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1) Introduction to lcy Ocean Worlds




Credit: Soderlund et al. (2024)
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Credit: Soderlund et al. (2024)
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2) Drivers of Fluid Motions in Icy Ocean Worlds




e Some driving mechanisms are common to both Earth and exo-oceans, such as

buoyancy-driven flows and tides

e Other mechanisms, such as libration, precession, and electromagnetic pumping,

are likely more significant for moons in orbit around a host planet




are caused by the exchange of heat and salt between the

ocean and the underlying mantle/core and overlying ice shell.
e Radiogenic and tidal heating within the mantle result in a basal heat flux
e Water—rock reactions and melting/freezing of the ice shell modify ocean salinity

e Tidal heating and ice shell thickness variations may drive horizontal convection
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are the consequence of the moons' orbits and rotation.

e Gravitational tides deform icy moons due to the eccentricity and obliquity of their
orbits, along with moon-moon interactions

e Tidal torques cause periodic changes in the rotation of the moons (e.g., libration
and precession)

Credit: Soderlund et al. (2020)
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are the consequence of the interactions
between a moon’s induced magnetic field and the planet’s intrinsic magnetic field.

U,(cms™)atr=R + 3
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Credit: Gissinger & Petitdemange (2019) Credit: NASA/JPL-Caltech/Corey Cochrane




3) Governing Equations and Common Approximations




Conservation of momentum
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4) Rotating Convection in Icy Ocean Worlds




are caused by the exchange of heat and salt between the

ocean and the underlying mantle/core and overlying ice shell.
e Radiogenic and tidal heating within the mantle result in a basal heat flux
e Water—rock reactions and melting/freezing of the ice shell modify ocean salinity

e Tidal heating and ice shell thickness variations may drive horizontal convection
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* Positive thermal expansivity: water becomes more dense as it
cools

* Negative thermal expansivity: water becomes less dense as it
cools
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Positive thermal expansivity: water becomes more dense as it
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5) Testing Oceanographic Hypotheses
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Scenario 1: Dominant radiogenic heating in the silicate mantle

(a) (b) Inhomogeneous oceanic heat flux (c) Inhomogeneous oceanic heat flux
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6) Conclusions




® |ce-covered oceans in the outer solar system are rich dynamical systems with flows
excited and modulated by buoyancy, tides, libration, precession, and electromagnetic

pumping. Each driving mechanism is inherently complex and has its own
permutations, so few studies have yet crossed these artificial boundaries.

e Work aimed at understanding the interactions among these different
types of flows is necessary to understand ocean dynamics and to
interpret data returned by future missions (e.g., Europa Clipper,
Dragonfly, Uranus Orbiter and Probe, Enceladus Orbilander),
which will reflect all driving mechanisms in aggregate.
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