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1) Introduction
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Convection drives fluid flows on Earth & beyond
Planetary interiors

Stellar interiors

Oceans on Earth …

… and beyond

Planetary atmospheres
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Paradigm: Rotating Rayleigh-Bénard convection
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Polar Setup:

Control parameters:



Paradigm: Rotating Rayleigh-Bénard convection
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Polar Setup:                          Nondimensional Boussinesq-Navier-Stokes equations:

Control parameters:  Constant temperature at top and bottom:
 ௭ୀ଴,ଵ

 Velocity                                is subject to:
 Stress-free BC ௭ ௭ୀ଴,ଵ ௭ ௭ୀ଴,ଵ

 I ௭ୀ଴ ௭ୀଵ

 Periodicity in the horizontal direction



Paradigm: Rotating Rayleigh-Bénard convection
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Polar Setup:                          Nondimensional Boussinesq-Navier-Stokes equations:

Control parameters: Output parameters include



The astrophysical limit: 

State-of-the-art numerical and experimental
techniques cannot reach realistic 

Rotating faster
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Lowest  achieved:

DNS (plane layer geometry):
9

[Song, Shishkina, Zhu, JFM 2024 a, b]

DNS (spherical geometry):
7

[Gastine and Aurnou, JFM 2023 ]

Laboratory experiments (Eindhoven):
 9

[Cheng+al. GAFD  2018, Kunnen JT 2020]



Key Challenges

• Fast inertial waves with frequencies  prohibitive time 
stepping requirements

• Columnar structures with aspect ratio (Taylor-Proudman) 
+ Ekman layers of depth are difficult to resolve

• Scale disparity causes ill-conditioned matrices in discretized problem 
 numerical errors

How to tackle these?
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 Thin columns

𝐸𝑘 → 0 ିଵ

Linear stability theory:
[Chandrasekhar (1953)]
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𝐸𝑘 → 0

 Rotation suppresses convection

Linearize about conduction state                               to obtain the system

which admits solutions of the form

For                         :  Onset:

Critical horiz. wavenumber:



2) Nonhydrostatic quasi-geostrophic equations
Sprague et al., J. Fluid Mech. 2006
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Change of units
• Let                      and define                             
• Measure lengths in units of time in units of ఔ

ଶ ଶ ଶ

with velocity scale ℓ

ఛഌ

ିଵ

୲ ଶ ௧ ଷ

leading to 
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Multi-scale asymptotic expansion
Consider                               , assume 

ర

య

1) Introduce slow variables in addition to fast variables
substituting

2) Decompose into , with 

3) Expand ᇱ as ଴ ଵ
ଶ

ଶ
ଷ , solve order by order

4) Leading-order geostrophic balance:
Taylor-Proudman constraint: ௭ ଴

ᇱ
௭ ଴

ᇱ
௭ ଵ

ᇱ

5) At next order: avoid secular growth of ଶwith solvability condition
 closed set of equations
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Non-hydrostatic quasi-geostrophic equations
Closed system of equations:
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Where ௧
ୄ

௧ ௫ ௬,   ୄ
ଶ

௫
ଶ

௬
ଶ,  

and the vorticity  ௫ ௬ .

Key features: 
Small parameter & fast scale eliminated.
 Filtering fast waves with ିଵ frequencies

and Ekman layers

Eqs. (1-5), a.k.a. 3D Hasegawa-Mima Eqs., 
related equations were studied by Edriss Titi + al.
• J. Evol. Equ. 21 (2021), 2923–2954.
• J. Diff. Equ. 269.10 (2020): 8736-8769.
• J. Math. Phys. 59.7 (2018)
• Comm. Math. Phys. 319 (2013): 195-229.

Global existence & uniqueness, cont. dependence on initial 
data of solutions to (1-5) with small vertical dissipation in (2).

Equivariance under reflections

and similar for  𝑥, 𝑦 → (𝑥, −𝑦) indicates 
absence of handedness.



3) Rescaled incompressible Navier-Stokes equations

Julien, AvK et al.,    arXiv:2410.02702 (2025)
AvK, Julien et al.,    arXiv:2409.08536 (2025)
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Rescaled Navier-Stokes equations (RiNSE)
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Idea: rescale full Boussinesq-Navier-
Stokes equations based on NHQG 
scaling laws valid at Ek → 0

Starting point: 
Boussinesq-Navier-Stokes equations
(D୲ ≡ 𝜕௧ + 𝒖 ⋅ 𝛁)

Two key steps: 
1) Adopt anisotropic length scales, such that

ଶ
ఢ
ଶ

௫
ଶ

௬
ଶ ଶ

௭
ଶ

and material derivatives become

௧ ௧
ఢ

௧ ௫ ௬ ௭ ௧ ୄ ୄ ௭

2) Decompose temperature as .
Grooms et al. PRL 
(2010)

𝐻`

𝜖𝐻 



Rescaled Navier-Stokes equations (RiNSE)

Where 𝜖 = Ekଵ/ଷ and 
the reduced Rayleigh number is
 Ra෪ = Ra Ekସ/ଷ = Ra 𝜖ସ.

Equations governing horizontal fluctuations ௫ ௬

Horizontally averaged temperature is governed by 

Becomes negligible as horizontal domain size is increased
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𝑥𝑦

𝜖



4) Numerical results
Julien, AvK et al.,    arXiv:2410.02702 (2025)
AvK, Julien et al.,    arXiv:2409.08536 (2025)
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Numerical method
• Use spectral PDE solver Coral [Miquel JOSS 2021]
• Expand fields in Fourier basis in and in Chebyshev polynomials in 

• Assess numerical accuracy at low in two complementary ways:
1. Compute condition number of matrices on LHS

2. Consider generalized eigenvalue problem 
19

discretization



Conditioning properties at low  

20
RiNSE formulation ensures adequate preconditioning

Condition number of discretized linear operator:

Large indicates sensitivity to errors in
right-hand side

2
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Eigenvalue spectrum

Unrescaled
Boussinesq-NS system
For 𝑛௭  = 256,   512,          
𝑘ୄ = 1.3𝐸𝑘ଵ/ଷ,            
Pr = 1, 𝑅𝑎෪ = 5

Spurious growth 
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Eigenvalue spectrum

Unrescaled
Boussinesq-NS system
For 𝑛௭  =  256,   512
𝑘ୄ = 1.3𝐸𝑘ଵ/ଷ,               
𝑃𝑟 = 1, 𝑅𝑎෪ = 5

RiNSE

Spurious growth 

Correct spectrum 
recovered,
no spurious 
instability
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Nonlinear, direct numerical simulations
Integrate the RiNSE with stress-free BC from small-amplitude noise
• over a wide range of Ekman numbers

ି𝟏 ି𝟏𝟓

•

• ௖
ଵ/ଷ

•
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Spoiler: 
Will present evidence for convergence of full governing equations 
towards the reduced NHQGE at small 



Validation of RiNSE at moderate 
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RiNSE reproduces Nusselt numbers from the literature



Cyclone anti-cyclone symmetry breaking

NHQG
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Vertically averaged vertical vorticity:

Symmetries of NHQG are respected at ିଽ

Data shown for 𝑅𝑎෪ = 120.



Boundary layer flow morphology 
𝑅𝑎෪ = 120

𝜗



Boundary layer flow morphology 

𝜗

𝑅𝑎෪ = 120



Boundary layer flow morphology 

𝜗
Qualitatively distinct BL flow at 

  Ek = 10ିଵହ and Ek = 10ି଼

𝑅𝑎෪ = 120



Flow statistics: Nusselt number

Measure time series of Nu

Average,
Rescale
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Global statistics in agreement within one standard deviation

[Julien et al. Phys. Rev. Lett. 2012]



Alternative parameter space cut

Confirms predicted scaling law
[Julien et al. PRL 2012]
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Thermal boundary layer depth

31

Denote by        the location of the local maximum of 

Boundary layer depth   
converges to NHQG value



A posteriori Rossby number
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Rossby number self-similar 
when plotted versus ହ/ସ

Predicted loss of rotational support in BL

rms



Parameter space

Faster rotation
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Simulations at 
6 orders of magnitude
beyond state of the art

NB: based on 
Also 𝑅𝑒ு =

ଵ

ா௞భ/య 𝑅𝑒ℓ

𝑅𝑒ு = 𝑅𝑜௖
ଶ/𝐸𝑘



Summary
• Described NHQG equations arising from asymptotic expansion
• Introduced RiNSE formulation based on NHQG scaling laws
• Performed numerical simulations at down to ିଵହ

(six orders of magnitude smaller than previous state of the art)
• Numerical  evidence points to convergence of RiNSE to NHQGE                   

at small based on symmetry, global statistics, small-scale structure

• Threshold value below which convergence is observed ି
భఱ

ర

confirming theoretical predictions by [Julien+al. GAFD 2012]

    Under review: Julien et al. arXiv:2410.02702, 
                              van Kan et al. arXiv:2409.08536 34



• RiNSE opens the door to exploration of unprecedented parameter regimes 

Important additional physics should be included, such as

• Prandtl numbers different from unity

• Alternative boundary conditions (e.g., no-slip walls  Ekman pumping)

• Internal heating

• Latitudinal variations

• Magnetic fields

• …

Outlook
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Thank you for your attention!
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