Confined rotating convection: a laboratory perspective

Rudie Kunnen

27 January 2025

Workshop at IPAM

Rotating Turbulence: Interplay and Separability of Bulk and Boundary Dynamics

Rotating Rayleigh-Bénard convection

Rotating Rayleigh-Bénard convection

Rayleigh: thermal forcing

$$Ra = \frac{g\alpha\Delta T \, H^3}{\nu\kappa}$$

Prandtl: fluid properties $Pr = \frac{\nu}{\kappa}$ Ekman: <u>viscous</u> Coriolis $Ek = \frac{\nu}{2\Omega H^2}$

Response parameters: Nusselt and Reynolds

Goal: know Nu(Ra, Pr, Ek) and Re(Ra, Pr, Ek)

Rotation and buoyancy: shaping flows in nature

Sphere vs. Cylinder

Contents

- 1. A brief history of lab investigations on turbulent rotating convection
- 2. Towards geophysically/astrophysically relevant parameters
- Wall modes: how to detect them in the lab (& how to get rid of them?)

Rotation and linear stability of RB

Chandrasekhar, Proc. R. Soc. Lond. A 217, 306-327 (1953)

Nakagawa & Frenzen (1955)

Temperature measurements in rotating water layer show convective instability

Visual confirmation

Nakagawa & Frenzen, *Tellus* 7, 1-21 (1955)

Rossby (1969)

Rossby, J. Fluid Mech. 36, 309-335 (1969)

First extensive exploration of heat transfer in turbulent rotating convection:

Three fluids:

- mercury (Pr = 0.025)
- water (Pr = 6.8)
- [silicone oil (*Pr* = 200)]

For water:

- Ra up to ~ 4 x 10⁶
- *Ek* down to ~ 10⁻⁴

Rossby, J. Fluid Mech. 36, 309-335 (1969)

Pfotenhauer et al. (1987)

Rotating convection in liquid helium; onset below *Ra_c* confirmed

Pfotenhauer et al., *J. Fluid Mech.* **175**, 85-96 (1987)

Pfotenhauer et al. (1987)

Rotating convection in liquid helium; onset below *Ra_c* confirmed

Postulate link with nonaxisymmetric modes of convection in cylinder (Buell & Catton 1983)

Pfotenhauer et al., *J. Fluid Mech.* **175**, 85-96 (1987)

Buell & Catton, *Phys. Fluids* **26**, 892-896 (1983)

Zhong et al. (1991, 1993)

Shadowgraph confirmation of wall mode precessing anticyclonically

Not *static* asymmetric modes of Buell & Catton (1983),

but *precessing* modes of Goldstein et al. (1993)

Goldstein et al., *J. Fluid Mech.* **248**, 583-604 (1993) Zhong et al., *Phys. Rev. Lett.* **67**, 2473-2476 (1991); *J. Fluid Mech.* **249**, 135-159 (1993)

Zhong et al. (1991, 1993)

Shadowgraph confirmation of wall mode precessing anticyclonically

... and turbulence at higher *Ra*

Zhong et al., Phys. Rev. Lett. 67, 2473-2476 (1991); J. Fluid Mech. 249, 135-159 (1993)

Contents

- 1. A brief history of lab investigations on turbulent rotating convection
- 2. Towards geophysically/astrophysically relevant parameters
- Wall modes: how to detect them in the lab (& how to get rid of them?)

Phase diagram of rotating convection

Geo-/astrophysics: $Ra \sim 10^{20} - 10^{25}$ $Ek \sim 10^{-15} - 10^{-12}$

Need to understand geostrophic convection for accurate extrapolation!

Ecke & Niemela, *Phys. Rev. Lett.* **113**, 114301 (2014) Kunnen et al., *J. Fluid Mech.* **799**, 413-432 (2016) Kunnen, *J. Turbul.* **22**, 267-296 (2021)

Constraint #1:

Minimal ΔT in practice

Minimal heat flux


```
Constraint #3:
```

Centrifugal effects:

 $Fr = \Omega^2 R / g < 0.1$

Constraint #4:

Diameter vs. size of flow features:

 $D/L_c > ~10$

 $L_c = 4.8 \ Ek^{1/3}H$

Tall, slender setups

Cheng et al. (2018)

- a. RoMag, UCLA, liquid Ga
- b. ICTP (Trieste), cryogenic He
- c. NoMag, UCLA, water
- d. U-Boot, MPI-DS Göttingen, SF₆/N₂/He
- e. TROCONVEX, Eindhoven, water

Cheng et al., GAFD 112, 277-300 (2018)

Göttingen U-Boot

Zhang et al., *Phys. Rev. Lett.* **124**, 084505 (2020); Wedi et al., *J. Fluid Mech.* **912**, A30 (2021)

Eindhoven: TROCONVEX

Variable height: 0.8 – 4 m at constant diameter 0.4 m

Active heat shields on side & bottom

Can also use optical flow diagnostics (stereo-PIV)

What is going on? cylinder simulations – vertical velocity at mid-height

What is going on?

cylinder simulations – vertical velocity at mid-height

 $Ra = 5.0 \times 10^{10}$

 $Ek = 10^{-7}$

 $Ra = 4.3 \times 10^{11}$

Wall modes persist!

Zhang et al., Phys. Rev. Lett. 124, 084505 (2020); de Wit et al., Phys. Rev. Fluids 5, 023502 (2020)

Orientation-compensated mean flow - "low" Ra

- Bulk: mean flow is geostrophic (independent of z)
- Strong two-layer sidewall circulation with jets directed into bulk

Orientation-compensated mean flow - "low" Ra

- Bulk: mean flow is geostrophic (independent of z)
- Strong two-layer sidewall circulation with jets directed into bulk

Orientation-compensated mean flow - "high" Ra

- Bulk: geostrophic with distinct mean flow pattern
- Weaker, wider two-layer sidewall circulation

Orientation-compensated mean flow - "high" Ra

- Bulk: geostrophic with distinct mean flow pattern
- Weaker, wider two-layer sidewall circulation

Time/azimuthal average: boundary zonal flow

Zhang et al., *Phys. Rev. Lett.* **124**, 084505 (2020); *J. Fluid Mech.* **915**, A62 (2021); *Phys. Rev. Fluids* **9**, 053501 (2024) Ecke et al., *Phys. Rev. Fluids* **7**, L011501 (2022)

Contents

- 1. A brief history of lab investigations on turbulent rotating convection
- 2. Towards geophysically/astrophysically relevant parameters
- Wall modes: how to detect them in the lab (& how to get rid of them?)

Göttingen U-Boot Wedi et al. (2021)

Wedi et al., J. Fluid Mech. 912, A30 (2021)

Göttingen U-Boot Wedi et al. (2021)

Wedi et al., J. Fluid Mech. 912, A30 (2021)

Eindhoven TROCONVEX de Wit et al. (2020)

Eindhoven TROCONVEX de Wit et al. (2020)

 $T_{\rm top}$

 ΔT

 $T_{\rm bottom}$

1 side

 $T_{\rm side}^{B}$

TROCONVEX – stereo-PIV mode

Madonia et al., *EPL* **135**, 54002 (2021) Madonia et al., *J. Fluid Mech.* **962**, A36 (2023)

Flow measurements – wall modes (Madonia et al. (2021, 2023)

"flow" $Ra = 2.2 \times 10^{11}$ $Ek = 5 \times 10^{-8}$

"high" *Ra* = 4.3 x 10¹²

Madonia et al., EPL 135, 54002 (2021); Madonia et al., J. Fluid Mech. 962, A36 (2023)

Jets lead to quadrupolar vortex

 $Ra = 4.3 \times 10^{12}$

Madonia et al., EPL 135, 54002 (2021); Madonia et al., J. Fluid Mech. 962, A36 (2023)

PIV reveals boundary zonal flow

Wedi et al., J. Fluid Mech. 939, A14 (2022)

PIV reveals boundary zonal flow

Wedi et al., J. Fluid Mech. 939, A14 (2022)

Can we reduce the effects of wall modes...

Wider cylinder?

$$\Gamma = \frac{D}{H} = 0.2$$

to
$$\Gamma = 0.72$$

De Wit et al., Phys. Rev. Fluids 8, 073501 (2023)

Can we reduce the effects of wall modes...

 $\Gamma = 0.72$

DNS de Wit et al. (2023)

De Wit et al., Phys. Rev. Fluids 8, 073501 (2023)

Can we reduce the effects of wall modes...

 $\Gamma = 0.72$

De Wit et al., *Phys. Rev. Fluids* **8**, 073501 (2023)

Terrien et al. (2023): horizontal fins on sidewall

Fixed temperature or conducting barrier

Terrien et al., Phys. Rev. Lett. 130, 174002 (2023)

Terrien et al. (2023): horizontal fins on sidewall

T = 0T = 0 $\partial_x T = 0$ $T = \frac{1-h}{2}$ u = 00= \bigcirc $\mathbf{\Omega}_{\mathbf{A}}$ hh $\partial_x T$ $e_z \quad T = \frac{1+h}{2}$ $\partial_x T$ ϵ e_x (b) T = 1(a)T = 1

Fixed temperature or conducting barrier

Terrien et al., Phys. Rev. Lett. 130, 174002 (2023)

(top view)

Fixed temperature or conducting barrier

Terrien et al., Phys. Rev. Lett. 130, 174002 (2023)

Fixed temperature or conducting barrier

Terrien et al., *Phys. Rev. Lett.* **130**, 174002 (2023)

Wouter Vereijssen, Lázaro Martínez: PIV experiments with fins on sidewall (prelim)

Wouter Vereijssen, Lázaro Martínez: PIV experiments with fins on sidewall (prelim)

Horizontal cross-section (1 fin)

Wouter Vereijssen, Lázaro Martínez: PIV experiments with fins on sidewall (prelim)

Wouter Vereijssen, Lázaro Martínez: PIV experiments with fins on sidewall (prelim)

Reynolds number based on horizontal fluctuation velocity

Conclusion

Wall modes: *unexpected*, *persistent* part of confined turbulent rotating convection

- Strong convective heat transfer
- Jet-like intrusions shape interior flow

How to deal with them?

- ...uncertain:
 - Wider flow domains (?)
 - Horizontal fins at sidewall (?)

