Rotating Convection in Ocean Worlds of the Outer Solar System

Krista Soderlund

UCLA Institute for Pure & Applied Mathematics Workshop on Rotating Turbulence: Interplay and Separability of Bulk and Boundary Dynamics

27 January 2025

krista@ig.utexas.edu

Outline

- 1) Introduction to Icy Ocean Worlds
- 2) Drivers of Fluid Motions in Icy Ocean Worlds
- 3) Governing Equations and Common Approximations
- 4) Rotating Convection in Icy Ocean Worlds
- 5) Testing Oceanographic Hypotheses
- 6) Conclusions

Outline

- 1) Introduction to Icy Ocean Worlds
- 2) Drivers of Fluid Motions in Icy Ocean Worlds
- 3) Governing Equations and Common Approximations
- 4) Rotating Convection in Icy Ocean Worlds
- 5) Testing Oceanographic Hypotheses
- 6) Conclusions

Icy ocean worlds may be common in the outer solar system.

Credit: Soderlund et al. (2024)

Introduction

Governing Equations

Rotating Convection

Observational Tests

Conclusion

Icy ocean worlds may be common in the outer solar system.

Credit: Soderlund et al. (2024)

For ice-covered ocean worlds, we are in a data-poor, possibility-rich universe.

Introduction

Ocean worlds are exciting prospects for habitability.

Europa and Enceladus

3. Model validation by observations 1. Atmospheric ٠ 1 synthesis 11. Biosignatures detected 10. Biosignatures emplaced Surface transpor 9. Biosia Ice Crust 5. Ocean delivery 8. Biosignatures produced 7. Biological activity 6. Redox gradient High Pressure Ice Layer?

Credit: Pappalardo (2010), after Stevenson (2000)

Credit: NASA/JPL-Caltech/Titan NAI team

Introduction	Flow Drivers	Governing Equations	Rotating Convection	Observational Tests	Conclusions

Titan and Ganymede

Outline

- 1) Introduction to Icy Ocean Worlds
- 2) Drivers of Fluid Motions in Icy Ocean Worlds
- 3) Governing Equations and Common Approximations
- 4) Rotating Convection in Icy Ocean Worlds
- 5) Testing Oceanographic Hypotheses
- 6) Conclusions

Planetary oceans are a natural laboratory for studying oceanographic processes in settings that challenge traditional assumptions made for Earth.

- Some driving mechanisms are common to both Earth and exo-oceans, such as <u>buoyancy-driven flows</u> and <u>tides</u>
- Other mechanisms, such as <u>libration</u>, <u>precession</u>, and <u>electromagnetic pumping</u>, are likely more significant for moons in orbit around a host planet

Buoyancy-driven flows are caused by the exchange of heat and salt between the ocean and the underlying mantle/core and overlying ice shell.

- Radiogenic and tidal heating within the mantle result in a basal heat flux
- Water-rock reactions and melting/freezing of the ice shell modify ocean salinity
- Tidal heating and ice shell thickness variations may drive horizontal convection

Mechanically driven flows are the consequence of the moons' orbits and rotation.

- Gravitational tides deform icy moons due to the eccentricity and obliquity of their orbits, along with moon-moon interactions
- Tidal torques cause periodic changes in the rotation of the moons (e.g., libration and precession)

Gravitational tides deform icy moons due to the eccentricity and obliquity of their orbits, along with moon-moon interactions; can lead to strong flows and dissipation.

Gravitational tides deform icy moons due to the eccentricity and obliquity of their orbits, along with moon-moon interactions; can lead to strong flows and dissipation.

Gravitational tides deform icy moons due to the eccentricity and obliquity of their orbits, along with moon-moon interactions; can lead to strong flows and dissipation.

Credit: Rovira-Navarro et al. (2019)

Libration-driven flows may be located in the boundary layers or in the ocean bulk, and may be quasi-steady or consist of growth-collapse cycles.

Credit: Lemasquerier et al. (2017)

Flow Drivers

Governing Equations

Rotating Convection

Observational Tests

Libration-driven flows may be located in the boundary layers or in the ocean bulk, and may be quasi-steady or consist of growth-collapse cycles.

Libration-driven elliptical instabilities (LDEI) lead to space-filling turbulence

 Credit: Lemasquerier et al. (2017)

 Introduction
 Flow Drivers
 Governing Equations
 Rotating Convection
 Observational Tests
 Conclusions

Libration-driven flows may be located in the boundary layers or in the ocean bulk, and may be quasi-steady or consist of growth-collapse cycles.

Libration-driven elliptical instabilities (LDEI) lead to space-filling turbulence in the oceans of Enceladus and Europa.

Credit: Lemasquerier et al. (2017)

Introduction

Flow Drivers

Governing Equations

Rotating Convection

Observational Tests

Conclusions

Electromagnetically pumped flows are the consequence of the interactions between a moon's induced magnetic field and the planet's intrinsic magnetic field.

Outline

- 1) Introduction to Icy Ocean Worlds
- 2) Drivers of Fluid Motions in Icy Ocean Worlds
- 3) Governing Equations and Common Approximations
- 4) Rotating Convection in Icy Ocean Worlds
- 5) Testing Oceanographic Hypotheses
- 6) Conclusions

Conservation of momentum

Governing Equations

Approximation	Typically used if	Filtered/ignored phenomena
No magnetism	Electrically insulating	Magnetic induction, Lorentz force
Anelastic approximation	$\omega L \ll c_{\rm S}$	Sound waves
Boussinesq approximation	ii, ρ_0 is constant	No density variations beyond buoyancy
Linear equation of state	α , β are constant	Cabbeling, thermobaricity
Isohaline	$Q_1 \approx 0$	Variations in salinity
Isentropic	$Q_2 \approx 0$	Non-adiabatic, nonreversible processes
Thin-layer approximation	H « R	Radial gravity variations
Spherical-body approximation	ε « 1	Horizontal gravity component
Massless approximation	$\varphi^{(SG)} \ll \varphi_0$	Self-gravity
Rigid mantle/core	$\eta_b \ll 1$	No ocean bottom displacements
Constant rotational rate	$\Omega = \Omega_0$	Poincaré force, spin-driven flows
Linearization	Waves have small amplitudes	Turbulence, wave breaking
Traditional approximation	<i>H</i> / <i>L</i> « 1	Horizontal rotation vector component
Shallow-water approximation	<i>H</i> / <i>L</i> « 1	Internal inertial waves
Unstratified ocean	<i>N</i> ≈ 0	Internal gravity waves
Nonrotating body	$\Omega/\omega \ll 1$	Rossby waves
Ocean in equilibrium	xv, xvi, ω <i>L</i> « <i>c</i> _{surf}	All types of ocean waves
	1	

Common Approximations

 Vast majority of studies neglect magnetism and assume the Boussinesq approximation

Credit: Soderlund et al. (2024)

Governing Equations

Rotating Convection

Approximation	Typically used if	Filtered/ignored phenomena
No magnetism	Electrically insulating	Magnetic induction, Lorentz force
Anelastic approximation	$\omega L \ll c_{\rm s}$	Sound waves
Boussinesq approximation	ii, ρ_0 is constant	No density variations beyond buoyancy
Linear equation of state	α, β are constant	Cabbeling, thermobaricity
Isohaline	$Q_1 \approx 0$	Variations in salinity
Isentropic	$Q_2 \approx 0$	Non-adiabatic, nonreversible processes
Thin-layer approximation	H « R	Radial gravity variations
Spherical-body approximation	ε « 1	Horizontal gravity component
Massless approximation	$\varphi^{(SG)} \ll \varphi_0$	Self-gravity
Rigid mantle/core	η _b « 1	No ocean bottom displacements
Constant rotational rate	$\Omega = \Omega_0$	Poincaré force, spin-driven flows
Linearization	Waves have small amplitudes	Turbulence, wave breaking
Traditional approximation	<i>H</i> / <i>L</i> « 1	Horizontal rotation vector component
Shallow-water approximation	<i>H</i> / <i>L</i> « 1	Internal inertial waves
Unstratified ocean	<i>N</i> ≈ 0	Internal gravity waves
Nonrotating body	Ω/ω « 1	Rossby waves
Ocean in equilibrium	xv, xvi, $\omega L \ll c_{surf}$	All types of ocean waves

Common Approximations

- Vast majority of studies neglect magnetism and assume the Boussinesq approximation
- Buoyancy-driven and mechanically driven flows are generally studied separately
 - Convection → diabetic processes that determine stratification structure
 - Mechanical → diabetic processes neglected and stratification structure is assumed

Credit: Soderlund et al. (2024)

Governing Equations

Rotating Convection

Approximation	Typically used if	Filtered/ignored phenomena
No magnetism	Electrically insulating	Magnetic induction, Lorentz force
Anelastic approximation	$\omega L \ll c_{\rm S}$	Sound waves
Boussinesq approximation	ii, ρ_0 is constant	No density variations beyond buoyancy
Linear equation of state	α, β are constant	Cabbeling, thermobaricity
Isohaline	$Q_1 \approx 0$	Variations in salinity
Isentropic	$Q_2 \approx 0$	Non-adiabatic, nonreversible processes
Thin-layer approximation	H « R	Radial gravity variations
Spherical-body approximation	ε « 1	Horizontal gravity component
Massless approximation	$\varphi^{(SG)} \ll \varphi_0$	Self-gravity
Rigid mantle/core	$\eta_b \ll 1$	No ocean bottom displacements
Constant rotational rate	$\Omega = \Omega_0$	Poincaré force, spin-driven flows
Linearization	Waves have small amplitudes	Turbulence, wave breaking
Traditional approximation	<i>H</i> / <i>L</i> « 1	Horizontal rotation vector component
Shallow-water approximation	<i>H</i> / <i>L</i> « 1	Internal inertial waves
Unstratified ocean	<i>N</i> ≈0	Internal gravity waves
Nonrotating body	$\Omega/\omega \ll 1$	Rossby waves
Ocean in equilibrium	xv, xvi, $\omega L \ll c_{surf}$	All types of ocean waves

Common Approximations

• Ocean flows are turbulent! It is not possible to resolve all length and temporal scales

Credit: Hammond et al. (2022)

Introduction

Governing Equations

Rotating Convection

Observational Tests

Conclusions

Outline

- 1) Introduction to Icy Ocean Worlds
- 2) Drivers of Fluid Motions in Icy Ocean Worlds
- 3) Governing Equations and Common Approximations
- 4) Rotating Convection in Icy Ocean Worlds
- 5) Testing Oceanographic Hypotheses
- 6) Conclusions

Buoyancy-driven flows are caused by the exchange of heat and salt between the ocean and the underlying mantle/core and overlying ice shell.

- Radiogenic and tidal heating within the mantle result in a basal heat flux
- Water-rock reactions and melting/freezing of the ice shell modify ocean salinity
- Tidal heating and ice shell thickness variations may drive horizontal convection

Radiogenic and tidal heating within the mantle result in a vertical basal heat flux can generate hydrothermal plumes, turbulent convection, and global circulations.

Mantle heating may be uniform (radiogenic) or spatially heterogenous (tidal).

Mantle heating may be uniform (radiogenic) or spatially heterogenous (tidal)

Mantle heating may be uniform (radiogenic) or spatially heterogenous (tidal)

Mantle heating may be uniform (radiogenic) or spatially heterogenous (tidal)

Heterogeneous tidal heating in the mantle could drive large-scale thermal winds.

Latitudinal tidal heating anomaly is efficiently translated to the ice-ocean interface.

- <u>Positive</u> thermal expansivity: water becomes <u>more</u> dense as it cools
- <u>Negative</u> thermal expansivity: water becomes <u>less</u> dense as it cools

Flow Drivers

- <u>Positive</u> thermal expansivity: water becomes <u>more</u> dense as it cools
- <u>Negative</u> thermal expansivity: water becomes <u>less</u> dense as it cools

Governing Equations

Flow Drivers

- <u>Positive</u> thermal expansivity: water becomes <u>more</u> dense as it cools
- <u>Negative</u> thermal expansivity: water becomes <u>less</u> dense as it cools

Observational Tests

Rotating Convection

Temperature and salinity diffuse at different rates, which could lead to doublediffusive convection.

Introduction FI	low Drivers	Governing Equations	Rotating Convection	Observational Tests	Conclusions

Temperature and salinity diffuse at different rates, which could lead to doublediffusive convection.

Ice shell thickness variations, and associated melting and freezing gradients assuming the ice shell is in steady-state, may drive overturning circulation.

Credit: Čadek et al. (2019)

Introduction	Flow Drivers	Governing Equations	Rotating Convection	Observational Tests	Conclusions

Ice shell thickness variations, and associated melting and freezing gradients assuming the ice shell is in steady-state, may drive overturning circulation.

In new phase-field thermal convection models, mean axisymmetric ice crust transits from pole-ward thinning to equator-ward thinning with the increase of the rotational

constraint on the flow.

Credit: Gastine and Favier (2025)

Introduction

Flow Drivers

Governing Equations

Rotating Convection

Observational Tests

Conclusions

Outline

- 1) Introduction to Icy Ocean Worlds
- 2) Drivers of Fluid Motions in Icy Ocean Worlds
- 3) Governing Equations and Common Approximations
- 4) Rotating Convection in Icy Ocean Worlds
- 5) Testing Oceanographic Hypotheses
- 6) Conclusions

NASA's Europa Clipper mission will explore Europa and assess its habitability

Ice shell thickness variations may be used to constrain the pattern of mantle heating

Non-synchronous rotation may be driven by torques on the ice shell due to zonal jets in the ocean

Motionally-induced magnetic fields may result from circulation of salty water in presence of background magnetic field

Outline

- 1) Introduction to Icy Ocean Worlds
- 2) Drivers of Fluid Motions in Icy Ocean Worlds
- 3) Governing Equations and Common Approximations
- 4) Rotating Convection in Icy Ocean Worlds
- 5) Testing Oceanographic Hypotheses
- 6) Conclusions

Summary

- Planetary oceans are a natural laboratory for studying physical oceanographic processes in settings that challenge traditional assumptions made for Earth.
- Ice-covered oceans in the outer solar system are rich dynamical systems with flows excited and modulated by buoyancy, tides, libration, precession, and electromagnetic pumping. Each driving mechanism is inherently complex and has its own permutations, so few studies have yet crossed these artificial boundaries.
- Work aimed at understanding the interactions among these different types of flows is necessary to understand ocean dynamics and to interpret data returned by future missions (e.g., *Europa Clipper, Dragonfly, Uranus Orbiter and Probe, Enceladus Orbilander)*, which will reflect all driving mechanisms in aggregate.

krista@ig.utexas.edu