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We analyse the results of direct numerical simulations of rotating convection in spherical
shell geometries with stress-free boundary conditions, which develop strong zonal flows.
Both the Ekman number and the Rayleigh number are varied. We find that the asymptotic
theory for rapidly rotating convection can be used to predict the Ekman number
dependence of each term in the governing equations, along with the convective flow speeds
and the dominant length scales. Using a balance between the Reynolds stress and the
viscous stress, together with the asymptotic scaling for the convective velocity, we derive
an asymptotic prediction for the scaling behaviour of the zonal flow with respect to the
Ekman number, which is supported by the numerical simulations. We do not find evidence
of distinct asymptotic scalings for the buoyancy and viscous forces and, in agreement with
previous results from asymptotic plane layer models, we find that the ratio of the viscous
force to the buoyancy force increases with Rayleigh number. Thus, viscosity remains
non-negligible and we do not observe a trend towards a diffusion-free scaling behaviour
within the rapidly rotating regime.

Key words: quasi-geostrophic flows

1. Introduction
Rotating convection plays an important dynamical role in stars and planets, where it is
believed to be one of the primary drivers of global scale magnetic fields (Busse 1975;
Glatzmaier & Roberts 1995; Kageyama & Sato 1995; Stanley & Glatzmaier 2010; Jones
2011; Aurnou et al. 2015), and possibly gives rise to coherent large-scale flows such as
zonal jets and vortices, as observed on the giant planets (Heimpel et al. 2022; Siegelman
et al. 2022; Böning et al. 2023). Understanding the physics of turbulence driven by
rotating convection remains challenging due to the vast range of spatiotemporal scales.
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A numerical investigation of an asymptotically reduced model for quasigeostrophic
Rayleigh-Bénard convection is conducted in which the depth-averaged flows are numer-
ically suppressed by modifying the governing equations. At the largest accessible values
of the Rayleigh number Ra, the Reynolds number and Nusselt number show evidence
of approaching the diffusion-free scalings of Re ∼ RaE/Pr and Nu ∼ Pr−1/2Ra3/2E 2,
respectively, where E is the Ekman number and Pr is the Prandtl number. For large
Ra, the presence of depth-invariant flows, such as large-scale vortices, yield heat and
momentum transport scalings that exceed those of the diffusion-free scaling laws. The
Taylor microscale does not vary significantly with increasing Ra, whereas the integral
length scale grows weakly. The computed length scales remain O(1) with respect to the
linearly unstable critical wave number; we therefore conclude that these scales remain
viscously controlled. We do not find a point-wise Coriolis-inertia-Archimedean (CIA)
force balance in the turbulent regime; interior dynamics are instead dominated by hori-
zontal advection (inertia), vortex stretching (Coriolis) and the vertical pressure gradient. A
secondary, subdominant balance between the Archimedean buoyancy force and the viscous
force occurs in the interior and the ratio of the root mean square (rms) of these two forces
is found to approach unity with increasing Ra. This secondary balance is attributed to
the turbulent fluid interior acting as the dominant control on the heat transport. These
findings indicate that a pointwise CIA balance does not occur in the high Rayleigh number
regime of quasigeostrophic convection in the plane layer geometry. Instead, simulations
are characterized by what may be termed a nonlocal CIA balance in which the buoyancy
force is dominant within the thermal boundary layers and is spatially separated from the
interior Coriolis and inertial forces.

DOI: 10.1103/PhysRevFluids.8.093502

I. INTRODUCTION

Convection plays an important role in the dynamics of many planets and stars, where it serves
as the power source for sustaining the magnetic fields of the planets [1–4] and the Sun [5].
Convection may also be a possible driving mechanism for the observed large-scale zonal winds
(see, e.g., Ref. [6]) and vortices (see, e.g., Ref. [7]) on the giant planets. The flows in these
natural systems are strongly forced and turbulent and can be constrained by the Coriolis force.
Studying rotationally constrained convective turbulence is therefore important for improving our
understanding of such systems. However, experimental [8–11] and numerical [12–14] investigations
have difficulty accessing this parameter regime due to the extreme scale separation that characterizes
the dynamics. Asymptotic models play an important role in this regard since they allow for
significant computational savings by eliminating physically unimportant dynamics while retaining
the dominant force balance that is thought to be representative of natural systems. In particular, the
asymptotic model for rapidly rotating convection in a planar geometry has been used to advance our
understanding of this system [15] and shows excellent agreement with the results of DNS where
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Linear Theory

• Mapped out in 
Chandrasekhar (1961):
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Linear Theory

• Most unstable mode is 
viscous length scale:
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fRa = RaEk4/3

All wavenumbers scale viscously
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Nonlinear (QG) Theory

Geostrophy at leading order:

Julien, Knobloch, Werne & collaborators (1998, etc.)
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Dynamics at next order:
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Scalings persist in turbulent regime, independent of geometry



Scaling with Rayleigh: 
CIA Balance

We really want a dependence on Rayleigh number:

Aurnou, Horn & Julien (PRR, 2020)

Oliver et al. (PRF, 2023)


Nicoski, O’Connor & Calkins (JFM, 2024)

CIA:
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QG Simulations

• Diffusion free scaling 
observed for heat 
transport

in contrast to nonrotating RBC where it becomes small or
vanishes as Ra increases [11,12]. The temperature drop
across the thermal boundary layers at the top and bottom
is therefore smaller than in nonrotating RBC and their
structure differs [10]. As we show below, this results in
heat transport that is throttled in the bulk instead of the
thermal boundary layers, although the exponent is in fact
larger: !> 1.

Some debate exists in the literature over the evidence for a
low-Ro scaling law when Ra is well beyond critical (but
Ro ! 1). Experiments [7,13–17] barely extend into the low
Ro regime and suggest that 1 & ! & 3 for the explored
range 10"6 # E, 103 # Ra # 109. Based on DNS with
no-slip boundaries, King et al. [18] argue in favor of
depth-independent heat flux as in the approach of Malkus
[1] and propose the scaling exponents ! ¼ 3, " ¼ 4 so that
Ra3E4 %H. In contrast, stress-free boundaries yield dis-
tinctly different exponents, ð!;"Þ ( ð6=5; 8=5Þ [19].

Linear stability theory for rotating RBC with both stress-
free and no-slip boundaries shows that in the limit of strong
rotation (E ! 0) the critical Rayleigh number Rac for the
onset of convection increases according toRac / E"4=3 [20].
Since for Rac ! Ra & Rat (see below) Nu is expected to
depend only onRa=Rac, it follows that" ¼ 4!=3 and hence
that Eq. (1) becomes Nu" 1 / ðRaE4=3Þ!. However, in the
no-slip case rotationally constrained asymptotic scaling laws
may not set in untilE & 10"6 [21]. Suchvalues ofE have not
been realized in experiments and DNSwhile simultaneously
increasing RaE4=3 sufficiently to probe strong geostrophic
turbulence. As a result the parameter range explored to date
typically captures coherent dynamics involving convective
Taylor columns (CTCs) [9,22] but not geostrophic turbu-
lence. Nevertheless, the recent experiments by King et al.
[15] undeniably show that the transition away from a rota-
tionally constrained scaling law occurs entirely within
the low-Ro-regime with the transitional Rossby number
Rot ! 0 as E ! 0. The authors propose that the transition
occurs when the diminishing width of the thermal boundary
layer becomes comparablewith the Ekman layer, despite the
fact that a similar transition is observed for stress-free bound-
ary conditions and no Ekman layers [19].

In this Letter, we identify a compelling alternative to the
! ( 3, " ( 4 scaling and propose a mechanism for the
above transition by going deeper into the rapid rotation
regime. Our results support the suggestion that in rotation-
ally constrained turbulence heat transport is independent of
microscopic diffusion coefficients just as in nonrotating
turbulence. Together with the requirement " ¼ 4!=3 this
suggestion leads to ! ¼ 3=2, " ¼ 2, i.e.,

Nu" 1 ( C1#
"1=2Ra3=2E2; (2)

where C1 is constant. Our simulations of geostrophic
turbulence (Fig. 1) using reduced equations valid in the
limit E ! 0 confirm this scaling (Fig. 2) and indicate that
C1 ( 1=25. In contrast to the nonrotating case, the turbulent

scaling, Eq. (2), predicts less efficient transport than the
argument of King et al. [18]. This implies that the vertical
stiffness of a geostrophically balanced turbulent interior acts
as the primary throttling agent on the heat transport, pre-
venting the associated plume-emitting thermal boundary
layers and geostrophic vortices from reaching their peak
efficiency. Consequently, unlike hypotheses conjectured in
Refs. [15,18,19], boundary conditions play no role in deter-
mining the scaling exponent !. Below we present evidence
for Eq. (2) and give a new analysis of the global heat
transport for E ! 0. We also demonstrate that the primary
cause of the break in Nu at Rat is the loss of geostrophic
balance in a dynamically active thermal boundary layer
owing to increased vertical mixing, and ultimately a com-
plete loss of rotational constraint. Furthermore, we predict
that the transitional fRa;Rog values scale as

FIG. 1 (color online). Volume rendering of thermal fluctua-
tions $ in the geostrophic turbulence regime for RaE4=3 ¼ 160
and # ¼ 0:3.
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FIG. 2 (color online). Nu" 1 as a function of R ) RaE4=3,
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R3=2. The curves for # # 1 exhibit the predicted scaling for
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"1=2R3=2 to within 6%.
The # ¼ 3, 7 and 15 states, shown as small, medium, and
large gray circles, respectively, have yet to reach the turbulent
scaling regime.
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QG Simulations

• Somewhat steeper 
scale observed for 
flow speeds.


• Prandtl number 
influences the 
observed scaling.

Julien et al. (GAFD, 2012)

!T 5 !" ! !# indicating that the time-averaged temperature profile does not provide the
whole story about the boundary layer structure. Indeed, simulation results have
established that thermal fluctuations provide the seeds that are ultimately responsible
for the generation of convective Taylor columns and plumes. We therefore use !" as a
measure of the width of the true thermal boundary layer, and show the results as a
function of fRa in figure 4(c). Measurements of the fluid variables extracted at z¼ !" are
presented in figure 6 and the results obtained from nonlinear curve fitting of this data
are summarized in tables 2 and 3. The thermal boundary layer width decreases
continuously with increasing fRa, roughly as fRa#2, and shows no sign of saturation.
Figure 4(c) shows that the width !" is smaller for large $ and increases with decreasing $
but does not do so monotonically. Since the width determines the temperature gradient
within the thermal boundary layer, we show in figure 4(d) the mean temperature jump
!T " across the width !", also as a function of fRa. In contrast to figure 4(c), this plot
shows the development with increasing Prandtl number of a prominent plateau,
!T " ! 0:2, although remarkably !T " continues to decrease at yet larger fRa. We
identify the plateau formation with the convective Taylor column CTC regime, labeled
T in figure 2(a), and the termination of the plateau regime with the onset of the plume
regime, labeled P. Within the plateau or CTC regime, valid for all $, we observe the
classical relation between Nu and the boundary layer width, namely, 2Nu ! !#1" ! fRa2
(see table 3, columns 2 and 3). As fRa increases into the geostrophic turbulence regime
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Figure 6. (Colour online) RMS values of (a) $% at z¼ 0.7, (b) $w at z¼ 0.5, and (c) # at z¼ 0.5 all as
functions of fRa for several different values of $. (d)–(f) The same but measured in the thermal boundary layer

at positions !" indicated in figure 4(c) corresponding to maximum dissipation rate j;?#j2. Scaling with fRa is
evident in the geostrophic turbulence regime and is indicated for $¼ 1 using brown lines together with the
slopes predicted in section 2.6.

Low Rossby number Rayleigh–Bénard convection 405

D
ow

nl
oa

de
d 

by
 [U

ni
ve

rs
ity

 o
f C

ol
or

ad
o 

at
 B

ou
ld

er
 L

ib
ra

rie
s]

 a
t 1

1:
39

 2
1 

Ju
ly

 2
01

2 



QG Simulations

• Inverse cascade 
leads to large scale 
vortex (LSV)


• How does LSV 
influence scaling?

Rubio et al. (PRL, 2014)

barotropic eddies generate upscale energy transfer from the
baroclinic eddy scale to larger scales.
Rapidly rotating Rayleigh-Bénard convection (RRRBC)

is described by the nondimensional equations [8–10]

∂tζ þ J½ψ ; ζ# − ∂Zw ¼ ∇2
⊥ζ; (1)

∂twþ J½ψ ; w# þ ∂Zψ ¼ RaE4=3

σ
θ þ∇2

⊥w; (2)

∂tθ þ J½ψ ; θ# þ w∂ZΘ̄ ¼ 1

σ
∇2

⊥θ; (3)

∂τΘ̄þ ∂ZðwθÞ ¼
1

σ
∂2
ZΘ̄; (4)

where ∇2
⊥ ¼ ∂2

x þ ∂2
y and J½ψ ; f#≔∂xψ∂yf − ∂yψ∂xf

denotes advection with the horizontal velocity
u⊥ ≡ ð−ψy;ψx; 0Þ. Here ψ is the pressure, ζ ≡∇2

⊥ψ is
the vertical vorticity, w is the vertical velocity and θ is the
temperature fluctuation about the mean temperature profile
Θ̄; this profile adjusts on the slower time τ ¼ OðE−2=3Þ
relative to the Oð1Þ convective time t. The nondimensional
parameters are theRayleigh number Ra≡ gαΔTh3=κν ≫ 1,
Ekman number E≡ ν=Ωh2 ≪ 1, and Prandtl number
σ ≡ ν=κ ¼ Oð1Þ, where κ and ν are the thermal diffusivity
and kinematic viscosity, g is the gravitational acceleration, α
is the coefficient of thermal expansion and ΔT is the desta-
bilizing temperature difference between the bottom and the
top of the layer; the layer depth is h with ðx; yÞ ¼ Oð1Þ
corresponding to OðE1=3Þh horizontal scales. The equations
capture geostrophically balanced convective motions and
slow inertial waves on these scales [9,10] but filter out
computationally prohibitive fast inertial waves and thin
Ekman layers at the top (Z ¼ 1) and bottom (Z ¼ 0). As a
result they extend dramatically the regime accessible to
direct numerical simulation of RRRBC [9,21,22].
Equations (1)–(4)were evolved in time forRa ¼ OðE−4=3Þ

as described in [9,10].We set RaE4=3 ¼ 100 and σ ¼ 1, well

within the parameter region associated with GT [9–11].
The spatial domain is periodic in the horizontal, impenetrable
in the vertical, and has a nondimensional aspect ratio of
20Lc × 20Lc × 1, where Lc ≡ 2π=~kc ≈ 4.8 is the critical
wavelength for linear instability of the conduction state.
Hereinafter, wave numbers ~k are normalized to the box scale
L≡ 20Lc, so k ¼ ~k=~kbox ≡ 20~k=~kc.
In order to observe the development of the condensate

in a controlled fashion the initial condition at t ¼ 0 was
generated by starting from an earlier solution that had
reached a statistically steady state after numerically sup-
pressing the barotropic dynamics. The simulation was
then restarted and the barotropic component allowed to
evolve freely to study its growth in an otherwise saturated
turbulent flow. The growth of the barotropic component
described here occurs on the fast timescale t, during which
the mean temperature profile Θ̄ remains constant and is
robust with respect to changes in the initial condition.
Figure 1 shows an example of the large scale dipole
structure or condensate that develops in the GT regime
at sufficiently large values of Ra E4=3. Figure 2 shows the
development of this condensate from early to late times.
At early times the condensate has a characteristic scale of
order of the convective scale Lc ¼ L=20 [panel (a)]. After
t ¼ 10 it exhibits significant structure at a scale ∼L=5

FIG. 1 (color online). Volume rendering of vertical vorticity ζ
in geostrophic turbulence showing the development of a large
scale dipole and the organization of small-scale convective eddies
for RaE4=3 ¼ 100 and σ ¼ 1 at t ¼ 100.

FIG. 2 (color online). Barotropic vertical vorticity at t ¼ 1, 10,
37.5, and 100, respectively, showing the organization of the
flow into structures at progressively larger scales. The black lines
indicate one-half wavelength of the dynamically-evolving bar-
oclinic forcing scale 1=kf defined in the text.

PRL 112, 144501 (2014) P HY S I CA L R EV I EW LE T T ER S
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S. Maffei, M.J. Krouss, K. Julien and M.A. Calkins

Pr R̃a αr βr γr

[1, 10] [20, 200] 0.1883 1.1512 −1.2172
[1, 7] [20, 200] 0.1899 1.1502 −1.2376
1 [20, 200] 0.1354 1.2198 —
1.5 [20, 160] 0.1567 1.0758 —
2 [20, 200] 0.1330 1.0399 —
2.5 [20, 200] 0.1375 0.9864 —
3 [20, 120] 0.1638 0.9007 —
7 [20, 160] 0.0522 0.9912 —
10 [20, 120] 0.0245 1.0792 —

Table 2. Least-squares fits to the Reynolds number, R̃e = αr(R̃a − R̃ac)
βr Prγr (for data encompassing

multiple Pr) or R̃e = αr(R̃a − R̃ac)
βr (when a single Pr is considered).

(a) (b)
Pr = 1
Pr = 1.5
Pr = 2
Pr = 2.5
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Figure 10. Scaling of the Reynolds number with R̃a. (a) Compensated R̃e calculated according to
R̃e ∼ R̃aPr−1. (b) Compensated R̃e calculated according to the law (3.7) and with values of αr, βr and γr
reported in table 2 for Pr ∈ [1, 10] and R̃a ∈ [20, 200] (i.e. all available R̃e data).

the lower values of Pr, i.e. those simulations that are characterised by the largest values
of R̃e. Interestingly, this departure seems to be correlated with the behaviour of the kinetic
energy ratio Γ ; the largest departures from the linear Grashof number scaling are observed
for cases that possess the peak Γmax, i.e. those cases in which R̃e ! 24.

We note that because the QG model employed here is asymptotically reduced, the
Ekman number does not appear explicitly in the governing equations. However, we can
relate our small-scale Reynolds number to the large-scale Reynolds number typically
employed in DNS studies by noting that the convective length scale and fluid depth are
related by % = HEk1/3. Thus,

R̃e =
〈Wrms〉 %

ν
=

( 〈Wrms〉 H
ν

) (
%

H

)
= ReEk1/3. (3.9)

Substituting the definition of the reduced Rayleigh number into the linear scaling R̃e ∼
R̃a/Pr we have

R̃e ∼ R̃a
Pr

= RaEk4/3

Pr
. (3.10)
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QG Simulations: No LSV

• We can “remove” the influence of the LSV:

Oliver et al. (PRF, 2023)

SMALL SCALE QUASIGEOSTROPHIC CONVECTIVE …

However, similar to their heat transport findings, Ref. [18] find that the Reynolds number scales
more strongly than the diffusion-free scaling.

A defining property of turbulence is the presence of a broad range of length scales within the flow
field. In spectral space this range of scales translates into a broadband kinetic-energy spectrum. The
spectrum of nonrotating turbulence broadens via a forward cascade in which there is a net transfer of
energy from low wave numbers to high wave numbers. A consequence of this transfer of energy is
that the length scale at which viscous dissipation is dominant becomes ever smaller as Re increases
(see, e.g., Ref. [26]).

The process by which spectral broadening occurs in QG convection is less clear. In the limit E →
0, linear theory shows that the onset of convection occurs on a length scale of size ! = O(E1/3). This
length scale arises because the viscous force facilitates convection by simultaneously perturbing
the geostrophic force balance and relaxing the Taylor-Proudman constraint. Understanding which
length scales emerge in the strongly nonlinear regime is important for characterizing QG convective
turbulence. Previous studies in spherical geometry suggest that the length scale varies with the
Rossby number as ! ∼ Ro1/2 (see, e.g., Ref. [25]), which is thought to arise from the so-called
Coriolis-inertia-Archimedean (CIA) balance [27]. In terms of the reduced Rayleigh number this
scaling is equivalent to ! ∼ E1/3(R̃a/Pr)1/2 (see, e.g., Ref. [28]). Recent experimental work using
water as the working fluid has found a slightly weaker scaling than ! ∼ Ro1/2 [10]; this same
investigation and a numerical study of convection-driven dynamos [14] find that the correlation
length scale of the vorticity is approximately constant with increasing R̃a. It is presently
unknown whether this behavior persists in the limit of large R̃a.

In the present investigation we report on the results of numerical simulations of the QG model
of rotating convection in which the depth-invariant flows are suppressed. This suppression is done
to isolate the asymptotic behavior of the small-scale convection in the absence of the LSV and
to simulate the largest accessible values of R̃a in an attempt to identify asymptotic trends in the
scaling behavior of various flow quantities. In Sec. II we provide an overview of the QG model and
numerical methods. Results and conclusions are given in Secs. III and IV, respectively.

II. METHODS

A. Governing equations

In the present investigation we employ a modified version of the asymptotically reduced form of
the governing equations given by Ref. [29]. When nondimensionalized using the small-scale viscous
diffusion speed ν/!∗

ν , where !∗
ν = HE1/3, and temperature scale #T , these equations take the form

∂tζ + J[ψ, ζ ] − γ 〈J[ψ, ζ ]〉 − ∂Zw = ∇2
⊥ζ , (4)

∂tw + J[ψ,w] + ∂Zψ = R̃a
Pr

ϑ + ∇2
⊥w, (5)

∂tϑ + J[ψ,ϑ] + w∂Z) = 1
Pr

∇2
⊥ϑ, (6)

∂Z (wϑ ) = 1
Pr

∂2
Z), (7)

where t is time, the Cartesian coordinate system is denoted by (x, y, Z ), the Jacobian operator
is defined by J[ψ, A] = ∂xψ∂yA − ∂yψ∂xA for some scalar field A, γ is a constant, the angled
brackets appearing in equation (4) denote an average over the depth (Z), and the horizontal Laplacian
operator is denoted by ∇2

⊥ = ∂2
x + ∂2

y . The vertical components of vorticity and velocity are denoted
by ζ and w, respectively, ψ is the geostrophic stream function, and ϑ is the fluctuating temperature.
The vorticity and stream function are related via ζ = ∇2

⊥ψ . The mean temperature is denoted by ),
where the overline represents a horizontal average. We note that ) = O(1) and ϑ = O(E1/3) in the
asymptotic expansion.

093502-3
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TABLE I. Details of the numerical simulations in which depth-invariant flows are suppressed. The number
of physical space grid points in each respective direction is specified by Nx × Ny × NZ , the time step size
is denoted by !t , and the horizontal domain size, as specified by the integer number of critical horizontal
wavelengths, is denoted by n. The asymptotically rescaled Reynolds number is R̃e, Nu is the Nusselt number,
and the integral length scale, Taylor microscale and Kolmogorov scale are denoted by "I , "T , and "K ,
respectively. All length scales are normalized by the critical wavelength λc ≈ 4.815.

R̃a Nx × Ny × NZ !t n R̃e Nu "I "T "K

10 384 × 384 × 96 5.0 × 10−4 10 0.592 1.259 1.081 1.076 0.899
12 384 × 384 × 96 5.0 × 10−4 10 0.921 1.602 1.165 1.146 0.687
15 384 × 384 × 96 5.0 × 10−4 10 1.405 2.132 1.266 1.203 0.554
20 384 × 384 × 96 5.0 × 10−4 10 2.531 3.349 1.35 1.219 0.437
25 384 × 384 × 96 5.0 × 10−4 10 4.247 5.269 1.41 1.191 0.364
30 384 × 384 × 96 2.5 × 10−4 10 6.008 7.349 1.495 1.185 0.319
40 384 × 384 × 96 2.5 × 10−4 10 9.556 11.61 1.655 1.159 0.266
50 432 × 432 × 144 2.5 × 10−4 10 13.09 16.3 1.793 1.119 0.233
60 576 × 576 × 144 2.5 × 10−4 10 15.58 19.81 1.75 1.035 0.215
70 576 × 576 × 180 2.0 × 10−4 10 17.91 22.88 1.676 0.958 0.201
80 576 × 576 × 192 2.0 × 10−4 10 20.38 26.25 1.723 0.937 0.187
100 648 × 648 × 288 2.0 × 10−4 10 26.99 35.66 1.921 0.938 0.164
120 768 × 768 × 324 1.0 × 10−4 10 34.66 46.90 2.199 0.955 0.146
140 720 × 720 × 324 1.0 × 10−4 10 43.22 60.81 2.407 0.963 0.131
160 768 × 768 × 360 1.0 × 10−4 10 54.05 77.65 2.725 0.995 0.119
180 810 × 810 × 384 5.0 × 10−5 10 63.12 95.73 2.829 0.991 0.109
200 960 × 960 × 450 5.0 × 10−5 10 69.91 110.8 2.796 0.965 0.102
220 960 × 960 × 480 2.5 × 10−5 10 82.18 135.0 3.0 0.983 0.095
240 1125 × 1125 × 540 2.5 × 10−5 10 89.00 150.8 2.968 0.962 0.090
260 1200 × 1200 × 600 2.0 × 10−5 10 95.81 165.7 2.988 0.948 0.086
280 1200 × 1200 × 675 2.0 × 10−5 10 104.6 184.7 3.028 0.941 0.083
100 324 × 324 × 288 2.0 × 10−4 5 26.37 34.38 1.662 0.926 0.165
100 480 × 480 × 288 2.0 × 10−4 7 26.66 35.21 1.879 0.937 0.164
100 768 × 768 × 288 2.0 × 10−4 12 26.78 35.52 2.06 0.948 0.164
100 972 × 972 × 288 2.0 × 10−4 15 26.93 36.92 3.908 1.142 0.164
100 1296 × 1296 × 288 2.0 × 10−4 20 27.11 35.92 1.943 0.937 0.163
40 192 × 192 × 96 2.5 × 10−4 5 9.364 10.96 1.640 1.169 0.271
40 288 × 288 × 96 2.5 × 10−4 7 9.25 11.12 1.650 1.166 0.269
40 480 × 480 × 96 2.5 × 10−4 12 9.561 11.46 1.686 1.172 0.267
40 576 × 576 × 96 2.5 × 10−4 15 9.447 11.41 1.666 1.168 0.267
40 768 × 768 × 96 2.5 × 10−4 20 9.564 11.47 1.729 1.178 0.266

The constant γ is either one or zero. When γ = 0 the above equations are identical to those used
in many previous investigations (see, e.g., Ref. [18]). For simulations in which the depth-averaged
flow is suppressed we set γ = 1; in this case a depth-average of equation (4) yields the diffusion
equation

∂t 〈ζ 〉 = ∇2
⊥〈ζ 〉 (8)

so that the depth-averaged vorticity (stream function) trivially decays to zero as t → ∞. In practice,
simulations in which the depth-averaged flow is suppressed were initialized from states in which
〈ψ〉 = 0.

Simulations are performed for the range 10 ! R̃a ! 280 with Pr = 1. Details of the numerical
simulations are provided in Tables I and II. The equations are solved using a de-aliased pseudospec-
tral method in which the flow variables are expanded as Chebyshev polynomials in the vertical
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TABLE II. Details of the numerical simulations for cases in which depth-invariant flows are not suppressed.
See Table I for specifics. Runs denoted with an asterisk (∗) are from Ref. [18].

R̃a Nx × Ny × NZ !t n R̃e Nu "I "T "K

20 384 × 384 × 96 5 × 10−4 10 3.541 4.01 2.048 1.189 0.414
30∗ 128 × 128 × 64 5 × 10−4 10 7.219 7.960
40 384 × 384 × 96 5 × 10−4 10 10.59 11.79 1.705 1.023 0.272
60∗ 256 × 256 × 96 1 × 10−4 10 16.82 19.96
80 576 × 576 × 192 1 × 10−4 10 24.68 30.92 2.291 0.928 0.186
120 648 × 648 × 324 1 × 10−4 10 41.4 58.2 2.805 0.974 0.140
160 768 × 768 × 384 5 × 10−5 10 59.40 98.06 2.792 0.919 0.118
200 960 × 960 × 450 5 × 10−5 10 84.21 146.2 3.032 0.943 0.098

dimension and Fourier series in the horizontal dimensions. A third-order-accurate implicit-explicit
Runge-Kutta scheme is used to advance the equations in time. Further details on the code can be
found in Ref. [30].

As a demonstration of the approach for suppressing the depth-averaged flow, Fig. 1 shows the
temporal evolution of the volume averaged kinetic-energy density for two sample simulations with
R̃a = 100. The simulation in which the depth-averaged flow is suppressed (maintained) is denoted
by γ = 1 (γ = 0). Both simulations were initialized with identical initial conditions. We compute
the depth-averaged (barotropic, KEbt ) and vertical (KEZ ) kinetic-energy densities, respectively
defined as

KEbt = 1
2A

∫
[〈u〉2 + 〈v〉2]dA, KEZ = 1

2V

∫
w2dV, (9)

where the horizontal velocity components are denoted by (u, v) = (−∂yψ, ∂xψ ), A is the area of
a horizontal cross section and V is the volume. We observe a clear exponential decay of KEbt

FIG. 1. Temporal evolution of the depth-averaged (barotropic, thick lines) and vertical (thin lines) kinetic-
energy densities for two simulations with R̃a = 100, illustrating the effect of suppressing the depth-averaged
component of the flow. The green and blue data correspond to the model where the depth-averaged flow is
suppressed (γ = 1) and maintained (γ = 0), respectively. Both models were initialized from the same initial
state. The dotted red line is the expected, long-time scaling for the suppressed model where kc = 1.3048 is the
critical wave number.
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FIG. 2. Various flow quantities as a function of horizontal domain size (as characterized by the number n of
critical horizontal wavelengths) for R̃a = 100 ( ) and R̃a = 40 ( ). Error bars denote the standard deviation
of globally averaged quantities. (a) Nusselt number; (b) Reynolds number; (c) integral length scale (!I ) and
Taylor microscale (!T ).

critical horizontal wavelength, λc ≈ 1.3048. The effective resolution (i.e., number of grid points
per critical wavelength) was held approximately constant as the domain size was varied. Figure 2
shows the sensitivity of Nu, R̃e, and the length scales !I and !T as a function of n. We find that
Nu, R̃e, and !T show no significant sensitivity to domain size with n ! 10, which is consistent
with Ref. [18]. The integral scale and the Taylor microscale also show little sensitivity to the box
size beyond n = 10. The focus of the present investigation is to reach the largest computationally
affordable values of R̃a; for this reason we choose n = 10 for all of the data that is presented in later
sections.

B. Heat and momentum transport

Figures 3(a) and 3(b) show the compensated values Nu/R̃a
3/2

and R̃e/R̃a, respectively. As
previously mentioned, these scalings are derived from CIA theory. For the “No LSV” data we
find that both compensated quantities exhibit steep initial increases up to R̃a = 50, followed by
decreasing values up to R̃a = 80–100. The Nusselt number shows a trend that scales somewhat
stronger than Nu ∼ R̃a

3/2
in the range 100 < R̃a < 220. For R̃a > 220 we find scaling behavior

FIG. 3. Heat and momentum transport for all cases: (a) compensated Nusselt number Nu/R̃a
3/2

; (b) com-
pensated reduced Reynolds number, R̃e/R̃a. Blue data points are from simulations with a nonzero barotropic
component (LSV). Data with open symbols in panels (a) and (b) shows the compensation required to flatten
Nu and R̃e for the LSV data.
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FIG. 6. (a) Length scales versus R̃a for all simulations where !I is the integral scale, !T is the Taylor
microscale, !K is the Kolmogorov scale, and !ϑ

I is the integral scale for the fluctuating temperature. In panel (a),
open symbols correspond to LSV cases and the light blue line shows the R̃a

−1/2
scaling for reference. (b) Com-

parison of computed length scales with linear stability theory. R̃amarg is the marginal stability curve. R̃afast is
the fastest growing mode in the linear stability analysis about the saturated mean temperature profile. For large
R̃a, R̃afast ∼ k−8. The critical wavelength and critical wave number are denoted (!c, kc ) = (4.8154, 1.3048).

(i.e., when R̃a = 10). Generally, the integral length scale is found to be a slowly increasing function
of R̃a regardless of whether the LSV is present or not. At R̃a = 280 we find that the integral scale
is approximately three times the size of the critical wavelength. In comparison with the integral
scale, the Taylor microscale shows an initial increase up to R̃a = 20 followed by a slight decrease.
For R̃a ! 80, the average value of the Taylor microscale is !T = 0.96 and the standard deviation is
0.02. Both the integral length scale and the Taylor microscale exhibit scaling behavior that is weaker
than the R̃a

1/2
scaling law. The Kolmogorov scale exhibits an obvious decrease with R̃a and, for

the parameter regime accessible here, is the only computed length scale that becomes significantly
different in value than the critical wavelength. For LSV cases, !K is found to be slightly smaller
in comparison with cases without the LSV; this result is in agreement with the heat transport data
which shows LSV cases have larger heat transport and therefore larger viscous dissipation. The
integral temperature scale remains O(1) up to R̃a = 280, which suggests that the buoyancy forcing
scale occurs at a viscous length scale. !ϑ

I reaches a maximum value at R̃a = 50, which is coincident
with the local maxima for the scaled Nu and R̃e data shown in Fig. 3. Around R̃a ! 120, !ϑ

I
begins to slowly increase. This behavior is co-incident with a decrease in !ϑ

I for the LSV cases.
It appears that a crossover in !ϑ

I for cases with the LSV and cases without a LSV occurs around
R̃a = 180. This result suggests that, at large R̃a, the LSV facilitates the buoyancy forcing at smaller
scales than those without the LSV.

Due to the similarity between the computed length scales and the linearly unstable wavelength,
we show an alternative presentation of length scales based on comparisons with the marginal
stability boundary and the fastest growing linearly unstable modes in Fig. 6(b). The marginal
stability boundary is defined by

R̃amarg = k4 + π2k−2. (15)

The small and large wave number scalings of k−2 and k4 are also shown, where we note that the
former is consistent with CIA theory in that it represents a diffusion-free scaling behavior. We find
that none of the computed length scales exhibit scaling behavior that is similar to this diffusion-free
trend, though there are ranges of R̃a over which these length scales grow faster than the diffusion-
free trend.
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Flow Structure: vorticity

SMALL SCALE QUASIGEOSTROPHIC CONVECTIVE …

FIG. 8. Snapshots of the vorticity: (a), (d) R̃a = 40; (b), (e) R̃a = 160; (c), (f) R̃a = 280. Integral scale,
Taylor microscale and (10×) Kolmogorov scale are given by the black bars. Green and purple correspond to
cyclonic and anticyclonic flows, respectively.

For the vertical momentum equation balances shown in Fig. 10(b) we find that Dtw and ∂Zψ are
of nearly identical magnitude in the fluid interior, whereas the buoyancy force and diffusion terms
are comparable in magnitude and the smallest of all terms in the interior. These results show that the
vertical pressure gradient acts as the dominant driver of vertical motion in the interior. In the thermal
boundary layer we find that all terms in the vertical momentum equation become comparable in
magnitude, although as a consequence of impenetrability, diffusion remains the smallest of all terms.
Figure 10(c) shows a tendency in the interior for the horizontal material advection of fluctuating
temperature to be balanced by horizontal thermal diffusion, whereas all terms become comparable
in magnitude within the thermal boundary layer.

Figure 11 show ratios of rms values of various terms in the vertical momentum and vertical
vorticity equations as function of R̃a. The rms values are the depth-averaged values of vertical
profiles similar to those shown in Fig. 10(b). We find that the ratio of the vertical viscous force
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FIG. 7. Snapshots of the fluctuating temperature: (a), (d) R̃a = 40; (b), (e) R̃a = 160; (c), (f) R̃a = 280.
Integral temperature scale is given by the black bars. (a)–(c) Top row: x-Z slices; bottom row: x-y midplane
slices. The units of x and y are given in number of critical wavelengths. Dot-dashed lines mark the intersection
of the two planes (x-Z and x-y). (d)–(f) Horizontal cross sections within the (upper) thermal boundary layer
(the corresponding depths are Z = 0.985, 0.9979, and 0.9994 for R̃a = 40, 160, and 280, respectively).

advection and the time derivative terms are largest in each of the three equations throughout the
fluid layer, which agrees with the results of Ref. [18] for simulations in which depth-invariant
flows were present. However, the dynamics are controlled by the material derivative, rather than
the time derivative and advection separately. Figure 10(a) shows that Dtζ and ∂zw are nearly
identical in magnitude throughout the fluid layer. However, while smaller, the diffusion of vorticity
remains comparable in magnitude to these two terms; in the fluid interior (0.5 > Z > 0.1) we find
rms(∇2

⊥ζ ) ≈ 2 × 103, whereas rms(Dtζ ) ≈ 4 × 103 and rms(∂zw) ≈ 4 × 103. Within the thermal
boundary layer (Z ! 10−3) we find that all terms in the vorticity equation are important, indicat-
ing that the large amplitude vortical motions are directly influenced by viscous diffusion at the
boundaries.
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QG Balances

SMALL SCALE QUASIGEOSTROPHIC CONVECTIVE …

FIG. 10. Logarithmic vertical profiles of rms values of each term in the governing equations for R̃a = 200:
(a) vertical vorticity; (b) vertical momentum; (c) fluctuating temperature.

IV. DISCUSSION AND CONCLUSIONS

The QG equations (4)–(7) represent the asymptotic low Rossby number limit of the buoyantly
forced Navier-Stokes equations. Simulations of these equations were performed in which the
depth-invariant flows were entirely suppressed. The suppression was done to isolate the dynamics
of the small scale convection and to enable simulations at previously inaccessible values of R̃a. A
comparison was made with data from previously published simulations of the asymptotic model
in which large amplitude, depth-invariant flows (e.g., LSVs) were present. This comparison has
allowed for additional insight into the physics of small scale, QG convective turbulence, which
drives the inverse kinetic energy cascade in this system. Asymptotically reduced Rayleigh and
Reynolds numbers up to R̃a = 280 and R̃e ≈ 100 were simulated, which represents the most
extreme parameter regime accessed to date for QG convection in either the plane layer or spherical
geometry. Recent DNS studies have reached small scale Reynolds numbers up to R̃e ≈ 33 in the

FIG. 11. Select ratios of rms forces from vertical momentum and vorticity equations. In the vertical
momentum equation, the ratio of diffusion to buoyancy approaches unity. The ratio of diffusion to the pressure
gradient (vortex stretching) in the vertical momentum (vorticity) equation is a slowly decreasing function of
R̃a for large R̃a.
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Figure 2. Reynolds number characterising the flow speeds of the fluctuating (convective) velocity versus the
reduced Rayleigh number, R̃a: (a) the convective Reynolds number Rec; (b) the rescaled convective Reynolds
number R̃ec = Ek1/3Rec; (c) the compensated convective Reynolds number R̃ecR̃a−1; (d) the compensated
convective Reynolds number R̃ecR̃a−3/2. The filled symbols represent η = 0.35 cases and the hollow symbols
represent η = 0.7 cases.

strongest near the inner boundary in the equatorial plane. However, during times of strong
convection, the convection fills the whole region in the equatorial plane.
We find that using R̃a, as opposed to the supercriticality measure, Ra/Rac, results in

improved collapse of our data when comparing with asymptotic predictions; Christensen
(2002) also found that using R̃a improved the collapse of some data. This effect likely
arises from the slow rate of convergence of the critical Rayleigh number to the predicted
asymptotic scaling of Rac ∼ Ek−4/3 (e.g. Dormy et al. 2004; Barik et al. 2023).

4.2. Flow speeds
Global root mean square (r.m.s.) values of both the fluctuating and mean velocity are
computed to determine their scaling behaviour with respect to the Ekman number. Note
that the mean velocity is dominated by the zonal flow (i.e. the φ-component of the mean
velocity). Figure 2(a) shows the fluctuating Reynolds number for both the η = 0.35 cases
and the η = 0.7 cases. Figure 2(b) shows the asymptotically rescaled fluctuating Reynolds
number, i.e. R̃ec = Ek1/3Rec, for the two different aspect ratios. We find that the rescaled
data are order unity and collapse onto a single curve, which supports the u′ = O(Ek−1/3)
asymptotic scaling for the fluctuating velocity. However, we note that the Ekman number
scaling of the convective Reynolds number might be time dependent. If we calculated the
convective Reynolds number using data only during the convective peaks of the relaxation
oscillations, we would obtain a steeper scaling closer to Ek−1/2. This suggests that the time
series for the convective velocity becomes more strongly peaked at lower Ekman number.
Note that we expect deviation from this asymptotic scaling behaviour as the system
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Figure 2. Reynolds number characterising the flow speeds of the fluctuating (convective) velocity versus the
reduced Rayleigh number, R̃a: (a) the convective Reynolds number Rec; (b) the rescaled convective Reynolds
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convective Reynolds number R̃ecR̃a−3/2. The filled symbols represent η = 0.35 cases and the hollow symbols
represent η = 0.7 cases.

strongest near the inner boundary in the equatorial plane. However, during times of strong
convection, the convection fills the whole region in the equatorial plane.
We find that using R̃a, as opposed to the supercriticality measure, Ra/Rac, results in

improved collapse of our data when comparing with asymptotic predictions; Christensen
(2002) also found that using R̃a improved the collapse of some data. This effect likely
arises from the slow rate of convergence of the critical Rayleigh number to the predicted
asymptotic scaling of Rac ∼ Ek−4/3 (e.g. Dormy et al. 2004; Barik et al. 2023).

4.2. Flow speeds
Global root mean square (r.m.s.) values of both the fluctuating and mean velocity are
computed to determine their scaling behaviour with respect to the Ekman number. Note
that the mean velocity is dominated by the zonal flow (i.e. the φ-component of the mean
velocity). Figure 2(a) shows the fluctuating Reynolds number for both the η = 0.35 cases
and the η = 0.7 cases. Figure 2(b) shows the asymptotically rescaled fluctuating Reynolds
number, i.e. R̃ec = Ek1/3Rec, for the two different aspect ratios. We find that the rescaled
data are order unity and collapse onto a single curve, which supports the u′ = O(Ek−1/3)
asymptotic scaling for the fluctuating velocity. However, we note that the Ekman number
scaling of the convective Reynolds number might be time dependent. If we calculated the
convective Reynolds number using data only during the convective peaks of the relaxation
oscillations, we would obtain a steeper scaling closer to Ek−1/2. This suggests that the time
series for the convective velocity becomes more strongly peaked at lower Ekman number.
Note that we expect deviation from this asymptotic scaling behaviour as the system
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Figure 2. Reynolds number characterising the flow speeds of the fluctuating (convective) velocity versus the
reduced Rayleigh number, R̃a: (a) the convective Reynolds number Rec; (b) the rescaled convective Reynolds
number R̃ec = Ek1/3Rec; (c) the compensated convective Reynolds number R̃ecR̃a−1; (d) the compensated
convective Reynolds number R̃ecR̃a−3/2. The filled symbols represent η = 0.35 cases and the hollow symbols
represent η = 0.7 cases.

strongest near the inner boundary in the equatorial plane. However, during times of strong
convection, the convection fills the whole region in the equatorial plane.
We find that using R̃a, as opposed to the supercriticality measure, Ra/Rac, results in

improved collapse of our data when comparing with asymptotic predictions; Christensen
(2002) also found that using R̃a improved the collapse of some data. This effect likely
arises from the slow rate of convergence of the critical Rayleigh number to the predicted
asymptotic scaling of Rac ∼ Ek−4/3 (e.g. Dormy et al. 2004; Barik et al. 2023).

4.2. Flow speeds
Global root mean square (r.m.s.) values of both the fluctuating and mean velocity are
computed to determine their scaling behaviour with respect to the Ekman number. Note
that the mean velocity is dominated by the zonal flow (i.e. the φ-component of the mean
velocity). Figure 2(a) shows the fluctuating Reynolds number for both the η = 0.35 cases
and the η = 0.7 cases. Figure 2(b) shows the asymptotically rescaled fluctuating Reynolds
number, i.e. R̃ec = Ek1/3Rec, for the two different aspect ratios. We find that the rescaled
data are order unity and collapse onto a single curve, which supports the u′ = O(Ek−1/3)
asymptotic scaling for the fluctuating velocity. However, we note that the Ekman number
scaling of the convective Reynolds number might be time dependent. If we calculated the
convective Reynolds number using data only during the convective peaks of the relaxation
oscillations, we would obtain a steeper scaling closer to Ek−1/2. This suggests that the time
series for the convective velocity becomes more strongly peaked at lower Ekman number.
Note that we expect deviation from this asymptotic scaling behaviour as the system
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convective Reynolds number R̃ecR̃a−3/2. The filled symbols represent η = 0.35 cases and the hollow symbols
represent η = 0.7 cases.

strongest near the inner boundary in the equatorial plane. However, during times of strong
convection, the convection fills the whole region in the equatorial plane.
We find that using R̃a, as opposed to the supercriticality measure, Ra/Rac, results in

improved collapse of our data when comparing with asymptotic predictions; Christensen
(2002) also found that using R̃a improved the collapse of some data. This effect likely
arises from the slow rate of convergence of the critical Rayleigh number to the predicted
asymptotic scaling of Rac ∼ Ek−4/3 (e.g. Dormy et al. 2004; Barik et al. 2023).

4.2. Flow speeds
Global root mean square (r.m.s.) values of both the fluctuating and mean velocity are
computed to determine their scaling behaviour with respect to the Ekman number. Note
that the mean velocity is dominated by the zonal flow (i.e. the φ-component of the mean
velocity). Figure 2(a) shows the fluctuating Reynolds number for both the η = 0.35 cases
and the η = 0.7 cases. Figure 2(b) shows the asymptotically rescaled fluctuating Reynolds
number, i.e. R̃ec = Ek1/3Rec, for the two different aspect ratios. We find that the rescaled
data are order unity and collapse onto a single curve, which supports the u′ = O(Ek−1/3)
asymptotic scaling for the fluctuating velocity. However, we note that the Ekman number
scaling of the convective Reynolds number might be time dependent. If we calculated the
convective Reynolds number using data only during the convective peaks of the relaxation
oscillations, we would obtain a steeper scaling closer to Ek−1/2. This suggests that the time
series for the convective velocity becomes more strongly peaked at lower Ekman number.
Note that we expect deviation from this asymptotic scaling behaviour as the system
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represent η = 0.7 cases.

strongest near the inner boundary in the equatorial plane. However, during times of strong
convection, the convection fills the whole region in the equatorial plane.
We find that using R̃a, as opposed to the supercriticality measure, Ra/Rac, results in

improved collapse of our data when comparing with asymptotic predictions; Christensen
(2002) also found that using R̃a improved the collapse of some data. This effect likely
arises from the slow rate of convergence of the critical Rayleigh number to the predicted
asymptotic scaling of Rac ∼ Ek−4/3 (e.g. Dormy et al. 2004; Barik et al. 2023).

4.2. Flow speeds
Global root mean square (r.m.s.) values of both the fluctuating and mean velocity are
computed to determine their scaling behaviour with respect to the Ekman number. Note
that the mean velocity is dominated by the zonal flow (i.e. the φ-component of the mean
velocity). Figure 2(a) shows the fluctuating Reynolds number for both the η = 0.35 cases
and the η = 0.7 cases. Figure 2(b) shows the asymptotically rescaled fluctuating Reynolds
number, i.e. R̃ec = Ek1/3Rec, for the two different aspect ratios. We find that the rescaled
data are order unity and collapse onto a single curve, which supports the u′ = O(Ek−1/3)
asymptotic scaling for the fluctuating velocity. However, we note that the Ekman number
scaling of the convective Reynolds number might be time dependent. If we calculated the
convective Reynolds number using data only during the convective peaks of the relaxation
oscillations, we would obtain a steeper scaling closer to Ek−1/2. This suggests that the time
series for the convective velocity becomes more strongly peaked at lower Ekman number.
Note that we expect deviation from this asymptotic scaling behaviour as the system
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strongest near the inner boundary in the equatorial plane. However, during times of strong
convection, the convection fills the whole region in the equatorial plane.
We find that using R̃a, as opposed to the supercriticality measure, Ra/Rac, results in

improved collapse of our data when comparing with asymptotic predictions; Christensen
(2002) also found that using R̃a improved the collapse of some data. This effect likely
arises from the slow rate of convergence of the critical Rayleigh number to the predicted
asymptotic scaling of Rac ∼ Ek−4/3 (e.g. Dormy et al. 2004; Barik et al. 2023).

4.2. Flow speeds
Global root mean square (r.m.s.) values of both the fluctuating and mean velocity are
computed to determine their scaling behaviour with respect to the Ekman number. Note
that the mean velocity is dominated by the zonal flow (i.e. the φ-component of the mean
velocity). Figure 2(a) shows the fluctuating Reynolds number for both the η = 0.35 cases
and the η = 0.7 cases. Figure 2(b) shows the asymptotically rescaled fluctuating Reynolds
number, i.e. R̃ec = Ek1/3Rec, for the two different aspect ratios. We find that the rescaled
data are order unity and collapse onto a single curve, which supports the u′ = O(Ek−1/3)
asymptotic scaling for the fluctuating velocity. However, we note that the Ekman number
scaling of the convective Reynolds number might be time dependent. If we calculated the
convective Reynolds number using data only during the convective peaks of the relaxation
oscillations, we would obtain a steeper scaling closer to Ek−1/2. This suggests that the time
series for the convective velocity becomes more strongly peaked at lower Ekman number.
Note that we expect deviation from this asymptotic scaling behaviour as the system
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Figure 3. Reynolds number characterising the flow speeds of the mean (zonal) velocity field versus R̃a:
(a) the zonal Reynolds number Rez; (b) the rescaled zonal Reynolds number R̃ez = Ek2/3Rez. The solid
line is a least squares fit of the data for the η = 0.35, Ek = 10−5 cases to a line and is given by Rez =
(0.022R̃a − 0.19)Ek−2/3; the dashed line is a least squares fit of all the η = 0.7 data to a line and is given
by Rez = (0.031R̃a − 0.016)Ek−2/3. The symbols are the same as defined in figure 2.

loses rotational constraint; this deviation is particularly noticeable in figure 2(b) for the
high-Rayleigh-number regime (R̃a ! 100) for the two largest Ekman numbers used in the
η = 0.35 simulations, Ek = 3 × 10−4 and Ek = 10−4. Figure 2(c,d) shows two versions
of the compensated convective Reynolds number: R̃ecR̃a−1 and R̃ecR̃a−3/2. We observe
in figure 2(c) that the compensated Reynolds number R̃ecR̃a−1 becomes nearly horizontal
for our large Rayleigh number cases at large Ekman number and small aspect ratio, which
suggests these cases may be scaling as Rec ∼ R̃a. However, this scaling behaviour may be
localised in R̃a space. For sufficiently small Ekman number and large Rayleigh number,
the compensated plot for R̃ecR̃a−3/2 collapses the data well, though the scaling appears
slightly weaker than R̃a3/2 which suggests that the convective Reynolds number scales
approximately as Rec ∼ R̃a3/2 in this regime.
Figure 3(a) shows the mean Reynolds number as a function of R̃a, and figure 3(b) shows

the corresponding asymptotically rescaled mean Reynolds number, R̃ez = Ek2/3Rez. As
mentioned previously, the mean flow is dominated by the zonal component in all of our
simulations. While there is clearly some spread in the rescaled data for the thick shell
cases, there is an indication that the data collapse to an asymptotic state as Ek → 0.
Moreover, the rescaled values are order unity. There appears to be better collapse for the
thin shell cases, indicating that the fluid depth may play an important role. Also note the
excellent collapse for the three thin shell data points near R̃a ≈ 60 – the two lower Ekman
number cases of these three develop prograde high-latitude jets as shown in figure 1(c).
Taken together, the data seem to support that the zonal flow scales as Ek−2/3 in the rapidly
rotating regime. We note that Gastine et al. (2014) found an empirical scaling for the zonal
Rossby number of Rozon ∼ Ra0.6Ek0.99, which, when converted to a Reynolds number and
using Ra ∼ Ek−4/3, gives Rez ∼ Ek−0.81. This result broadly agrees with the scaling of
Rez ∼ Ek−2/3 derived in this paper.
While the balance between viscosity and Reynolds stresses predicts a zonal flow scaling

of Ek−2/3, this balance is unable to predict how the zonal flow scales with the reduced
Rayleigh number due to the fact that the correlation of the fluctuating velocity components
is an unknown function of R̃a. Thus, we make an empirical fit of Rez with respect to the
reduced Rayleigh number, which is shown in figure 3(b). We find that a line does a good
job of fitting our small Ekman number cases. However, our larger Ekman number cases at

981 A22-14

1�
�8

:

  

�7
2�7

�0
 �

��
��

��
 �/

�
��

��
��

�	
��

��
42:

1.
��

7�
42�

.�
�!

��
��

��
2�

0.
�


�2
 .

�:
2�!

��
�.

::



<latexit sha1_base64="mubgcsWbobvv8bwYoUWPIsWABAE="></latexit>

u(r, ✓,�, t) = u(r, ✓, t) + u0(r, ✓,�, t)

J.A. Nicoski, A.R. O’Connor and M.A. Calkins

Ra

102

103

Re
z

Ra

0.5

1.0

1.5

2.0

Re
z

0 50 100 150 200 50 100 150 2000

(b)(a)

Figure 3. Reynolds number characterising the flow speeds of the mean (zonal) velocity field versus R̃a:
(a) the zonal Reynolds number Rez; (b) the rescaled zonal Reynolds number R̃ez = Ek2/3Rez. The solid
line is a least squares fit of the data for the η = 0.35, Ek = 10−5 cases to a line and is given by Rez =
(0.022R̃a − 0.19)Ek−2/3; the dashed line is a least squares fit of all the η = 0.7 data to a line and is given
by Rez = (0.031R̃a − 0.016)Ek−2/3. The symbols are the same as defined in figure 2.

loses rotational constraint; this deviation is particularly noticeable in figure 2(b) for the
high-Rayleigh-number regime (R̃a ! 100) for the two largest Ekman numbers used in the
η = 0.35 simulations, Ek = 3 × 10−4 and Ek = 10−4. Figure 2(c,d) shows two versions
of the compensated convective Reynolds number: R̃ecR̃a−1 and R̃ecR̃a−3/2. We observe
in figure 2(c) that the compensated Reynolds number R̃ecR̃a−1 becomes nearly horizontal
for our large Rayleigh number cases at large Ekman number and small aspect ratio, which
suggests these cases may be scaling as Rec ∼ R̃a. However, this scaling behaviour may be
localised in R̃a space. For sufficiently small Ekman number and large Rayleigh number,
the compensated plot for R̃ecR̃a−3/2 collapses the data well, though the scaling appears
slightly weaker than R̃a3/2 which suggests that the convective Reynolds number scales
approximately as Rec ∼ R̃a3/2 in this regime.
Figure 3(a) shows the mean Reynolds number as a function of R̃a, and figure 3(b) shows

the corresponding asymptotically rescaled mean Reynolds number, R̃ez = Ek2/3Rez. As
mentioned previously, the mean flow is dominated by the zonal component in all of our
simulations. While there is clearly some spread in the rescaled data for the thick shell
cases, there is an indication that the data collapse to an asymptotic state as Ek → 0.
Moreover, the rescaled values are order unity. There appears to be better collapse for the
thin shell cases, indicating that the fluid depth may play an important role. Also note the
excellent collapse for the three thin shell data points near R̃a ≈ 60 – the two lower Ekman
number cases of these three develop prograde high-latitude jets as shown in figure 1(c).
Taken together, the data seem to support that the zonal flow scales as Ek−2/3 in the rapidly
rotating regime. We note that Gastine et al. (2014) found an empirical scaling for the zonal
Rossby number of Rozon ∼ Ra0.6Ek0.99, which, when converted to a Reynolds number and
using Ra ∼ Ek−4/3, gives Rez ∼ Ek−0.81. This result broadly agrees with the scaling of
Rez ∼ Ek−2/3 derived in this paper.
While the balance between viscosity and Reynolds stresses predicts a zonal flow scaling

of Ek−2/3, this balance is unable to predict how the zonal flow scales with the reduced
Rayleigh number due to the fact that the correlation of the fluctuating velocity components
is an unknown function of R̃a. Thus, we make an empirical fit of Rez with respect to the
reduced Rayleigh number, which is shown in figure 3(b). We find that a line does a good
job of fitting our small Ekman number cases. However, our larger Ekman number cases at
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Figure 3. Reynolds number characterising the flow speeds of the mean (zonal) velocity field versus R̃a:
(a) the zonal Reynolds number Rez; (b) the rescaled zonal Reynolds number R̃ez = Ek2/3Rez. The solid
line is a least squares fit of the data for the η = 0.35, Ek = 10−5 cases to a line and is given by Rez =
(0.022R̃a − 0.19)Ek−2/3; the dashed line is a least squares fit of all the η = 0.7 data to a line and is given
by Rez = (0.031R̃a − 0.016)Ek−2/3. The symbols are the same as defined in figure 2.

loses rotational constraint; this deviation is particularly noticeable in figure 2(b) for the
high-Rayleigh-number regime (R̃a ! 100) for the two largest Ekman numbers used in the
η = 0.35 simulations, Ek = 3 × 10−4 and Ek = 10−4. Figure 2(c,d) shows two versions
of the compensated convective Reynolds number: R̃ecR̃a−1 and R̃ecR̃a−3/2. We observe
in figure 2(c) that the compensated Reynolds number R̃ecR̃a−1 becomes nearly horizontal
for our large Rayleigh number cases at large Ekman number and small aspect ratio, which
suggests these cases may be scaling as Rec ∼ R̃a. However, this scaling behaviour may be
localised in R̃a space. For sufficiently small Ekman number and large Rayleigh number,
the compensated plot for R̃ecR̃a−3/2 collapses the data well, though the scaling appears
slightly weaker than R̃a3/2 which suggests that the convective Reynolds number scales
approximately as Rec ∼ R̃a3/2 in this regime.
Figure 3(a) shows the mean Reynolds number as a function of R̃a, and figure 3(b) shows

the corresponding asymptotically rescaled mean Reynolds number, R̃ez = Ek2/3Rez. As
mentioned previously, the mean flow is dominated by the zonal component in all of our
simulations. While there is clearly some spread in the rescaled data for the thick shell
cases, there is an indication that the data collapse to an asymptotic state as Ek → 0.
Moreover, the rescaled values are order unity. There appears to be better collapse for the
thin shell cases, indicating that the fluid depth may play an important role. Also note the
excellent collapse for the three thin shell data points near R̃a ≈ 60 – the two lower Ekman
number cases of these three develop prograde high-latitude jets as shown in figure 1(c).
Taken together, the data seem to support that the zonal flow scales as Ek−2/3 in the rapidly
rotating regime. We note that Gastine et al. (2014) found an empirical scaling for the zonal
Rossby number of Rozon ∼ Ra0.6Ek0.99, which, when converted to a Reynolds number and
using Ra ∼ Ek−4/3, gives Rez ∼ Ek−0.81. This result broadly agrees with the scaling of
Rez ∼ Ek−2/3 derived in this paper.
While the balance between viscosity and Reynolds stresses predicts a zonal flow scaling

of Ek−2/3, this balance is unable to predict how the zonal flow scales with the reduced
Rayleigh number due to the fact that the correlation of the fluctuating velocity components
is an unknown function of R̃a. Thus, we make an empirical fit of Rez with respect to the
reduced Rayleigh number, which is shown in figure 3(b). We find that a line does a good
job of fitting our small Ekman number cases. However, our larger Ekman number cases at
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Taylor Microscale

Rotating spherical convection with strong zonal flows
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Figure 8. Convective length scales for the η = 0.35 cases: (a,b) spherical harmonic length scale; (c,d) Taylor
microscale. Panel (b,d) shows the asymptotically rescaled length scales. The symbols are the same as defined
in figure 2.

Figure 8(c,d) shows the Taylor microscale, where we see that it follows a very similar
trend in comparison to the spherical harmonic length scale. The collapse of the rescaled
quantity indicates that the viscous dissipation length scale is consistent with an Ek1/3
dependence across the entire range of parameters used. The Taylor microscale appears
to decrease with R̃a over a wider range of R̃a than the spherical harmonic length scale,
which becomes approximately constant with R̃a. If we interpret the spherical harmonic
length scale as the energy containing length scale (similar to an integral length scale), then
our computed length scales indicate that the scale separation present in these simulations
is relatively small across the entire range of parameters since "′

sh and "′
tm are not too

dissimilar in value. For instance, at R̃a ≈ 50, Ek−1/3"′
sh ≈ 4 and Ek−1/3"′

tm ≈ 0.9. We
note that the trends observed in both length scales contrast sharply with computed length
scales in non-rotating Rayleigh–Bénard convection, where both the energy containing
length scale and the dissipation length scale decrease rapidly with increasing Rayleigh
number (e.g. Yan et al. 2021).
To study the behaviour of the Ek2/9 length scale found in the kinetic energy spectra, we

define a length scale based on the degree lpeak where the kinetic energy spectrum (again
with the m = 0 mode removed) reaches a maximum. The peak length scale is then given
by "′

peak = π/lpeak. To smooth the resulting data set, we first fit each spectrum with a
high-order polynomial; we found that 15th degree and higher worked well. Figure 9(a)
shows the peak length scale and figure 9(c) shows the peak length scale rescaled by
Ek−2/9. We note that while the peak length scale approximately scales as Ek2/9, we obtain
a somewhat better fit for Ek1/6 as shown in figure 9(d). Regardless, this peak length scale
seems to scale differently than "′

sh, which suggests that "′
peak does in fact correspond

to a different length scale than the small-scale convective length scale. We also note
that the length scale "′

peak increases with increasing Rayleigh number, in contrast to "′
sh
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Figure 8. Convective length scales for the η = 0.35 cases: (a,b) spherical harmonic length scale; (c,d) Taylor
microscale. Panel (b,d) shows the asymptotically rescaled length scales. The symbols are the same as defined
in figure 2.

Figure 8(c,d) shows the Taylor microscale, where we see that it follows a very similar
trend in comparison to the spherical harmonic length scale. The collapse of the rescaled
quantity indicates that the viscous dissipation length scale is consistent with an Ek1/3
dependence across the entire range of parameters used. The Taylor microscale appears
to decrease with R̃a over a wider range of R̃a than the spherical harmonic length scale,
which becomes approximately constant with R̃a. If we interpret the spherical harmonic
length scale as the energy containing length scale (similar to an integral length scale), then
our computed length scales indicate that the scale separation present in these simulations
is relatively small across the entire range of parameters since "′

sh and "′
tm are not too

dissimilar in value. For instance, at R̃a ≈ 50, Ek−1/3"′
sh ≈ 4 and Ek−1/3"′

tm ≈ 0.9. We
note that the trends observed in both length scales contrast sharply with computed length
scales in non-rotating Rayleigh–Bénard convection, where both the energy containing
length scale and the dissipation length scale decrease rapidly with increasing Rayleigh
number (e.g. Yan et al. 2021).
To study the behaviour of the Ek2/9 length scale found in the kinetic energy spectra, we

define a length scale based on the degree lpeak where the kinetic energy spectrum (again
with the m = 0 mode removed) reaches a maximum. The peak length scale is then given
by "′

peak = π/lpeak. To smooth the resulting data set, we first fit each spectrum with a
high-order polynomial; we found that 15th degree and higher worked well. Figure 9(a)
shows the peak length scale and figure 9(c) shows the peak length scale rescaled by
Ek−2/9. We note that while the peak length scale approximately scales as Ek2/9, we obtain
a somewhat better fit for Ek1/6 as shown in figure 9(d). Regardless, this peak length scale
seems to scale differently than "′

sh, which suggests that "′
peak does in fact correspond

to a different length scale than the small-scale convective length scale. We also note
that the length scale "′

peak increases with increasing Rayleigh number, in contrast to "′
sh
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Integral Length Scale
Rotating spherical convection with strong zonal flows
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Figure 8. Convective length scales for the η = 0.35 cases: (a,b) spherical harmonic length scale; (c,d) Taylor
microscale. Panel (b,d) shows the asymptotically rescaled length scales. The symbols are the same as defined
in figure 2.

Figure 8(c,d) shows the Taylor microscale, where we see that it follows a very similar
trend in comparison to the spherical harmonic length scale. The collapse of the rescaled
quantity indicates that the viscous dissipation length scale is consistent with an Ek1/3
dependence across the entire range of parameters used. The Taylor microscale appears
to decrease with R̃a over a wider range of R̃a than the spherical harmonic length scale,
which becomes approximately constant with R̃a. If we interpret the spherical harmonic
length scale as the energy containing length scale (similar to an integral length scale), then
our computed length scales indicate that the scale separation present in these simulations
is relatively small across the entire range of parameters since "′

sh and "′
tm are not too

dissimilar in value. For instance, at R̃a ≈ 50, Ek−1/3"′
sh ≈ 4 and Ek−1/3"′

tm ≈ 0.9. We
note that the trends observed in both length scales contrast sharply with computed length
scales in non-rotating Rayleigh–Bénard convection, where both the energy containing
length scale and the dissipation length scale decrease rapidly with increasing Rayleigh
number (e.g. Yan et al. 2021).
To study the behaviour of the Ek2/9 length scale found in the kinetic energy spectra, we

define a length scale based on the degree lpeak where the kinetic energy spectrum (again
with the m = 0 mode removed) reaches a maximum. The peak length scale is then given
by "′

peak = π/lpeak. To smooth the resulting data set, we first fit each spectrum with a
high-order polynomial; we found that 15th degree and higher worked well. Figure 9(a)
shows the peak length scale and figure 9(c) shows the peak length scale rescaled by
Ek−2/9. We note that while the peak length scale approximately scales as Ek2/9, we obtain
a somewhat better fit for Ek1/6 as shown in figure 9(d). Regardless, this peak length scale
seems to scale differently than "′

sh, which suggests that "′
peak does in fact correspond

to a different length scale than the small-scale convective length scale. We also note
that the length scale "′

peak increases with increasing Rayleigh number, in contrast to "′
sh
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Figure 8. Convective length scales for the η = 0.35 cases: (a,b) spherical harmonic length scale; (c,d) Taylor
microscale. Panel (b,d) shows the asymptotically rescaled length scales. The symbols are the same as defined
in figure 2.

Figure 8(c,d) shows the Taylor microscale, where we see that it follows a very similar
trend in comparison to the spherical harmonic length scale. The collapse of the rescaled
quantity indicates that the viscous dissipation length scale is consistent with an Ek1/3
dependence across the entire range of parameters used. The Taylor microscale appears
to decrease with R̃a over a wider range of R̃a than the spherical harmonic length scale,
which becomes approximately constant with R̃a. If we interpret the spherical harmonic
length scale as the energy containing length scale (similar to an integral length scale), then
our computed length scales indicate that the scale separation present in these simulations
is relatively small across the entire range of parameters since "′

sh and "′
tm are not too

dissimilar in value. For instance, at R̃a ≈ 50, Ek−1/3"′
sh ≈ 4 and Ek−1/3"′

tm ≈ 0.9. We
note that the trends observed in both length scales contrast sharply with computed length
scales in non-rotating Rayleigh–Bénard convection, where both the energy containing
length scale and the dissipation length scale decrease rapidly with increasing Rayleigh
number (e.g. Yan et al. 2021).
To study the behaviour of the Ek2/9 length scale found in the kinetic energy spectra, we

define a length scale based on the degree lpeak where the kinetic energy spectrum (again
with the m = 0 mode removed) reaches a maximum. The peak length scale is then given
by "′

peak = π/lpeak. To smooth the resulting data set, we first fit each spectrum with a
high-order polynomial; we found that 15th degree and higher worked well. Figure 9(a)
shows the peak length scale and figure 9(c) shows the peak length scale rescaled by
Ek−2/9. We note that while the peak length scale approximately scales as Ek2/9, we obtain
a somewhat better fit for Ek1/6 as shown in figure 9(d). Regardless, this peak length scale
seems to scale differently than "′

sh, which suggests that "′
peak does in fact correspond

to a different length scale than the small-scale convective length scale. We also note
that the length scale "′

peak increases with increasing Rayleigh number, in contrast to "′
sh
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Figure 8. Convective length scales for the η = 0.35 cases: (a,b) spherical harmonic length scale; (c,d) Taylor
microscale. Panel (b,d) shows the asymptotically rescaled length scales. The symbols are the same as defined
in figure 2.

Figure 8(c,d) shows the Taylor microscale, where we see that it follows a very similar
trend in comparison to the spherical harmonic length scale. The collapse of the rescaled
quantity indicates that the viscous dissipation length scale is consistent with an Ek1/3
dependence across the entire range of parameters used. The Taylor microscale appears
to decrease with R̃a over a wider range of R̃a than the spherical harmonic length scale,
which becomes approximately constant with R̃a. If we interpret the spherical harmonic
length scale as the energy containing length scale (similar to an integral length scale), then
our computed length scales indicate that the scale separation present in these simulations
is relatively small across the entire range of parameters since "′

sh and "′
tm are not too

dissimilar in value. For instance, at R̃a ≈ 50, Ek−1/3"′
sh ≈ 4 and Ek−1/3"′

tm ≈ 0.9. We
note that the trends observed in both length scales contrast sharply with computed length
scales in non-rotating Rayleigh–Bénard convection, where both the energy containing
length scale and the dissipation length scale decrease rapidly with increasing Rayleigh
number (e.g. Yan et al. 2021).
To study the behaviour of the Ek2/9 length scale found in the kinetic energy spectra, we

define a length scale based on the degree lpeak where the kinetic energy spectrum (again
with the m = 0 mode removed) reaches a maximum. The peak length scale is then given
by "′

peak = π/lpeak. To smooth the resulting data set, we first fit each spectrum with a
high-order polynomial; we found that 15th degree and higher worked well. Figure 9(a)
shows the peak length scale and figure 9(c) shows the peak length scale rescaled by
Ek−2/9. We note that while the peak length scale approximately scales as Ek2/9, we obtain
a somewhat better fit for Ek1/6 as shown in figure 9(d). Regardless, this peak length scale
seems to scale differently than "′

sh, which suggests that "′
peak does in fact correspond

to a different length scale than the small-scale convective length scale. We also note
that the length scale "′

peak increases with increasing Rayleigh number, in contrast to "′
sh
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microscale. Panel (b,d) shows the asymptotically rescaled length scales. The symbols are the same as defined
in figure 2.

Figure 8(c,d) shows the Taylor microscale, where we see that it follows a very similar
trend in comparison to the spherical harmonic length scale. The collapse of the rescaled
quantity indicates that the viscous dissipation length scale is consistent with an Ek1/3
dependence across the entire range of parameters used. The Taylor microscale appears
to decrease with R̃a over a wider range of R̃a than the spherical harmonic length scale,
which becomes approximately constant with R̃a. If we interpret the spherical harmonic
length scale as the energy containing length scale (similar to an integral length scale), then
our computed length scales indicate that the scale separation present in these simulations
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tm are not too

dissimilar in value. For instance, at R̃a ≈ 50, Ek−1/3"′
sh ≈ 4 and Ek−1/3"′

tm ≈ 0.9. We
note that the trends observed in both length scales contrast sharply with computed length
scales in non-rotating Rayleigh–Bénard convection, where both the energy containing
length scale and the dissipation length scale decrease rapidly with increasing Rayleigh
number (e.g. Yan et al. 2021).
To study the behaviour of the Ek2/9 length scale found in the kinetic energy spectra, we

define a length scale based on the degree lpeak where the kinetic energy spectrum (again
with the m = 0 mode removed) reaches a maximum. The peak length scale is then given
by "′

peak = π/lpeak. To smooth the resulting data set, we first fit each spectrum with a
high-order polynomial; we found that 15th degree and higher worked well. Figure 9(a)
shows the peak length scale and figure 9(c) shows the peak length scale rescaled by
Ek−2/9. We note that while the peak length scale approximately scales as Ek2/9, we obtain
a somewhat better fit for Ek1/6 as shown in figure 9(d). Regardless, this peak length scale
seems to scale differently than "′

sh, which suggests that "′
peak does in fact correspond

to a different length scale than the small-scale convective length scale. We also note
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sh

981 A22-19

1�
�8

:

  
�7

2�7
�0

 �
��

��
��

 �/
�

��
��

��
�	

��
��

42:
1.

��
7�

42�
.�

�!
��

��
��

2�
0.

�

�2

 .
�:

2�!
��

�.
::

Energetically-dominant length scales: 
<latexit sha1_base64="+o7Ndp+P/9YmbV/DyulVJXkjHVU=">AAACCXicbVDLSgNBEJyNrxhfqx69DAYhXuKuinoRRBG8qWAekI1hdtKbDJl9MNMrhCVXL/6KFw+KePUPvPk3TmIOaixoKKq66e7yEyk0Os6nlZuanpmdy88XFhaXllfs1bWqjlPFocJjGau6zzRIEUEFBUqoJwpY6Euo+b2zoV+7A6VFHN1gP4FmyDqRCARnaKSWTT2Qkh7TS+pJCLB03rvN3J29AfWU6HRxm7bsolN2RqCTxB2TIhnjqmV/eO2YpyFEyCXTuuE6CTYzplBwCYOCl2pIGO+xDjQMjVgIupmNPhnQLaO0aRArUxHSkfpzImOh1v3QN50hw67+6w3F/7xGisFRMxNRkiJE/HtRkEqKMR3GQttCAUfZN4RxJcytlHeZYhxNeAUTgvv35UlS3S27B2X3er94cjqOI082yCYpEZcckhNyQa5IhXByTx7JM3mxHqwn69V6+27NWeOZdfIL1vsXNyaYIQ==</latexit>

` = O

⇣
Ek

1/3
⌘



Force Scalings

J.A. Nicoski, A.R. O’Connor and M.A. Calkins

104

105

106

(∇
2 u

′ ) r
10–1

100

101

Ek
 (∇

2 u
′ ) r

105

106

107

(R
a/

Pr
)(r

/r
o)

T′

100

101

102

Ek
 (R

a/
Pr

)(r
/r

o)
T′

0 50 100 150 200

0 50 100 150 200

0 50 100 150 200

104

105

106

107

(u
′  ·

 ∇
u′

) r
0 50 100 150 200

0 50 100 150 200

0 50 100 150 200
10–1

100

101

102

Ek
 (u

′  ·
 ∇

u′
) r

(a) (b)

(c) (d )

(e) ( f )

Ra Ra
Figure 14. Time-averaged volume r.m.s. of various terms from the radial component of the fluctuating
momentum equation: (a) viscous force; (c) buoyancy force; (e) fluctuating advection term; (b) rescaled viscous
force; (d) rescaled buoyancy force; ( f ) rescaled fluctuating advection term. The symbols are the same as defined
in figure 2.

that the θ and φ components of the fluctuating force balance show similar behaviour. We
also tested removing the thermal boundary layers, and did not observe a qualitative change
in any of the trends shown.
Some terms from the momentum equation follow a stronger Ekman number scaling

due to the presence of the zonal flow, and these terms are shown in figure 15. The
zonal flow strongly advects the fluctuating velocity, which is unbalanced and causes large
accelerations in the small-scale fluid structures. Because the zonal flow scales as Ek−2/3,
the fluctuating velocity scales as Ek−1/3 and the length scale of the fluctuating velocity
scales as Ek1/3, we expect the advection by the zonal flow to scale as Ek−4/3, which we
also expect for the scaling of the time derivative. Figure 15(b,d) shows the collapse of the
mean advection term and the time derivative term for this scaling. We see that both the
advection by the zonal flow and the time derivative follow an Ek−4/3 scaling, which we
note is the same scaling followed by the Coriolis force. Therefore, the advection by the
zonal flow and the time derivative appear at leading order asymptotically, and the sum of
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Figure 16. Volume r.m.s. of several terms from the fluctuating radial momentum equation averaged in time

for thick shell simulations: (a) Ek = 3 × 10−4; (b) Ek = 10−5.
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Figure 17. Ratios of forces in the fluctuating radial momentum equation where Fv = [∇2u′]r, Fa = [u′ · ∇u′]r
and Fb = (Ra/Pr)(r/r0)T ′: (a) ratio of the viscous force to the buoyancy force; (b) ratio of the fluctuating
advective term to the buoyancy force. The symbols are the same as defined in figure 2.

force to buoyancy is an increasing function of the Rayleigh number, which suggests that
viscosity does not become negligible at more extreme parameters. This behaviour is in
contrast to the diffusion-free scaling that is used in many previous studies, which assume
that viscosity is negligible. Therefore, the trends we observe in our data do not support
viscosity becoming negligible, although it is possible that this trend changes at higher
values of the reduced Rayleigh number than we achieved in this study. However, Oliver
et al. (2023) also investigated this ratio over a larger range of R̃a in the plane geometry
and found similar behaviour, where it was attributed to the fact that the fluid interior acts
as the dominant control on heat transport. In this sense, this measure may simply be a
manifestation of the energetic constraints on the system in which work done by the viscous
force must balance the work done by the buoyancy force when averaged over time and
space (e.g. Siggia 1994).

4.6. Heat flow and dissipation
Figure 18 shows the Nusselt number for all of the η = 0.35 cases. The raw data are shown
in panel (a); asymptotically rescaled data are shown in panel (b); and the Nusselt number
compensated by the diffusion-free scaling is shown in panel (c). As for much of the data
shown previously, in comparison to panel (a), the collapse of the data in panel (b) is
indicative that the simulations are in the regime of rotationally constrained dynamics.
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propagating Rossby waves, and viscous dissipation occurs in the 
boundary layers.

In the rapidly rotating turbulent regime, an increase in the convective 
length scale with the buoyancy driving is expected from scaling argu-
ments8–10, which assume that the production of axial vorticity is gov-
erned by a triple inviscid balance between vortex stretching, advection 
and buoyancy (the so-called Coriolis–inertia–Archimedes balance). 

The scaling gives a convective length scale that depends on the flow 
velocity as β∝ / /L (Ro )t

1 2, where β is a geometric factor related to 
the boundary slope (see Methods). This length scale is consistent with 
the m−5 spectra of the kinetic energy. Assuming that the transport in 
the fluid bulk controls the heat transfer21, the scaling uses a balance 
between the nonlinear advection of temperature and the transport of 
the mean temperature background to obtain Re ∝ Ra × Ek/Pr, or sim-
ply Ro ∝ Bu, where Bu = Ra × Ek2/Pr is the viscosity-free buoyancy 
parameter. The Prandtl number, Pr, is the ratio of viscosity to thermal 
diffusivity and is expected to be 0.01−0.1 in liquid metal cores. The 
theoretical scaling law is tested in Fig. 4 against results obtained with 
the 3D and QG models and against published results obtained with a 
hybrid model that uses the QG approximation coupled to the 3D tem-
perature18. The characteristic convective length scale L corresponds to 
the peak of the radial kinetic energy spectra. Points obtained at different 
Ek values collapse onto a single curve, especially for Ek < 10−9, show-
ing that the dependence of the results on the viscosity becomes negli-
gible when core conditions are approached. Importantly, the good 
agreement obtained between the different numerical models supports 
the use of the QG approximation for modelling rapidly rotating  
convection. The data for the velocity and length scale, compensated by 
their respective theoretical scaling laws, align on a plateau at small  
Ek values, indicating that the agreement between the simulations  
and the theoretical scaling improves progressively as Ek decreases. The 
length scales show little dependence on Pr; for the velocity scaling law, 
the exponent is unaffected by Pr but simulations with larger Pr values 
tend to have a slightly smaller prefactor. To avoid the ‘shingling’ effect 
that occurs when using diffusion-free parameters22, the scaling of Re 
is shown in Extended Data Fig. 1 and confirms the overlap of the  
data for Ek ≤ 10−9 and the good agreement with the exponent pre-
dicted by the theoretical scaling. The length scale L corresponds to an 
azimuthal size in Fig. 4, and we further confirm in Extended Data Fig. 2 
that the radial length scale obtained from radial correlations is in  
good agreement with this azimuthal scale. The radial dependence of 
the length scale observed in Fig. 2 is also in agreement with the theo-
retical dependence on | β |−1/2, as shown in Extended Data Fig. 3. 
Additional QG simulations performed with differential heating in the 
presence of an inner core (see Methods) show that the scaling  
law L(Ro) of Fig. 4 is valid for other heating modes (Extended  
Data Fig. 4).
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Turbulent convective length scale in planetary cores
Céline Guervilly1*, Philippe Cardin2 & Nathanaël Schaeffer2

Convection is a fundamental physical process in the fluid cores of 
planets. It is the primary transport mechanism for heat and chemical 
species and the primary energy source for planetary magnetic 
fields. Key properties of convection—such as the characteristic flow 
velocity and length scale—are poorly quantified in planetary cores 
owing to the strong dependence of these properties on planetary 
rotation, buoyancy driving and magnetic fields, all of which are 
difficult to model using realistic conditions. In the absence of strong 
magnetic fields, the convective flows of the core are expected to be 
in a regime of rapidly rotating turbulence1, which remains largely 
unexplored. Here we use a combination of non-magnetic numerical 
models designed to explore this regime to show that the convective 
length scale becomes independent of the viscosity when realistic 
parameter values are approached and is entirely determined by the 
flow velocity and the planetary rotation. The velocity decreases very 
rapidly at smaller scales, so this turbulent convective length scale 
is a lower limit for the energy-carrying length scales in the flow. 
Using this approach, we can model realistically the dynamics of 
small non-magnetic cores such as the Moon. Although modelling 
the conditions of larger planetary cores remains out of reach, the 

fact that the turbulent convective length scale is independent of 
the viscosity allows a reliable extrapolation to these objects. For the 
Earth’s core conditions, we find that the turbulent convective length 
scale in the absence of magnetic fields would be about 30 kilometres, 
which is orders of magnitude larger than the ten-metre viscous 
length scale. The need to resolve the numerically inaccessible viscous 
scale could therefore be relaxed in future more realistic geodynamo 
simulations, at least in weakly magnetized regions.

The very low fluid viscosity in planetary liquid cores implies that the 
convective flows are turbulent, but this turbulence differs both from 
three-dimensional (3D) turbulence owing to the anisotropy imposed 
by the rapid planetary rotation and from two-dimensional (2D) turbu-
lence owing to the presence of Rossby waves2. Conditions in planetary 
cores correspond to small Ekman numbers (Ek = ν/ΩR2 with viscosity 
ν, rotation rate Ω and core radius R), large Reynolds numbers 
( ν= /URRe  with flow speed U ) and small Rossby numbers 
( Ω= / = ×U RRo Re Ek), with, for instance, Ek ≈ 10−15, Re ≈ 109 and 
Ro ≈ 10−6 in the Earth’s core3. Numerical models must employ a fluid 
viscosity that is orders of magnitude larger than realistic values to  
keep the range of time and length scales involved in the dynamics 

1School of Mathematics, Statistics and Physics, Newcastle University, Newcastle upon Tyne, UK. 2Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, Grenoble, 
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Fig. 1 | Flow in the 3D model. Meridional and equatorial cross-sections 
of a snapshot of the axial vorticity in the 3D model for Ek = 10−8, 
Ra = 2 × 1010 and Pr = 10−2. Streamlines have been superimposed in 
the equatorial plane. In the colour scale, values of the axial vorticity 

are normalized by the planetary vorticity 2Ω. The kinetic energy of the 
velocity projected on a QG state (〈us〉, 〈uφ〉, zβ〈us〉) in cylindrical polar 
coordinates (where the angle brackets denote an axial average) is within 
0.2% of the total kinetic energy.
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Convection is a fundamental physical process in the fluid cores of 
planets. It is the primary transport mechanism for heat and chemical 
species and the primary energy source for planetary magnetic 
fields. Key properties of convection—such as the characteristic flow 
velocity and length scale—are poorly quantified in planetary cores 
owing to the strong dependence of these properties on planetary 
rotation, buoyancy driving and magnetic fields, all of which are 
difficult to model using realistic conditions. In the absence of strong 
magnetic fields, the convective flows of the core are expected to be 
in a regime of rapidly rotating turbulence1, which remains largely 
unexplored. Here we use a combination of non-magnetic numerical 
models designed to explore this regime to show that the convective 
length scale becomes independent of the viscosity when realistic 
parameter values are approached and is entirely determined by the 
flow velocity and the planetary rotation. The velocity decreases very 
rapidly at smaller scales, so this turbulent convective length scale 
is a lower limit for the energy-carrying length scales in the flow. 
Using this approach, we can model realistically the dynamics of 
small non-magnetic cores such as the Moon. Although modelling 
the conditions of larger planetary cores remains out of reach, the 

fact that the turbulent convective length scale is independent of 
the viscosity allows a reliable extrapolation to these objects. For the 
Earth’s core conditions, we find that the turbulent convective length 
scale in the absence of magnetic fields would be about 30 kilometres, 
which is orders of magnitude larger than the ten-metre viscous 
length scale. The need to resolve the numerically inaccessible viscous 
scale could therefore be relaxed in future more realistic geodynamo 
simulations, at least in weakly magnetized regions.

The very low fluid viscosity in planetary liquid cores implies that the 
convective flows are turbulent, but this turbulence differs both from 
three-dimensional (3D) turbulence owing to the anisotropy imposed 
by the rapid planetary rotation and from two-dimensional (2D) turbu-
lence owing to the presence of Rossby waves2. Conditions in planetary 
cores correspond to small Ekman numbers (Ek = ν/ΩR2 with viscosity 
ν, rotation rate Ω and core radius R), large Reynolds numbers 
( ν= /URRe  with flow speed U ) and small Rossby numbers 
( Ω= / = ×U RRo Re Ek), with, for instance, Ek ≈ 10−15, Re ≈ 109 and 
Ro ≈ 10−6 in the Earth’s core3. Numerical models must employ a fluid 
viscosity that is orders of magnitude larger than realistic values to  
keep the range of time and length scales involved in the dynamics 
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Fig. 1 | Flow in the 3D model. Meridional and equatorial cross-sections 
of a snapshot of the axial vorticity in the 3D model for Ek = 10−8, 
Ra = 2 × 1010 and Pr = 10−2. Streamlines have been superimposed in 
the equatorial plane. In the colour scale, values of the axial vorticity 

are normalized by the planetary vorticity 2Ω. The kinetic energy of the 
velocity projected on a QG state (〈us〉, 〈uφ〉, zβ〈us〉) in cylindrical polar 
coordinates (where the angle brackets denote an axial average) is within 
0.2% of the total kinetic energy.
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propagating Rossby waves, and viscous dissipation occurs in the 
boundary layers.

In the rapidly rotating turbulent regime, an increase in the convective 
length scale with the buoyancy driving is expected from scaling argu-
ments8–10, which assume that the production of axial vorticity is gov-
erned by a triple inviscid balance between vortex stretching, advection 
and buoyancy (the so-called Coriolis–inertia–Archimedes balance). 

The scaling gives a convective length scale that depends on the flow 
velocity as β∝ / /L (Ro )t

1 2, where β is a geometric factor related to 
the boundary slope (see Methods). This length scale is consistent with 
the m−5 spectra of the kinetic energy. Assuming that the transport in 
the fluid bulk controls the heat transfer21, the scaling uses a balance 
between the nonlinear advection of temperature and the transport of 
the mean temperature background to obtain Re ∝ Ra × Ek/Pr, or sim-
ply Ro ∝ Bu, where Bu = Ra × Ek2/Pr is the viscosity-free buoyancy 
parameter. The Prandtl number, Pr, is the ratio of viscosity to thermal 
diffusivity and is expected to be 0.01−0.1 in liquid metal cores. The 
theoretical scaling law is tested in Fig. 4 against results obtained with 
the 3D and QG models and against published results obtained with a 
hybrid model that uses the QG approximation coupled to the 3D tem-
perature18. The characteristic convective length scale L corresponds to 
the peak of the radial kinetic energy spectra. Points obtained at different 
Ek values collapse onto a single curve, especially for Ek < 10−9, show-
ing that the dependence of the results on the viscosity becomes negli-
gible when core conditions are approached. Importantly, the good 
agreement obtained between the different numerical models supports 
the use of the QG approximation for modelling rapidly rotating  
convection. The data for the velocity and length scale, compensated by 
their respective theoretical scaling laws, align on a plateau at small  
Ek values, indicating that the agreement between the simulations  
and the theoretical scaling improves progressively as Ek decreases. The 
length scales show little dependence on Pr; for the velocity scaling law, 
the exponent is unaffected by Pr but simulations with larger Pr values 
tend to have a slightly smaller prefactor. To avoid the ‘shingling’ effect 
that occurs when using diffusion-free parameters22, the scaling of Re 
is shown in Extended Data Fig. 1 and confirms the overlap of the  
data for Ek ≤ 10−9 and the good agreement with the exponent pre-
dicted by the theoretical scaling. The length scale L corresponds to an 
azimuthal size in Fig. 4, and we further confirm in Extended Data Fig. 2 
that the radial length scale obtained from radial correlations is in  
good agreement with this azimuthal scale. The radial dependence of 
the length scale observed in Fig. 2 is also in agreement with the theo-
retical dependence on | β |−1/2, as shown in Extended Data Fig. 3. 
Additional QG simulations performed with differential heating in the 
presence of an inner core (see Methods) show that the scaling  
law L(Ro) of Fig. 4 is valid for other heating modes (Extended  
Data Fig. 4).
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in time and normalized by ρ(ΩR)2/2. The length scale is inversely 
proportional to m. The dashed line represents a power law with  
exponent −5.

Bu

10−1

10−1

10−2

10−7 10−6 10−5 10−4 10−3 10−2 10−7 10−6 10−5 10−4 10−3 10−210−1

10−1

10−1

100

10−4

Bu
10−7

10−2

10−3

10−4

10−5

10−6

10−7

R
o

Ro =
 0.

6 B
u

a

10−11

QG

10−10.5

10−10

10−9.5

10−9

10−8

10−8

10−7

10−6

10−8
Hyb

3D

10−8

10−7

10−7

10−8

3 × 10−8

10−7

10−6

R
o/

B
u

Ro

 =
 11

 R
o

1/
2

b

10−7 10−5

10−11

10−10.5

10−9.5

10−9

10−8

10−7

10−6

10−10

Ro
10−3

100

101

/R
o1/

2

Fig. 4 | Scaling of the velocity and length scale. a, Ro as a function of the 
buoyancy parameter Bu. b, Convective length scale L as a function of Ro 
using the 3D (green points), QG (blue) and hybrid (red) simulations. 
Marker colours correspond to Ek (values given in the key) and shapes to  
Pr (circles, Pr = 10−2 and squares, Pr = 10−1). In b, L is radially averaged 

between s ∈ [0.1, 0.6]; the vertical bars give the standard deviation in this 
interval. The horizontal lines give the linear viscous length scale νL  at 
s = 0.5 for given Ek and with Pr = 10−2. Insets, the data compensated by 
the theoretical scaling as a function of Bu (a) and Ro (b).

3 7 0  |  N A T U R E  |  V O L  5 7 0  |  2 0  J U N E  2 0 1 9

Guervilly, Cardin & Schaeffer (Nat, 2019)

Related Work



Data from: Guervilly, Cardin & Schaeffer (Nat, 2019)

100 101 102 103

m

10°19

10°17

10°15

10°13

10°11

bEm

E = 10°8

E = 10°9

E = 10°9.5

E = 10°10

E = 10°10.5

E = 10°11

10°3 10°2 10°1

E1/3m

10°5

10°4

10°3

10°2

10°1

100

b E
m
/m

ax
(
b E

m
)

Related Work



Matteo Madonia et al.

Fig. 6: Correlation length scales as a function of Ra/RaC . The
line segments with open symbols are the corresponding results
for the nonrotating reference case (same symbols and colours;
not to scale in terms of Ra/RaC). Error intervals (not plotted)
are equal to the symbol size or smaller. The horizontal dashed
line indicates the convective wavelength !C . Vertical dotted
lines indicate the regime transitions of fig. 2. The black solid
line indicates the scaling ! ∼ Ra1/2; the black dashed line is a
fit ! ∼ Ra0.38 to the data.

length !C . The oscillation is not as pronounced here as
in the other studies, presumably due to the inability to
form a quasi-steady CTC grid. For Ra/RaC = 9.1 and
higher (excluding the nonrotating case) we observe the
occurrence of a larger length scale on which some correla-
tion can be seen: starting from r/D ≈ 0.05 these curves
display a shallow downward slope, with a zero crossing at
r/D ≈ 0.2. The curves each reach a shallow minimum at
r/D ≈ 0.26–0.30 then asymptote to zero at large r. This
correlation signature is a second indicator of the organisa-
tion into a quadrupolar vortex consisting of two cyclonic
and two anticyclonic cells.

We can further quantify and compare these autocorre-
lation results by deriving characteristic length scales from
them. We consider the integral scales Lw and Lζ as de-
fined before. Additionally, we define length scales based
on the correlation magnitude: !0.5,w and !0.5,ζ for the
r where the corresponding autocorrelation has the value
0.5, and !0,w where Rw crosses zero for the first time.
The zero crossing is not as informative for Rζ given the
longer positive correlation that is observed. These length
scales are plotted as a function of Ra/RaC in fig. 6. It
is clear that the vorticity-based scales are always smaller
than their velocity-based counterparts. While Lζ shows
some variation with Ra/RaC , the smaller !0.5,ζ remains
more or less constant throughout. Indeed, the initial de-
cay of Rζ is quite similar in all cases. At the two smallest
Ra/RaC values considered here the velocity-based scales
Lw and !0.5,w are of comparable size to their vorticity-
based counterparts, as expected based on prior results for
the CTC state [19,20,33,34]. For larger Ra/RaC ! 9 the

velocity-based scales become increasingly larger. Based on
this observation we expect that the CTC-to-plumes tran-
sition takes place between Ra/RaC = 4.7 and 9.1. This
is in agreement with the reported transition RaE4/3 = 55
(or Ra/RaC = 6.3) for the asymptotic simulations and
fully in line with conclusions based on our earlier heat-flux
and temperature measurements in the same setup [15].
Beyond that transition, in the plumes state, the velocity
correlation widens, though for the highest two Ra/RaC

values some saturation can be observed. The correlation
graphs for these cases, in the RIT range, are in line with
the plumes cases in terms of shape. The saturation of
!0,w at such length is in line with the organisation into a
quadrupolar structure, where correlation up to about one
fourth of the diameter is expected. Note the significant dif-
ference with the nonrotating case, where correlation con-
tinues up to about half the diameter due to presence of the
LSC with the cross-sectional area divided into one half up-
ward and one half downward flow.

Two recent works have considered the horizontal length
scale of convection in the geostrophic regime. Guervilly
et al. [17] combined results of various numerical models to

find an effective scaling ! ∼ Ro1/2
U ∼ (RaE2/Pr)1/2 with

the Rossby number RoU based on a measured velocity
scale U . In our notation this amounts to ! ∼ Roc. They
only found this scaling at very small E " 10−9. Aurnou
et al. [18] provided theoretical scaling arguments based
on the so-called CIA (Coriolis-Inertial-Archimedean) force
balance that also predict ! ∼ Roc. In our experiments
at constant E with variation of Ra this translates to ! ∼
Ra1/2. This scaling slope is included in fig. 6 with the solid
black line; a trend clearly steeper than our data. A power
law fit to our data for 4.7 ≤ Ra/RaC ≤ 47 (dashed black
line) renders a scaling ! ∼ Ra0.38. Looking at fig. 4(b)
of Guervilly et al. [17], our shallower scaling corresponds
nicely to the shallower trend of their data for 10−9 " E "
10−7, which indeed encloses our E value. While the scaling
of the length scale is similar, comparison of the magnitude
is not possible due to differences in domain (sphere vs.
cylinder) and Pr value (0.01 vs. 5.2).

Conclusion. – We have performed stereoscopic
particle image velocimetry measurements in rotating ther-
mal convection in the geostrophic regime at small Ekman
number E = 5 × 10−8 where the effects of rotation are
prominent. The flow phenomenology has been quan-
titatively analysed using spatial correlations of vertical
velocity and vertical vorticity. The correlation length
scales based on vertical vorticity remain reasonably con-
stant over the considered range of supercriticality val-
ues 2.3 ≤ Ra/RaC ≤ 91, in line with observations
that the critical wavelength !C for onset of convection
is an important horizontal length scale throughout the
geostrophic regime. Correlation length scales of verti-
cal velocity grow with increasing Ra/RaC and can be
used to identify different flow states: the state of convec-
tive Taylor columns (CTC) for Ra/RaC " 6, the plumes
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Abstract – Rotating Rayleigh-Bénard convection is an oft-employed model system to evaluate
the interplay of buoyant forcing and Coriolis forces due to rotation, an eminently relevant in-
teraction of dynamical effects found in many geophysical and astrophysical flows. These flows
display extreme values of the governing parameters: large Rayleigh numbers Ra, quantifying the
strength of thermal forcing, and small Ekman numbers E, a parameter inversely proportional to
the rotation rate. This leads to the dominant geostrophic balance of forces in the flow between
pressure gradient and Coriolis force. The so-called geostrophic regime of rotating convection is
difficult to study with laboratory experiments and numerical simulations given the requirements
to attain simultaneously large Ra values and small values of E. Here, we use flow measurements
using stereoscopic particle image velocimetry in a large-scale rotating convection apparatus in a
horizontal plane at mid-height to study the rich flow phenomenology of the geostrophic regime of
rotating convection. We quantify the horizontal length scales of the flow using spatial correlations
of vertical velocity and vertical vorticity, reproducing features of the convective Taylor columns
and plumes flow states both part of the geostrophic regime. Additionally, we find in this horizon-
tal plane an organisation into a quadrupolar vortex at higher Rayleigh numbers starting from the
plumes state.
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Introduction. – Rayleigh-Bénard convection, the flow
in a fluid layer between two parallel horizontal plates
where the bottom plate is at a higher temperature
than the top, is a canonical model for buoyancy-driven
flows. The addition of rotation is a popular and inter-
esting extension, as the combination of buoyant forcing
and rotation captures two of the principal constituents
of many flows in geophysics and astrophysics. It is
a mathematically well-defined problem that lends itself
well to both numerical and experimental investigation
(with appropriate lateral confinement) and stands out
as a turbulent flow problem where numerical and ex-
perimental results can be compared one to one to great
success [1].

(a)Contribution to the Focus Issue Turbulent Thermal Convection
edited by Mahendra Verma and Jörg Schumacher.
(b)E-mail: r.p.j.kunnen@tue.nl (corresponding author)

Three principal parameters are required to describe ro-
tating Rayleigh-Bénard convection (RRBC). Here we shall
use the Rayleigh number Ra = gα∆TH3/(νκ), quanti-
fying the strength of thermal forcing relative to dissipa-
tion, the Ekman number E = ν/(2ΩH2), the ratio of
viscous forces to Coriolis forces, and the Prandtl num-
ber Pr = ν/κ, describing the diffusive properties of the
fluid. Here g is the gravitational acceleration, ∆T the
temperature difference between the plates and H their
vertical separation, Ω represents the rotation rate, and
α, ν and κ, respectively, are the coefficient of thermal
expansion, kinematic viscosity and thermal diffusivity of
the fluid. Another popular parameter is the convective
Rossby number Roc = E

√
Ra/Pr that combines the three

previous parameters to directly compare the strength of
buoyancy to Coriolis forces. The most popular geom-
etry for experiments is an upright cylinder, where the
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• Length scale grows less 
quickly than CIA.


• Taylor microscale is 
approximately constant.

Related Work



Summary

• The viscous length scale persists in the turbulent regime 
of rotating convection, independent of geometry.


• While diffusion-free scalings may approximately describe 
data, the reason for this is unclear.


• The importance of the viscous force is likely tied to 
saturation of interior temperature gradient.


• Spherical data: scalings are all consistent with plane layer 
asymptotic behavior, zonal flow flows exhibit asymptotic 
dependence on Ekman number.


