the thermal boundary layer thickness as compared
in Ref. [12]. Zhang et al. [24] have introduced four definitions that we will also apply (all evaluated
at midheight z/H = 0.5):

δ0, where the time and azimuthally averaged azimuthal velocity 〈uφ〉t,φ is zero
δumax

φ
, where 〈uφ〉t,φ reaches its maximum

δFz , where the normalized local vertical heat flux Fz = [uz(T − Tm) − κ∂T/∂z]/(κ%T/H )
attains its maximum, with Tm = (Tbottom + Ttop)/2 the mean temperature of bottom and top plates

δurms
z

, where the root-mean-square (rms) vertical velocity is maximal.
Additionally, we consider three more boundary layer scales:

δurms
φ

, location of the maximal azimuthal rms velocity

023502-5

m=1uz

Favier & Knobloch, J. Fluid Mech. Rapids (2021)

Pr = 1  Ek = 10-6  𝛤 = 3/2

Robust wall states in RRBC 5

(a)
0

1

0 2⇡

z

� 0 2⇡�

0

4.6⇥104

T
im

e
(r
ot
at
io
n
u
n
it
s)

�0.15

0

0.15

✓(
r
=

0.
74
,z

=
1/
2)

(b)
0

1

0 2⇡

z

� 0 2⇡�

0

1.5⇥104

T
im

e
(r
ot
at
io
n
u
n
it
s)

�0.15

0

0.15

✓(
r
=

0.
74
,z

=
1/
2)

(c)
0

1

0 2⇡

z

� 0 2⇡�

0

6.4⇥103

T
im

e
(r
ot
at
io
n
u
n
it
s)

�0.15

0

0.15

✓(
r
=

0.
74
,z

=
1/
2)

(d)
0

1

0 2⇡

z

� 0 2⇡�

0

103

T
im

e
(r
ot
at
io
n
u
n
it
s)

�0.15

0

0.15

✓(
r
=

0.
74
,z

=
1/
2)

Figure 2. Left: visualizations of the instantaneous vertical velocity uz (left side) and fluctuating
temperature ✓ (right side) in the mid-plane z = 0.5 in a � = 1.5 cylinder in the quasi-stationary
state. Middle: instantaneous temperature fluctuations ✓ on the side wall r = �/2 as a
function of the azimuthal angle � and vertical coordinate z in the quasi-stationary state. Right:
spatio-temporal plots showing the evolution of the temperature fluctuation ✓ at z = 0.5 and
radius r = 0.74, with � plotted horizontally and time (in rotation units) increasing downwards.
The time interval is di↵erent in each panel. In each case, the simulation is run for at least a
hundred free-fall times, which corresponds to thousands of rotation times. The parameters are
� = 1.5, E = 10�6 and Pr = 1; in such a cylinder the wall is at r = 0.75. The Rayleigh number
increases from top to bottom: (a) Ra = 5 ⇥ 107, (b) Ra = 2 ⇥ 108, (c) Ra = 5 ⇥ 108 and (d)
Ra = 2⇥ 109. In panel (b), the dashed horizontal line indicates a reduction of Ra from 2⇥ 108

to 5⇥ 107: the m = 4 mode survives albeit with a slower precession frequency.
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Figure 2. Left: visualizations of the instantaneous vertical velocity uz (left side) and fluctuating
temperature ✓ (right side) in the mid-plane z = 0.5 in a � = 1.5 cylinder in the quasi-stationary
state. Middle: instantaneous temperature fluctuations ✓ on the side wall r = �/2 as a
function of the azimuthal angle � and vertical coordinate z in the quasi-stationary state. Right:
spatio-temporal plots showing the evolution of the temperature fluctuation ✓ at z = 0.5 and
radius r = 0.74, with � plotted horizontally and time (in rotation units) increasing downwards.
The time interval is di↵erent in each panel. In each case, the simulation is run for at least a
hundred free-fall times, which corresponds to thousands of rotation times. The parameters are
� = 1.5, E = 10�6 and Pr = 1; in such a cylinder the wall is at r = 0.75. The Rayleigh number
increases from top to bottom: (a) Ra = 5 ⇥ 107, (b) Ra = 2 ⇥ 108, (c) Ra = 5 ⇥ 108 and (d)
Ra = 2⇥ 109. In panel (b), the dashed horizontal line indicates a reduction of Ra from 2⇥ 108

to 5⇥ 107: the m = 4 mode survives albeit with a slower precession frequency.
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Figure 5. Vertical velocity in the mid-plane z = 0.5 in a � = 0.2 cylinder rotating at E = 10�7

with Pr = 5.2 and (a) Ra = 2 ⇥ 109, (b) Ra = 5 ⇥ 1010 (this last case can be compared with
figure 2(b) of de Wit et al. (2020) at the exact same parameters). (c) Drift frequency �!d as
a function of Ra. The theoretical value !d = !c ⇡ �63E/Pr predicted by Herrmann & Busse
(1993) for the onset of the instability in the presence of a planar wall is also reported (open
circle). The oblique line corresponds to the scaling !d ⇡ �6⇥ 10�10Ra1.16E reported in de Wit
et al. (2020) and obtained at much larger Ra.

the top and bottom Ekman layers, a direct consequence of Ekman pumping due to the
di↵erential rotation above and below.

4. Link with recent experiments and simulations at high Ra

Recent experiments and simulations have shown the emergence of a boundary zonal
flow in confined rotating Rayleigh-Bénard convection (Kunnen et al. 2011; de Wit et al.
2020; Zhang et al. 2020). However, a link between this flow and the wall modes was not
explicitly made. In further support of this link, we repeated the simulation of de Wit
et al. (2020) using the parameters E = 10�7, Pr = 5.2 and � = 0.2. Instead of focusing
on the dynamics of the bulk mode, as in de Wit et al. (2020), we consider Rayleigh
numbers below the onset of the bulk mode (i.e., for Ra < Ra

bulk
c ⇡ 2⇥ 1010), but above

the onset of the wall mode (Ra > Ra
wall
c ⇡ 3⇥ 108). We show in figure 5(a) the vertical

velocity in the mid-plane at Ra = 2⇥ 109, well beyond the onset of wall modes, once the
system has reached a statistically steady state. We observe an m = 1 travelling wave,
presumably a consequence of the small value of � (the asymptotic onset wavenumber for
� = 0.2 is m ⇡ 0.6). This state is very similar to the boundary zonal flow observed by de
Wit et al. (2020) (see their figure 2(b), for example) at the much higher Rayleigh number
of Ra = 5 ⇥ 1010. Here the nonlinear dynamics of the wall state are clearly constrained
by the small aspect ratio used in these simulations compared to the cases discussed in
the previous section. However, once the Rayleigh number is increased to Ra = 5⇥ 1010,
we recover the emergence of the bulk mode superposed on the nonlinear wall mode (see
figure 5(b), which can be directly compared with figure 2(b) of de Wit et al. (2020)).
Note that de Wit et al. (2020) also measured the drift frequency as a function of Ra and
found the following fit: !d ⇡ �6⇥ 10�10

Ra
1.16±0.06

E (using our rotation units).
Using the same approach as in section 3, we measured the drift frequency in our

simulations below the onset of the bulk mode, and in figure 5(c) we compare the results
with the fit of de Wit et al. (2020). The results clearly bridge the gap between the onset
theoretical value derived by Herrmann & Busse (1993) and the highly turbulent scaling
found by de Wit et al. (2020), thereby providing additional evidence for the robustness
of the linear scaling discussed in section 3. Note also that we reproduce many of the
results presented in these studies (such as the bimodal temperature distribution and
the boundary zonal flow) by considering cases below the onset of the bulk mode. This
provides a clear indication that the boundary dynamics observed in these studies are
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Figure 8. Space–time plots of temperature T at the sidewall, r = R, and at half-height, z = H/2, for
Ra = 108, 1/Ro = 10, Pr = 0.8, and (a) Γ = 1/2, (b) Γ = 1 and (c) Γ = 2.

Zhong et al. (1993, figures 3 and 8) with Γ = 2 show stable wall modes with m = 4, 5, 6
and 7 near onset but only the m = 4 and 5 modes persist for higher Ra, which yields
m = 2Γ and m = 2.5Γ , respectively, consistent with our results for the BZF (see also
Favier & Knobloch 2020).

3.4. Spatial and temporal scales
We next consider the quantitative dependence of the different layer widths on Ra, Ek
and Pr, looking for a universal scaling of the form δ/H ∼ Prξ RaβEkγ . In figure 9(a),
the dependence of δ0/H on Ek for Ra = 109, Pr = 0.8 and 2 < 1/Ro < 20 is shown to
be consistent with an Ek2/3 scaling, whereas the widths based on other measures scale
closely as Ek1/3, i.e. γ takes on values of 2/3 and 1/3 for BZF width and velocity layer
widths, respectively. (Because the statistical uncertainty in our reported exponents is of
the order of 5 %–10 %, we report fractional scalings consistent with the data to within
these uncertainties; they are not intended to denote exact results.) As mentioned in Zhang
et al. (2020), the BZF is characterized by bimodal temperature p.d.f.s near the sidewall.
This property was used in both DNS and experimental measurements to identify the
BZF over a wide range of Ra. Here, we conduct a more detailed analysis of the DNS
data to explore how the width of the BZF changes with Ra. We compute the width at
fixed Ro = Ra1/2Pr−1/2Ek so Ek = Ro Ra−1/2Pr1/2. To determine the scaling with Ra at
fixed Ro = 1/10, we have that δ/H ∼ Raβ−γ /2. By multiplying by Raγ /2 we obtain the
scaling exponent β. In figure 9(b), we plot (δ0/H)Ra1/3 and (δ/H)Ra1/6 corresponding
to γ values of 2/3 and 1/3, respectively. From this plot, we obtain values for β of 1/4 and
0, respectively. Similarly for the dependence on Pr, we plot in figure 9(c) the corrected
quantities (δ/H)Prγ /2, which yields δ0/H scalings for ξ of −1/4 for Pr < 1 and 0 for
Pr > 1. The other layer widths based on uφ , uz and Fz are independent of Pr for Pr < 1
but do not collapse for Pr > 1. The separation of the different widths for Pr > 1 suggests
some interesting behaviour not captured by our scaling ansatz.

Finally, we can collapse all the data for BZF width onto a single scaling curve by plotting
in figure 9(d) δ∗

0/H = δ0/H(Pr{1/4, 0}Ra−1/4) versus Ek (to compact the different scalings
with Pr we denote them as Pr{1/4,0} for scaling with Pr < 1 and Pr > 1, respectively)
so that we can conclude that δ0/H ∼ Pr{−1/4,0}Ra1/4Ek2/3. The results at one set of
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Figure 10. Scalings of ωd: (a) data scaled by Pr4/3Ek−5/3 showing Ra scaling; (b) data scaled by Ra−1Ek−5/3

showing Pr−4/3 scaling; and (c) data scaled by Pr4/3Ra−1 showing Ek5/3 scaling (cases at different Ra ( grey
squares), at different Pr ( red triangles) and at different Ro (blue circles)).

We plot in figure 9(e) the scaled BZF width (δ0/H)/(0.85Γ 0Pr{−1/4, 0}Ra1/4Ek2/3). One
sees that the data scatter randomly within ±10 %, quite good agreement.

The BZF drifts anticyclonically, the same as the direction of travelling wall modes of
rotating convection (Zhong et al. 1991; Ecke et al. 1992; Herrmann & Busse 1993; Kuo
& Cross 1993). We plot in figure 10(a) the drift frequency ωd ≡ ω/Ω versus Ra showing
scaling as Ra and in figure 10(b) versus Pr showing scaling as Pr−4/3(data in both are
corrected for constant-Ro conditions). In figure 10(c), we scale out the dependence on Ra
and Pr, i.e. ωdRa−1Pr4/3, and observe reasonable collapse with Ek5/3 scaling. From the
cases listed in table 2, we get the frequency scaling in terms of Ra, Pr, Γ and Ek as

ωd ≈ 0.03Γ 0Pr−4/3Ra Ek5/3. (3.9)

The linear dependence on Ra is consistent with earlier results (Horn & Schmid 2017;
Favier & Knobloch 2020; de Wit et al. 2020) and suggests that there is a correspondence
between the states we observe and the nonlinear manifestation of linear wall mode states.
The scalings we have determined for ωd with Ek and Pr will be useful in making a more
quantitative comparison with the wall mode hypothesis among datasets with different Ek
and Pr. Such an analysis is beyond the scope of the present work and will be presented
elsewhere. These scalings, of course, depend on the definition of the time unit. Using the
free-fall time or the vertical thermal diffusion time, respectively, we obtain

ω/
√

αg∆/H ≈ 0.015Γ 0Pr−5/6Ra1/2Ek2/3, (3.10)

ω/(κ/H2) ≈ 0.015Γ 0Pr−1/3Ra Ek2/3, (3.11)

which both show the same Ek scaling as δ0, i.e. Ek2/3 (see figure 9a). For the three choices
of time scale, the drift frequency decreases with increasing Pr for all Pr as opposed to
the scaling of δ0/H, which has different scaling for small and large Pr (see figures 9c and
12b).

As reported in Zhang et al. (2020) and shown here in figure 3, the thermal structures drift
anticyclonically, opposite to the azimuthal velocity, which is cyclonic near the sidewall,
as shown in figure 2(b–d). We show in figure 11(a) that the drift frequency decreases
as rotation increases with a scaling Ek2/3. In figure 11(b), we show that the near-plate
azimuthal velocity upeak

( is also anticyclonic and shows the same scaling behaviour with
Ek (see figure 10b) as the BZF width and drift frequency. Based on this observation, we
believe that the drift characteristics of the BZF are determined not only by the presence of
the vertical wall but also by the near-plate region.
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CONNECTING WALL MODES AND BOUNDARY ZONAL …
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FIG. 1. Phase diagram of states of rotating Rayleigh–Bénard convection: Ra/Raw vs Ek. Boundaries are
for Raw , Rac, Rag, and Rat defined in the text.

Figure 2 shows these fields for several Ra [32]; also labeled is the reduced Ra defined as ε =
Ra/Raw − 1 taking the experimental value Raw = 2.8 × 107. Very close to onset (ε ≈ 0.07), the
flow is organized as a mode-1 state with symmetric upwelling warmer (red) and downwelling cooler
regions (blue), an overall anticyclonic rotation at the midplane, and a sinusoidal mean-temperature
isotherm in the vertical field as shown in Fig. 2(a). The confined geometry of " = 1/2 means that
the wall-mode temperature amplitude is not localised near the sidewall as in larger " [5,7] but has
an almost linear variation across the diameter as in Fig. 2(a). Thus, when the bulk mode appears at
higher Ra, it grows from a nonzero base state.

With increasing Ra, the wall-mode state becomes more nonlinear but time-independent (in a
frame corotating with the retrograde traveling wall mode) for Ra ! 4 × 108. The state presented
in Fig. 2(b) for Ra = 5 × 108 shows the more complex horizontal temperature field and flow
circulation and the strongly nonlinear square-wave-like vertical profile with forward/backward
(left/right) asymmetry; it is also weakly time dependent indicating a wall-mode transition to an
oscillatory state. For larger Ra, Fig. 2(c), the streamlines are irregular, indicating unsteady flow and
thermal inhomogeneity appears in the interior. One sees vertical striations arising from the influence
of aperiodic time-dependent bulk modes interacting with the wall mode.

The wall mode state is characterized by four main properties that we consider here: the heat
transport Nu, the precession frequency ω, the azimuthal mode number, and the radial distribution of
heat transport or azimuthal velocity uφ . The azimuthal mode number is 1 because of small " = 1/2.
Previously we demonstrated that for the BZF m = 1 for " ! 3/4 and m = 2" for " = 1 or 2 [20].
Our data show continuity from wall mode to BZF for this ".

We first consider the heat transport and its contributions from the wall mode, from the bulk
state, and from the BZF. In Fig. 3(a), we show Nu versus Ra that covers the wall mode regime
3 × 107 < Ra < 5 × 108, a transition region 5 × 108 < Ra < 9 × 109, and the onset of strong
bulk modes coexisting with remnant sidewall-localized modes, i.e., a BZF. The inset shows linear
growth of the wall mode heat transport near onset consistent with the expected scaling Nu − 1 = aε
with a ≈ 1.54 and Raw = 2.8 × 107 (compared to the theoretical value 3.2 × 107 for an insulating
sidewall and a planar (as opposed to a curved wall in cylindrical geometry) wall [25,32]). As the wall
modes become more nonlinear, Nu increases less rapidly and approaches an inflection point around
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Figure 6. (a) Radial profiles of normalized time- and φ-averaged heat flux 〈Nu〉φ,t(r)/〈Nu〉V,t at z = H/2, for
different rotation rates. The inset shows the radial profiles of time- and φ-averaged uφ , where solid lines pass
through 〈uφ〉φ,t = 0 (radial location corresponds to r0). (b) Ratio of BZF area to the total area at z = H/2, i.e.
A0 = (R2 − r2

0)/R2. (c) Ratio of mean vertical heat flux inside the BZF to mean global heat flux, i.e. Rf (3.5).
(d) Ratio of heat transported inside the BZF (solid circles) or in an extended zone R − 2δ0 < r < R (open
circles) to total transported heat, i.e. Rh (R∗

h) (3.6). For all panels Ra = 109, Pr = 0.8 and Γ = 1/2.

effect of the BZF on the heat transport extends over a wider range r < r0; over some range,
Nu is actually negative (see figure 6a), implying an anticorrelation of vertical velocity and
buoyancy, i.e. warm fluid going down or cooler fluid moving up. If we modify the annular
averaging to take into account the decreased Nu region as well as the inner structure of
the BZF, i.e. we average over the extended region R − 2δ0 ≤ r ≤ R, we get the ratio R∗

h,
which is also shown in figure 6(d) (open symbols) where one sees an even larger fractional
contribution.

We also consider the dependence of the heat transport ratio Rh as a function of Pr (see
inset of figure 6d). Interestingly, for Pr < 1 we find 0.6 < Rh < 0.7, whereas for Pr > 1
we have 0.3 < Rh < 0.4, with a quite sharp transition for Pr ≈ 1. The origin of this rather
sharp change emphasizes the important role that Pr plays, perhaps through the competition
between thermal and viscous BLs. Finally, comparing our computation of the total Nu
with increasing rotation with that of Wedi et al. (2021) (see figure 13 in the Appendix),
we conclude, given the close agreement, that the contribution of the BZF affects both
measures of Nu substantially and needs to be taken into account when considering the
scaling of geostrophic heat transport in experiments and also in DNS with no-slip sidewall
boundary conditions (see also de Wit et al. 2020).

3.3. Dependence on Ra, Pr and Γ

We first discuss the qualitative robustness of the BZF with respect to Ra, Pr and Γ before
we consider its quantitative spatial and temporal properties. We demonstrate the character
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FIG. 6. Linear eigenfunctions (discretized from data in Figs. 4 and 5 of Ref. [20] for Ek = 10−6 and
Pr = 7): (a) Eigenfunction of uz versus Ek−1/3x, where x reflects the distance from a flat sidewall. Characteristic
lengths are indicated by the location of the peak δuzp

, the first zero crossing δuz , and the minimum δuzm
.

(b) Eigenfunction of T versus x. The dashed line is an exponential fit to the data 1.05e−x/0.13 that fits extremely
well over the whole range except very near the sidewall on the order of the uz radial width [see the inset where
short red (long) dashed vertical line is rmax (r0) of uz]. (c) The geometric length scale LR = R = "/2 is plotted
versus values of " considered (solid black circles) and compared with the temperature length scale δT and the
vertical velocity length scale δuz evaluated at Ek = 10−4 (dashed blue) and Ek = 10−6 (solid blue).

of Bessel functions of the first kind, Jm(kr) of order m [16]. It is therefore natural to consider uz(r) 274

fields as Fourier–Bessel transforms with m = 1: 275

cn = 2/[J2( j1n)]2
∫ 1

0
ruz(r)J1( j1nr)dr,

uz(r) ≈
N∑

1

cnJ1( j1nr),

where uz(r) is the radial component of the vertical velocity field and j1n are the nth order zeros of 276

J1(x). Empirically, we find that N = 50 yields excellent fits to uz(r) which is primarily consequential 277

in the advection of heat and the determination of the global heat transport Nu. In Fig. 8(a), 278

we show the radial dependence of mean uz for Pr = 0.8, " = 1/2, and Ek = 10−6 evaluated 279
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(d) Ra = 3 × 107 average radial structure (solid line) compared with linear eigenfunctions (dashed) [20] for uφ

(red) uz (blue), and ur (black). The first zero crossing of uz is at about the same r as the maximum of ur . All
profiles are scaled such that the maximum values are one. (e) Variation of radial maximum values uzmax (blue
solid circles), uzrms,max (light blue inverted triangles), uφmax (red solid squares), and urmax (black solid triangles) vs
Ra − Raw. Linear scaling u ∼ (Ra − Raw)1/2 (blue, red, and black dashed lines, respectively). Vertical dashed
lines from smaller to larger Ra: end of quasilinear regime (long-dashed) Ra ≈ 9 × 107—note the decrease in
uφ , the subcritical instability to lateral jet ejection (dashed), the transition to aperiodic (chaotic) jet ejection
(long-dashed), and the bulk onset (dashed).

at its azimuthal maximum (in the precessing frame) and at the midplane (z = 1/2) height for280

3 × 107 ! Ra ! 3 × 108. The inset is the normalized Fourier–Bessel decomposition coefficients281

cn which has a simple form and is quite independent (modulo an overall scale factor that increases282

with Ra for Ra < 3 × 108, i.e., for steady wall modes). An expanded view in Fig. 8(b) shows the283

details of the profiles near the sidewall and the definition of the radial extent of the main wall284

peak—here we take the first zero crossing of uz(r) as the characteristic width δuz . The inset shows285

the radial profile obtained by averaging the normalized cn values over the Ra range. The data286

points are from the amplitude-normalized planar eigenfunction of uz shown in Fig. 6(a) and match287
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FIG. 10. Midplane temperature field maximum (averaged in precessing frame at maximum with respect to
φ) T (r) versus r/R for (a) Ra/107 = 3, 10, and 30. Dashed colored lines indicate the temperature eigenfunction
for a planar wall [20] [as in Fig. 7(a)] adjusted for approximate sidewall mean temperature. Mean width
δuz and its variation (lateral error bars) in our computations are shown. (b) Ra/107 = 40, 60, and 80. The
corresponding temperature eigenfunction for Ra = 4 × 108 and the mean width δuz are shown. (c) maximum
radial value (at r/R = 1) Tmax (black circles) and Trms (red squares) versus Ra/107 with different regions labeled
by vertical dashed lines. The long-dashed lines denote transitions from weakly nonlinear growth of T . Solid
line is 6.0 × 10−5(Ra − Raw)1/2 − 7.6 × 10−10(Ra − Raw) to decreasing amplitude at Ra ≈ 8.5 × 107 as the
vertical temperature profile in the wall mode steepens and from periodic to aperiodic (chaotic) time dependence
of Nu at Ra ≈ 6.5 × 108.3

With the insights provided by the structure of uz(r) and T (r), one can understand the radial325

structure of the heat transport Nu(r). In Fig. 11(a), the normalized (peak values set to one) fields326

ũz(r), T̃ (r), ũz(r)T̃ (r), and Ñu(r) are shown for an average over time-independent wall modes327

3 ! Ra/107 < 30. T (r) varies slowly with r and the fields are time independent in the precessing328

frame. If the azimuthal phase difference between uz and T is small, i.e., the place where uz is329

maximally upward (downward) is the same as where T is maximally positive (negative) with respect330

to the mean, then one has Nu(r) ∼ uz(r) to within about 10%. Taking Nu ∼ 〈T 〉〈uz〉 improves the331

agreement to about ±5%. Averaging over the time-dependent wall mode states in the range 40 !332

Ra/107 ! 90 yields similar results shown in Fig. 11(b). More surprising is that averaging over333

(c)

0.7 0.8 0.9
r/R

1.0

(a)

0.7 0.8 0.9
r/R

1.0

(b)

1.00

0.50

0.00

0.7 0.8 0.9
r/R

1.0
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for a given Ra is the radial profile evaluated at the max value in φ in the mean precessing frame and then
normalized by the maximum value. Then different ranges of Ra are averaged. (a) Averaged over 3 ! Ra/107 !
30, (b) Averaged over 40 ! Ra/107 ! 90. (c) Averaged over 100 ! Ra/107 ! 500 where the bulk contribution
is subtracted out.
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corresponding temperature eigenfunction for Ra = 4 × 108 and the mean width δuz are shown. (c) maximum
radial value (at r/R = 1) Tmax (black circles) and Trms (red squares) versus Ra/107 with different regions labeled
by vertical dashed lines. The long-dashed lines denote transitions from weakly nonlinear growth of T . Solid
line is 6.0 × 10−5(Ra − Raw)1/2 − 7.6 × 10−10(Ra − Raw) to decreasing amplitude at Ra ≈ 8.5 × 107 as the
vertical temperature profile in the wall mode steepens and from periodic to aperiodic (chaotic) time dependence
of Nu at Ra ≈ 6.5 × 108.3
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FIG. 12. (a)–(d) Vertical temperature field T (r = 0.98R, φ, z) for Ek = 10−6, Ra: (a) 3 × 107, (b) 5 ×
107, (c) 5 × 108, (d) 109. Precession direction is right to left as indicated by the arrow. (e)–(h) Averaged
angular profiles (temporally averaged in the precessing frame, i.e., φp = φ0 + ωt) for Ra = 5 × 108 (arbitrary
amplitude scaled approximately to ±1/2). The first Fourier mode corresponding to the linear eigenfunction
in φ is black dashed line whereas different z = 0.5, 0.8, and 0.95 are indicated by black, red, and blue solid
lines, respectively. The insets of panels (e)–(g) are the approximate amplitudes #T , #uz, #uφ of the shock-like
feature as a function of z near the upper boundary (z = 1), respectively, with the horizontal arrows indicating the
minimum and maximum extent of the shock. The dashed blue lines are (e) to guide the eye with local maximum
at 1 − zmax = 0.03, (f) an exponential saturation fit to ∼1 − e−(1−z)/z0 with z0 = 0.04, and (g) an exponential
growth fit to ∼e(1−z)/z1 with z1 = 0.003. (e) 〈T (r = 0.98R, φ, z)〉φp , (f) 〈uz(r = 0.98R, φ, z = H/2)〉φp , (g)
〈uφ (r = 0.98R, φ, z = H/2)〉φp , and (h) 〈ur (r = 0.98R, φ, z = H/2)〉φp . For T (z = 1/2) and uz(z = 1/2), the
profiles are close to the linear eigenfunction as is uφ (z = 0.8) (uφ ≈ 0 at z = 1/2) and display very sharp
nonlinear fronts at their advancing edge for z = 0.95, i.e., close to the upper boundary. On the other hand, ur

has a pulse-like shape with very little of the profile being described by the first Fourier mode. The inset shows
a expanded view at the advancing edge (region indicated by black arrow) of the narrow peak at φ ≈ 0.3π with
a spatial oscillation with length about 2λc.

the bulk/BZF states 100 ! Ra/107 ! 500, Fig. 11(c), also produces a fairly good correspondence 334

where here we subtract out the bulk contribution in the cell interior. There is a widening zone of 335

boundary zone influence in the BZF but the form of Nu near the wall is driven predominately by 336

the vertical velocity uz of the wall mode which remains highly localized to within a radial width of 337

order Ek1/3 characteristic of the linear wall-mode eigenfunctions. A more quantitative test of this 338

comparison requires detailed amplitude averaging of the uz(φ) and T (φ) for which we would need 339

better converged statistical quantities in the bulk phase with Ra > Rac; we consider this in future 340

work. 341

In addition to the radial structure of the fields, we consider their azimuthal structure. In 342

Figs. 12(a)–12(d), we show instantaneous vertical temperature fields T (r = 0.98R,φ, z) for values 343
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FIG. 13. Time dependence of the heat transport Nu(t ) for Ra: (a) 108, (b) 2 × 108, and (c) 5 × 108. The
dashed lines in panels (a) and (b) have the form Nu(∞) + Nu0 cos [ω2(t − t0)]e−t/τ0 , where ω2 = 2π/τ2 is
the oscillatory frequency and τ0 is the decay time. For panel (c) one has a more complicated relationship that
accounts for large or small asymmetry ∼ cos 4[ω2(t − t0 )] and a transient growth ∼1 − e−t/τ0 . The dashed lines
are fits to the data using these forms, fitted values are indicated, and horizontal (blue or black) bars indicate τ2

and τ0, respectively.

solutions associated with the time-independent state whereas the blue circles and dashed line show 394

ωd2/ωd ∼ Ra ≈ 1.7. The decay frequency ωd0/ωd ∼ (Raw2 − Ra) (magenta diamonds and dashed 395

line), where its zero intercept indicates the Rayleigh number Raw2 at which the wall mode state 396

becomes unstable to infinitesimal perturbations. For Ra ! 7 × 108, the waveform becomes chaotic 397

with increasing fluctuations and irregular oscillation frequency. The inference from Fig. 14(a) is that 398

the minimum value Numin is when the system is close to the pure wall mode state whereas Numax 399

occurs when the lateral jet makes the maximal contribution to the heat transport. We discuss this in 400

more detail below when we consider the full range of Nu. 401
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FIG. 14. (a) Extreme maximum and minimum values of Nu(t ) (minima: black solid circles, maxima: blue
solid circles and solid red square for chaotic state), where the error bars depict the range of less extreme
maxiumum or minimum values, (b) $Nu (mean peak-to-peak), and (c) normalized oscillation frequency
ωd2/ωd (solid circles: black, stable state and blue, unstable state) and normalized decay frequency (scaled by
1/2 for comparison) (1/2)(2π/τd0 )/ωd (magenta diamonds) vs Ra/108, where ωd is the wall mode precession
frequency. Error bars denote variability of $Nu, ωd2/ωd , and (2π/τd0 )/ωd owing to shorter or longer lengths
of time series and/or unsteady oscillations. The blue shaded region denotes an approximate zone of subcritical
instability. The solid (dashed) lines are schematic suggestions for stable (unstable) behavior. The square (red)
indicates a state where the oscillations have become chaotic with increased fluctuations and variable frequency.
The dashed magenta line represents the stable state transient inverse time constant which is expected to vary as
τ−1

0 ∼ (Raw2 − Ra).
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FIG. 15. For Ra = 5 × 108, Ek = 10−6, and Pr = 0.8: horizontal cross sections of (a) T (r,φ) and (b)–(d)
uz (dashed lines are at radii r/R = 0.98 and 0.90, corresponding to the peak and the first zero crossing,
respectively), uφ , and ur , respectively, for z = 0.8. Red (blue) corresponds to hot (cold) and up (down),
AC—anticyclonic (C—cyclonic), and radially out (radially in), respectively. Vertical profiles (e)–(h) for
corresponding fields (φ, z) evaluated at r/R = 0.98 [see panel (b), outer dashed line]. Arrows and ± symbols
indicate qualitative motion directions. Spatial oscillations of order 2λc are visible in horizontal cross sections of
uz and ur and in vertical azimuthal profiles of uz, uφ , and ur . Note that the major ejections of jets (and return
flow) represented in ur happen near the top and bottom boundaries.

The time dependence of the wall mode was noted earlier [49] for Pr = 1, # = 3/2, and402

Ek = 10−6 where the emission of horizontally propagating thermal plumes originating within the403

wall-mode region and moving into the interior were observed for Ra ! 5 × 108, consistent with our404

results (see also Refs. [57,58]). The mechanism for these fluctuations was hypothesized to result405

from a shear instability of a Stewartson layer of width ≈Ek1/4 [49,59] that develops a net mean406

flow for Ra $ Raw. The criterion for instability in a differentially sheared rotating layer (not a wall-407

bounded flow) is Re ≈ 10 to 20 [60] which is qualitatively consistent with the computational results408

[49]. For comparison we get Re values of 6 and 12 for Ra = 2 × 108 and 5 × 108, respectively,409

based on the wall-bounded layer and 15 and 30 based on the outer free shear layer. Although the410

qualitative Re are about right for shear instability of a zonal barotropic mode [61], a more detailed411

analysis was beyond their scope [49]. Our results show that small scale fluctuation structures appear412

in the wall-bounded zone of order Ek1/3, see Figs. 15(d), 15(g), and 15(h), rather than in the outer413

shear layer of order Ek1/4 (see also below for length scale of striations). Further analysis and414

characterization of this instability is also beyond the scope of our work. Here we elucidate the415

onset of this time-dependent degree of freedom for Pr = 0.8, # = 1/2, and Ek = 10−6. In Fig. 15,4 416

we show instantaneous fields of horizontal and vertical profiles, respectively: T [Figs. 15(a) and417

15(e)], uz [Figs. 15(b) and 15(f)], uφ [Figs. 15(c) and 15(g)], and ur [Figs. 15(d) and 15(h)] for418

Ra = 5 × 108, above the subcritical onset of time dependence. Figs. 15(a)–15(d) show horizontal419

cross sections at z = 1/2 [Fig. 15(a)] and z = 0.8 [Figs. 15(b)–15(d)] whereas Figs. 15(e) and 15(f)420

illustrate the wall mode region r/R = 0.98 with vertical 0 ! z ! 1 and horizontal 0 ! φ ! 2π . The421

horizontal fields show the lateral plume emission into the interior near the crossing point of positive422

or negative uφ and uz whereas the vertical fields show a spatially oscillatory signature of order 2λc423

that generates in the build-up to the emission. The oscillations are strongest for uφ and ur compared424
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FIG. 18. Radial widths δ Ek−1/3 versus Ra/107 for Ek = 10−6: " = 1/2 (closed symbols) and " = 2 (open
symbol); δuz (blue circles), δuφ

(red squares), δur (magenta diamonds), and δωz (orange triangles), and δuzrms

(blue triangles). The three regions are steady wall modes (yellow), subcritical unsteady wall modes (blue), and
BZF or bulk modes (pink). The lateral (blue) dashed line is the length scale of the eigenfunction of uz of 2.5,
the lateral red dashed line is the length scale of the eigenfunction of uφ of 2.24, and the orange lateral line is
for the radial width of ωz of 3.3. The values for δuz for Ra ! 9 × 108 are the rms values and the blue dashed
curve is the function δuz = 2.5 + 0.16(Ra/107 − 80)1/2.

approach we used above for comparing with linear eigenfunctions [20]. Previously, we measured 480

the radial length scale of the wall-mode or BZF states by the first zero crossing of 〈uφ〉φ,t at the 481

midplane [53,54]. This does not work well for the wall mode state because uφ (z) has an approximate 482

zero at the midplane, a radial length scale δuφ
is about 1/2 of its value at, for example, z = 0.8. This 483

explains the apparent scaling ≈Ek2/3 of δ0 found earlier for a range of Ek [53,54] instead of the 484

expected Ek1/3 scaling. This approach works well even for unsteady precession in the subcritical 485

regime but there are insufficient data to get statistical convergence for the highly intermittent BZF 486

state in this study where strong bulk flow is present. In that case, we use the first minimum of 487

the root-mean-square (rms) field (〈uz
2〉φ,t )1/2 which should be at the approximate location of the 488

first zero crossing used for the wall-mode regime. The results are shown in Fig. 18 for uz, uφ , 489

ur , and ωz where the widths δ are normalized by Ek1/3 for comparison with the wall-mode linear 490

eigenfunctions. In the weakly nonlinear regime with Ra " 7 × 107, δuφ
≈ 2.25Ek1/3 consistent with 491

the linear eigenfunction whereas for Ra ! 108, we have δuφ
≈ δuz ≈ 2.5Ek1/3. In contrast, δωz ≈ 492

3.3Ek1/3 ≈ 1.3δuz for Ra " 109. Both δuφ
and δuz start to increase slightly in the region of subcritical 493

instability. For " = 2 (blue, open circle), δuz ≈ δuφ
at Ra = 5 × 108. For Ra ! 109, δuz rms

increases 494

rapidly with Ra. δur shows more variability, perhaps owing to the smaller amplitude of ur which 495

might require better statistical averaging. 496

Other length scales are the horizontal length scales in the interior of the cell as measured 497

in horizontal cross sections and the horizontal and vertical length scales in the azimuthal and 498

vertical direction around the circumference in the sidewall boundary region. The first is char- 499

acteristic of bulk convection whereas the second is reflective of BZF–bulk interactions. For 500

horizontal cross sections, we compute the two-dimensional (2D) autocorrelation function of the field 501

F as CFF (r) ≡ 〈F (x)F (x + r)〉A,t/〈F 2(x)〉A,t in a centered rectangular domain with dimensions 502

0.6D × 0.6D, where 〈·〉A,t means averaging over a horizontal cross-section and in time. We define 503

the length scale δ such that CFF (δ) = 0.25 with uncertainty defined by dδ = ±[dC(r)/dr]−1%C = 504

±0.05[dC(r)/dr]−1 [as compared with Ref. [57] which uses δ =
∫ ∞

0 C(r)dr so our lengths are a bit 505
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FIG. 22. Nu versus Ra/Rac: (a) rs/R = 0.8, Nu>rs − Nuwm BZF (red circles), Nu<rs Bulk (blue squares),
NuNHQGS Pr = 1 [41] (magenta diamonds), and NuDNS Pr = 1, Ek = 10−7 (black triangles) [42]. Horizontal
dashed line for Ra/Rac ! 1 is the wall-mode contribution Nuwm. The blue dashed line is a linear approximation
to Nu>rs − Nuwm ≈ Nu<rs . (b) Same data with rs/R = 0.7. The blue and red dashed lines are linear fits to the
bulk (blue squares) and BZF (red circles), respectively.

Although the procedure above is a tempting one that offers a more or less clean separation, 596

there are concerns about this approach that can be elucidated by considering the vertical tem- 597

perature profile 〈T (r = rmax,φ, z)〉φ,t , where rmax is the value of, and its variation with, Ra. In 598

Fig. 23(a), profiles of 〈T 〉 are shown as functions of z for 3 × 107 ! Ra ! 7 × 108 and in the inset 599

for 109 ! Ra ! 5 × 109. There is a continual increasing slope at the top and bottom boundaries 600

but the interior gradient is not monotonic with a smaller slope at Ra = 5 × 108 compared with 601

that at Ra = 7 × 108. This reversal is also observed in the inset where higher Ra have steeper 602

interior slope. These variations are features associated with the different states of wall modes for 603

Ra ! Rac ≈ 9 × 108 and the development of the bulk instability. An important point here is that 604

the slope is continuously varying (see Fig. 23 in the Appendix) so that the definition of a thermal 605

BL thickness is quite problematic. Perhaps there is localized Ekman pumping associated with the 606

BZF—a topic for further investigation. 607

FIG. 23. (a) Temperature profiles 〈T (r = 0.98R)〉φ,t for 3 × 107 ! Ra ! 7 × 108 as indicated. The di-
agonal black dashed line is the linear conductivity profile of the thermally conducting state. Inset shows
〈T (r = rmax)〉φ,t for 109 ! Ra ! 5 × 109, where rmax is the radial position of the maxima of 〈uz(r)〉φ,t . (b)
−dT/dz|z=0 − 1 (blue, solid circles) and 1 + dT/dz|z=1/2 (red, solid squares) at the same r as in panel (a).
(c) Comparison of −dT/dz|z=0 at the same r as in panel (a) (blue, solid circles) and Nu (red, solid squares),
showing close correspondence.
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FIG. 22. Nu versus Ra/Rac: (a) rs/R = 0.8, Nu>rs − Nuwm BZF (red circles), Nu<rs Bulk (blue squares),
NuNHQGS Pr = 1 [41] (magenta diamonds), and NuDNS Pr = 1, Ek = 10−7 (black triangles) [42]. Horizontal
dashed line for Ra/Rac ! 1 is the wall-mode contribution Nuwm. The blue dashed line is a linear approximation
to Nu>rs − Nuwm ≈ Nu<rs . (b) Same data with rs/R = 0.7. The blue and red dashed lines are linear fits to the
bulk (blue squares) and BZF (red circles), respectively.

Although the procedure above is a tempting one that offers a more or less clean separation, 596

there are concerns about this approach that can be elucidated by considering the vertical tem- 597

perature profile 〈T (r = rmax,φ, z)〉φ,t , where rmax is the value of, and its variation with, Ra. In 598

Fig. 23(a), profiles of 〈T 〉 are shown as functions of z for 3 × 107 ! Ra ! 7 × 108 and in the inset 599

for 109 ! Ra ! 5 × 109. There is a continual increasing slope at the top and bottom boundaries 600

but the interior gradient is not monotonic with a smaller slope at Ra = 5 × 108 compared with 601

that at Ra = 7 × 108. This reversal is also observed in the inset where higher Ra have steeper 602

interior slope. These variations are features associated with the different states of wall modes for 603

Ra ! Rac ≈ 9 × 108 and the development of the bulk instability. An important point here is that 604

the slope is continuously varying (see Fig. 23 in the Appendix) so that the definition of a thermal 605

BL thickness is quite problematic. Perhaps there is localized Ekman pumping associated with the 606

BZF—a topic for further investigation. 607

FIG. 23. (a) Temperature profiles 〈T (r = 0.98R)〉φ,t for 3 × 107 ! Ra ! 7 × 108 as indicated. The di-
agonal black dashed line is the linear conductivity profile of the thermally conducting state. Inset shows
〈T (r = rmax)〉φ,t for 109 ! Ra ! 5 × 109, where rmax is the radial position of the maxima of 〈uz(r)〉φ,t . (b)
−dT/dz|z=0 − 1 (blue, solid circles) and 1 + dT/dz|z=1/2 (red, solid squares) at the same r as in panel (a).
(c) Comparison of −dT/dz|z=0 at the same r as in panel (a) (blue, solid circles) and Nu (red, solid squares),
showing close correspondence.
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FIG. 26. Angle-time plot for Ra = 108, ! = 1/3, and Ek = 1.1 × 10−5 of T (r = 0.98R, φ(t ), z = 1/2)
and (a) the whole time series of 1000 time units, (b) the last 200 time units. Hotter (red), cooler (blue).

400 [Fig. 26(b) shows an expanded interval] and late times t ! 700, the precession is prograde but719

for intermediate times, an interval of retrograde precession is observed. It is not determined from our720

data whether the prograde state is stable at long times. Uniform cyclonic precession dynamics for721

wall-mode states was predicted theoretically for small ! and Pr < 1 [16] and observed in previous722

simulations [51] for ! = 1/2, Pr = 0.8, Ra = 105, and Ek = 1.4 × 10−3. The prograde direction723

of precession depended sensitively on a combination of ! and Ek as we also find here whereas724

retrograde precession is observed in almost all cases; we see prograde precession for ! = 1/3 but725

not for ! = 1/5, 1/2, 3/4, 1 over similar ranges of Ra and Ek.726

5. Eigenfunction root mean square727

The qualitative features for the field shapes at Ra = 5 × 108 seen in Figs. 12(e)–12(h) show728

that the development of the nonlinearity of the wall mode is near regions close to the horizontal729

isothermal top or bottom boundaries. To make this more quantitative, we compute X (φ, z, r = 0.98)730

and its first Fourier mode X (1)(φ, z, r = 0.98) at fixed z. We then find the rms value with respect731

to φ of X and of X − X (1) and average in time. Figures 27(a)–27(d) show the z variation of the732

rms values for T , uz, uφ , and ur , respectively, for Ra = 5 × 108 whereas [Figs. 27(f)–27(h)] show733

u fields for Ra = 3 × 107; the differences with Ra are not large. The difference #X (z) [as shown734

in Fig. 27(a) for T ] indicates the degree to which the X (1)(z) captures the main features of its φ735

dependence. Figure 27(e) shows the normalized ratio #X /X − 1. Except for ur , over much of the736

vertical extent almost 80% of the full rms value is captured by X (1)(z) with only a small enhancement737

for Ra ≈ Raw. On the other hand, ur has very little weight—about 25%—in the first Fourier mode.738

For the vertical profiles T (z), we computed the rms analysis of the deviation of T (z) from a linear739

profile, i.e., θ (z) = T (z) − (1 − z), with respect to its first Fourier mode for different Ra as shown in740

Fig. 28(a) where one sees the weakly nonlinear growth ≈(Ra − Raw )1/2 (blue dashed) for the θrms.741

Subtracting out the dominant linear eigenfunction one gets second-order scaling of ≈Ra − Raw (red742

dashed) for Ra ! 1 × 108. The saturation at higher Ra results from increasing gradients near the top743
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FIGURE 3. (Colour online) Space-time diagrams of the temperature T at the sidewall, r =

R and half-height, z = H/2 for Pr = 0.8, Ra = 105, � = 0.5, and (a) Ro = 0.3: retrograde,
(b) Ro = 0.5: prograde. See also the supplementary movie 4.

precession is prograde, and at Ro = 0.5 the precession is retrograde, as can clearly be
seen in figure 3 and in movie 4. Furthermore, there is no precession for Ro = 0.367.
It is worth noting that prograde modes are not restricted to low Pr, but have also
been found in water with Pr = 4.38 for � = 0.5 by Weiss & Ahlers (2011b). They
are likely related to the prograde precessing body modes discussed by Goldstein et al.
(1993).

Due to the relatively simple flow, the sparsity-promoting DMD algorithm retains
only three dynamic modes to already guarantee a loss rate of less than %⇧loss = 1 %,
and the amplitudes of the modes all lie on the same branch, see figure 4. Owing to
the fact that there is only one travelling periodic wave, the first nine modes in either
case can be interpreted as Fourier components belonging to the same structure (Chen
et al. 2012). This is also supported by the spatial structures visualised by the real
part of the temperature and the azimuthal velocity in figure 5. The zeroth modes are
presented in figures 5(a) and 5(d) and are the modes with zero frequency. They do
not, formally, contribute to the dynamics of the flow; nonetheless, they are instructive.
They indicate not only that the bulk flow is retrograde for Ro = 0.3 and prograde for
Ro = 0.5, but also that the mean temperature gradient is destabilising for Ro = 0.3
and, remarkably, stabilising for Ro = 0.5. The most dominant m = 1 modes, shown
in figures 5(b) and 5(e), are visually indistinguishable and provide no hint on the
precession direction. The higher m=6 modes, displayed in figures 5(c) and 5( f ), show
that the vertical structure is in fact different for Ro = 0.3 and Ro = 0.5, but because
of their low amplitudes they only exert an insignificant influence on the actual flow.

To develop a criterion for the precession direction, we start with (2.14), which
describes the approximate flow as a superposition of all modes, and only look at the
temporal evolution of the kth mode. Since we consider a nonlinear problem, we can
further assume that the decay rate is negligible; a single mode can then be expressed
as

 k = ak k exp (i!kt) (4.1)
= |ak| exp (i Arg(ak))| k| exp (i Arg( k)) exp(i!kt). (4.2)

Here, ak and  k are represented by their complex modulus and argument. The
argument for any complex number z = x + iy is given by Arg(z) = atan2(y, x) and
defined in the principal interval (�p, p]. In the following, we will only focus on the
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Prograde wall mode precession

They do exist



Conducting Sidewall Wall Modes

Scalings of Wall Modes and Bulk

Insulating Conducting Bulk

Rac Ek-1 Ek-4/3 Ek-4/3

kc O(1) Ek-1/6 Ek-1/3

ωc O(1) Ek-1/3 NA

Conducting Sidewall BC Herrmann & Busse JFM 1993

What!! 
I didn’t 

know that!
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