Everything you wanted (?) to know about wall modes

Insulating SW

- $Ra = 5 \times 10^8$
 - $Ek = 10^{-6}$

Т

Conducting SW

Heat Transport and Visualization - 1993

FIGURE 1. Illustration of the Rayleigh-Bénard convection cell.

Heat Transport

Zhong, Ecke, Steinberg: PRL 1991, JFM 1993

Water: Pr = 6.4

Azimuthal Traveling Wave E. Knobloch $\Omega = 0 \quad \phi \rightarrow -\phi$ $\Omega > 0 \quad \phi \not \rightarrow -\phi$ Ecke et al, EPL 1992

		1.2	
B	ime (τ_{κ})	0.8	
	H	0.4	MON()
		0	0

(c)

$Ta = 1.8 \times 10^7$ Ek = 2.3 x 10⁻⁴

$Ra = 1.5 \times 10^5$ Ro=0.04

retrograde precession

Bulk State

$Ra = 2.6 \times 10^6$ Ro = 0.15

Some things aren't obvious. They depend on Γ

Noise onset indicates bulk state

Bulk state occurs further from the wall mode state as Ω increases

Hard to detect change of Nu slope at onset of bulk state

Ecke, Zhong, Knobloch, EPL (1992)

Non-rotating $\phi \rightarrow - \phi$

Stationary bifurcation

Rotating

 \square

Traveling wave

Wall Mode

Wall + Bulk

By varying conditions one can prepare large range of m values that are stable.

Slow or rapid changes in Ra

Slow or rapid changes in rotation rate at Ra > Ra_c

1-D Pattern Formation

Liu & Ecke: PRL 97 & PRE 99

Some useful but incomplete information about Wall Modes

Wall modes don't care about geometry

Use conducting tape to break azimuthal periodicity

Where have all the wall modes gone?

2010: Some new experiments with more rapid rotation rates

2014: Me: "But you have to include the wall mode contribution to the heat transport." Jon: "We don't see any wall modes!" Hmmm. I wondered why?

2018: Confusing results from Göttingen SF6 rotating convection experiment Γ =1/2 - bimodal distribution. DNS by Zhang and Shishkina.

P.O. Box 217, 7500 AE Enschede, Netherlands ⁷Max Planck—University of Twente Center for Complex Fluid Dynamics Cornell University, Ithaca, New York 14853, USA

Pr = 0.8

de Wit et al, Phys. Rev. Fluids (2020)

Wall modes \leftrightarrow BZF Robust! Favier & Knobloch, J. Fluid Mech. Rapids

Zhang, JFM (2021)

Constant Ra

$\omega_d / \Omega = 0.03 \ \Gamma^0 \ Pr^{-4/3} Ek^{5/3} Ra$

 $\omega_{\kappa} = \omega H^2 / \kappa = 0.015 \ \Gamma^0 \ Pr^{-1/3} Ek^{2/3} Ra$

Ecke, Zhang, Shishkina, PRF (2022)

Zhang, Shishkina, Ecke PRF (2023)

Eigenfunctions of u_z and T (HB93)

Expect these to work near onset

(b)

 $\pi D \longrightarrow$ ←

H

3 x 10⁷

5 x 10⁷

Evaluated at r_{max} of u_z

5 x 10⁸

1 x 10⁹

Nu

The jet instability is subcritical

jets invade bulk

 $\delta \, \mathrm{Ek}^{-1}$

Heat Transport Separation(?)

Nu_{DNS} (Pr = 1, Ek =
$$10^{-7}$$
)

Conducting Sidewall Wall Modes

Scalings of Wall Modes and Bulk

	Insulating	Conducting	Bulk
Ra _c	Ek ⁻¹	Ek-4/3 ←	→ Ek ^{-4/3}
k _c	O(1)	Ek ^{-1/6}	Ek ^{-1/3}
ω _c	O(1)	Ek ^{-1/3}	NA

Conducting Sidewall BC Herrmann & Busse JFM 1993

- Insulating SW BC: Lower Ra_{cl}, slow increase.
- Insulating Nu: Clear bulk onset.
- Nu_{insu}(Ra_{cb}) ≈ Nu_{cond}(Ra_{cb})! Why?

- Conducting SW BC: Higher Racc, rapid increase.
- Conducting: No apparent change in Nu at Ra_{cb}.
- $Nu_{cond} > Nu_{insul} Ra > Ra_{cb}$

Thanks to Fang Zhong, Victor Steinberg, Edgar Knobloch, Ning Li, Yuanming Liu, Xuan Zhang, Olga Shishkina

To Jon, Rudie, Susanne, Geoff, Keith ...

And to IPAM for sponsoring this great workshop