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Credit: Soderlund et al. (2024)

Icy ocean worlds may be common in the outer solar system.
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For ice-covered ocean worlds, we are in a data-poor, possibility-rich universe.
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Ocean worlds are exciting prospects for habitability.

Credit: Pappalardo (2010), after Stevenson (2000)

Europa and Enceladus Titan and Ganymede

Credit: NASA/JPL-Caltech/Titan NAI team
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Planetary oceans are a natural laboratory for studying oceanographic 
processes in settings that challenge traditional assumptions made for 
Earth. 

• Some driving mechanisms are common to both Earth and exo-oceans, such as 
buoyancy-driven flows and tides 

• Other mechanisms, such as libration, precession, and electromagnetic pumping, 
are likely more significant for moons in orbit around a host planet
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Credit: NASA/JPL-Caltech
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Buoyancy-driven flows are caused by the exchange of heat and salt between the 
ocean and the underlying mantle/core and overlying ice shell. 

• Radiogenic and tidal heating within the mantle result in a basal heat flux  

• Water–rock reactions and melting/freezing of the ice shell modify ocean salinity 

• Tidal heating and ice shell thickness variations may drive horizontal convection



Mechanically driven flows are the consequence of the moons’ orbits and rotation.  

• Gravitational tides deform icy moons due to the eccentricity and obliquity of their 
orbits, along with moon-moon interactions 

• Tidal torques cause periodic changes in the rotation of the moons (e.g., libration 
and precession)
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Credit: Soderlund et al. (2020)
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Credit: Soderlund et al. (2020, 2024);
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Gravitational tides deform icy moons due to the eccentricity and obliquity of their 
orbits, along with moon-moon interactions; can lead to strong flows and dissipation.
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Eccentricity Tide 
(Dissipation)

Obliquity Tide 
(Dissipation)

Gravitational tides deform icy moons due to the eccentricity and obliquity of their 
orbits, along with moon-moon interactions; can lead to strong flows and dissipation.

Tidal perturbation 
slower than surface 

gravity waves

Tidal perturbation 
faster than surface 

gravity waves

Soft  
ice shell

Hard  
ice shell

Credit: Soderlund et al. (2020, 2024); 
adapted from Rovira-Navarro et al. (2023)

Obliquity Tide 
(Barotropic)

Eccentricity Tide 
(Barotropic)
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Eccentricity Tide 
(with inertial waves)

Gravitational tides deform icy moons due to the eccentricity and obliquity of their 
orbits, along with moon-moon interactions; can lead to strong flows and dissipation.

Tidal perturbation 
slower than surface 

gravity waves

Tidal perturbation 
faster than surface 

gravity waves

Soft  
ice shell

Hard  
ice shell

Credit: Rovira-Navarro et al. (2019)

Credit: Soderlund et al. (2020, 2024); 
adapted from Rovira-Navarro et al. (2023)



Libration-driven flows may be located in the boundary layers or in the ocean bulk, 
and may be quasi-steady or consist of growth-collapse cycles.
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Credit: Lemasquerier et al. (2017)



Libration-driven flows may be located in the boundary layers or in the ocean bulk, 
and may be quasi-steady or consist of growth-collapse cycles. 

Libration-driven elliptical instabilities (LDEI) lead to space-filling turbulence
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Libration-driven flows may be located in the boundary layers or in the ocean bulk, 
and may be quasi-steady or consist of growth-collapse cycles. 

Libration-driven elliptical instabilities (LDEI) lead to space-filling turbulence in the 
oceans of Enceladus and Europa.
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Credit: Lemasquerier et al. (2017)



Electromagnetically pumped flows are the consequence of the interactions 
between a moon’s induced magnetic field and the planet’s intrinsic magnetic field. 

Credit: NASA/JPL-Caltech/Corey Cochrane
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Credit: Gissinger & Petitdemange (2019)
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• Poisson’s equation 

• Equation of state 

• Conservation of mass 

• Conservation of salinity 

• Heat equation 

• Induction

• Conservation of momentum
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Common Approximations
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• Vast majority of studies neglect 
magnetism and assume the 
Boussinesq approximation

Credit: Soderlund et al. (2024)



Common Approximations
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• Vast majority of studies neglect 
magnetism and assume the 
Boussinesq approximation 

• Buoyancy-driven and 
mechanically driven flows are 
generally studied separately 

• Convection → diabetic 
processes that determine 
stratification structure 

• Mechanical → diabetic 
processes neglected and 
stratification structure is 
assumed

Credit: Soderlund et al. (2024)



Common Approximations
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• Ocean flows are turbulent! It is 
not possible to resolve all 
length and temporal scales

Credit: Hammond et al. (2022)
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Buoyancy-driven flows are caused by the exchange of heat and salt between the 
ocean and the underlying mantle/core and overlying ice shell. 

• Radiogenic and tidal heating within the mantle result in a basal heat flux  

• Water–rock reactions and melting/freezing of the ice shell modify ocean salinity 

• Tidal heating and ice shell thickness variations may drive horizontal convection

Credit: NASA/JPL-Caltech
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Radiogenic and tidal heating within the mantle result in a vertical basal heat flux can 
generate hydrothermal plumes, turbulent convection, and global circulations.

ConclusionsIntroduction Observational TestsFlow Drivers Governing Equations Rotating Convection

Credit: NASA/JPL-Caltech
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Credit: Soderlund (2019)

We can use scaling laws to predict the convective regimes of ocean worlds.

Credit: NASA/JPL-Caltech
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Credit: Soderlund (2019)Credit: NASA/JPL-Caltech

We can use scaling laws to predict the convective regimes of ocean worlds. 

Europa, Ganymede, and Titan are weakly to moderately constrained by rotation, 
while Enceladus may be strongly constrained by rotation.
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We can use scaling laws to predict the convective regimes of ocean worlds. 

Europa, Ganymede, and Titan are weakly to moderately constrained by rotation, 
while Enceladus may be strongly constrained by rotation.

Credit: Soderlund (2019)
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Europa, Ganymede, and Titan are weakly to moderately constrained by rotation, 
while Enceladus may be strongly constrained by rotation.

Credit: Soderlund (2019)
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We can use scaling laws to predict the convective regimes of ocean worlds. 

Europa, Ganymede, and Titan are weakly to moderately constrained by rotation, 
while Enceladus may be strongly constrained by rotation.

Credit: Soderlund (2019)
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Europa, Ganymede, and Titan are weakly to moderately constrained by rotation, 
while Enceladus may be strongly constrained by rotation.  

Mantle heating may be uniform (radiogenic) or spatially heterogenous (tidal).

Tidal heating in the 
mantle

Radiogenic heating in 
the mantle

1

1.5

0.5

Normalized heat flux 
at top of the mantle 

Credit: Lemasquerier et al. (2024)
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Credit: Lemasquerier et al. (2024)
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Credit: Lemasquerier et al. (2024)
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Credit: Lemasquerier et al. (2024)
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Europa, Ganymede, and Titan are weakly to moderately constrained by rotation, 
while Enceladus may be strongly constrained by rotation.  

Heterogeneous tidal heating in the mantle could drive large-scale thermal winds.
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Credit: Lemasquerier et al. (2024)

Introduction Flow Drivers Governing Equations

Europa, Ganymede, and Titan are weakly to moderately constrained by rotation, 
while Enceladus may be strongly constrained by rotation.  

Latitudinal tidal heating anomaly is efficiently translated to the ice-ocean interface.

Tidal heating in the 
mantle
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the mantle
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at top of the mantle 
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Credit: NASA/JPL-Caltech

Ocean pressures and salinity can further modify convective dynamics by modifying 
the thermal expansivity.

Credit: Zeng & Jansen (2021)

Ocean Salinity
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Credit: NASA/JPL-Caltech

Ocean pressures and salinity can further modify convective dynamics by modifying 
the thermal expansivity.

Credit: Zeng & Jansen (2021)

• Positive thermal expansivity: water becomes more dense as it 
cools 

• Negative thermal expansivity: water becomes less dense as it 
cools

Ocean Salinity
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Ocean pressures and salinity can further modify convective dynamics by modifying 
the thermal expansivity.

Credit: Zeng & Jansen (2021)

• Positive thermal expansivity: water becomes more dense as it 
cools 

• Negative thermal expansivity: water becomes less dense as it 
cools
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Ocean pressures and salinity can further modify convective dynamics by modifying 
the thermal expansivity.

Credit: Zeng & Jansen (2021)

• Positive thermal expansivity: water becomes more dense as it 
cools 

• Negative thermal expansivity: water becomes less dense as it 
cools



Temperature and salinity diffuse at different rates, which could lead to double-
diffusive convection.
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Credit: NASA/JPL-Caltech

Salinity increases 
with depth
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Credit: Wong et al. (2022)Credit: NASA/JPL-Caltech

Salinity increases 
with depth

Temperature and salinity diffuse at different rates, which could lead to double-
diffusive convection.



Ice shell thickness variations, and associated melting and freezing gradients 
assuming the ice shell is in steady-state, may drive overturning circulation.
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Credit: Čadek et al. (2019)

Enceladus Ice Shell Thickness



Ice shell thickness variations, and associated melting and freezing gradients 
assuming the ice shell is in steady-state, may drive overturning circulation.
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Credit: Čadek et al. (2019)

Enceladus Ice Shell Thickness

Credit: Kang et al. (2022)



In new phase-field thermal convection models, mean axisymmetric ice crust transits 
from pole-ward thinning to equator-ward thinning with the increase of the rotational 
constraint on the flow.
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Credit: Gastine and Favier (2025)
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Europa

NASA’s Europa Clipper mission will explore Europa and assess its 
habitability
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Credit: NASA/JPL-Caltech
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sniffing atmospheric  
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Dust Analyzer  

surface & plume  
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sensing ocean  
properties
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plasma environment
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IR Spectrometer  
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REASON 
Ice-Pentrating Radar 

plumbing the ice shell

Remote SensingIn Situ
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Narrow-angle Camera + 
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mapping alien landscape in  

3D & color

E-THEMIS 
Thermal Imager   

searching for  hot spots

Europa-UVS 
UV Spectrograph 

surface & plume/ 
atmosphere composition

Gravity/Radio Science 
internal structure



Titan Enceladus

Ice shell thickness variations may be used to constrain the pattern of 
mantle heating

Credit: Lemasquerier et al. (2024)
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Europa

Non-synchronous rotation may be driven by torques on the ice shell due 
to zonal jets in the ocean
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Credit: Hay et al. (2023)
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Motionally-induced magnetic fields may result from circulation of salty 
water in presence of background magnetic field
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• Planetary oceans are a natural laboratory for studying physical oceanographic 
processes in settings that challenge traditional assumptions made for Earth.  

• Ice-covered oceans in the outer solar system are rich dynamical systems with flows 
excited and modulated by buoyancy, tides, libration, precession, and electromagnetic 
pumping. Each driving mechanism is inherently complex and has its own 
permutations, so few studies have yet crossed these artificial boundaries. 

• Work aimed at understanding the interactions among these different                    
types of flows is necessary to understand ocean dynamics and to                                
interpret data returned by future missions (e.g., Europa Clipper,                         
Dragonfly, Uranus Orbiter and Probe, Enceladus Orbilander),                                      
which will reflect all driving mechanisms in aggregate. 

krista@ig.utexas.edu

Summary
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