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INTRODUCTION - NO ROTATION

1. STRONG VS. WEAK TURBULENCE

The Whirlpools of Awa by Utagawa Hiroshige (1857), image from The Met collection.

(Le Bars JFM 2023)



INTRODUCTION - NO ROTATION

1. STRONG VS. WEAK TURBULENCE

P’
1
ml
£,

i

e

==weak turbulence = no vortices nor breaking,
but interacting waves through resonant interactions
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WEAK WAVE TURBULENCE = LESS KNOWN, BUT POSSIBLY AS IMPORTANT AND
RELEVANT IN NATURE!

(Le Bars JFM 2023)



INTRODUCTION - NO ROTATION

2. BASIC MODELLING: NON-LINEAR, BUT NOT TOO MUCH

» resonant interactions in a world with waves

ou

TZL+1L~V1L:—VP+,08+F
Ot

sustained wave 1: u; = afeiwlt through NL interactions: £2w,f and 0...

to L5t

now if another wave 2: u, = a;j

through NL interactions: *w; £ w,

so possible energy transfer from wave 2 to a third wave 3 provided e.g. w; = 0, + w,
(resonance condition, and same with the wave vectors)

» wave turbulence = spreads quantities over larger ranges of time and
length scales by such resonant interactions of waves

» weak turbulence = the amplitude remains small otherwise the waves break
and generate vorticity

» interactions between 3 waves, but sometimes non constructive... then
need more than 3!



INTRODUCTION - NO ROTATION

3. WAVE TURBULENCE IN THE REAL WORLD

» playground for mathematicians: there is a small parameter

» exists in a large variety of systems: e.g. in vibrating plates (e.g. Cobelli et
al. 2009), in optics (e.g. Picozzi et al. 2014), in cosmology with
gravitational waves (e.g. Galtier & Nazarenko 2017)...

» of great relevance for geo- and astro-physics!

surface waves internal gravity waves

“vwiline) B ritnes I Cretup showing The wave o mrimentad twio-dimensi
o Lhe Tell smd Lhe tnchined =lege o The righl. table 1) ot ¢t — 400Th. Blac

wsct 15 o typical PIV snapsho g the r- . ‘« Lu i i hn
e Py ..[4'1 ol PI napshot P, S a prcmrebrie precliction of Che a cloe, which is Tully recoveresd

Dl I xpermnenl; MIOINIONA - -9 . . i . .
' s SR Y when considering small forcing amplitude (4 or ot on carlier
e when consivlering larger Toecing as o lig. 10a).

3-waves resonant interactions occur for capillary
waves, but they are forbidden for pure gravity
waves where 4-waves interactions must be
considered (Falcon & Mordant 2022)

single frequency forcing -> large spectrum

3-waves resonant interactions (Brouzet et al. 2016)



INTRODUCTION - NO ROTATION

3. WAVE TURBULENCE IN THE REAL WORLD

» playground for mathematicians: there is a small parameter!

» exists in a large variety of systems: e.g. in vibrating plates (e.g. Cobelli et
al. 2009), in optics (e.g. Picozzi et al. 2014), in cosmology with
gravitational waves (e.g. Galtier & Nazarenko 2017)...

» of great relevance for geo- and astro-physics!

surface waves internal gravity waves

Energy x w?

Garret & Munk (1972) \

3-waves resonant interactions occur for capillary 107! 100
waves, but they are forbidden for pure gravit
4 , or pure gravity Frequency w
waves where 4-waves interactions must be
considered (Falcon & Mordant 2022)

internal wave turbulence as a possible source of Garret &
Munk spectrum (Le Reun et al. 2018)
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Figure 1| Experimental set-up. A laszr sheetilluminates arotating Plexiglas
cylinder tilled with water and dec with tracer particles. Using a galveo
mirror, the shest is repeatedly swept vertically througn 30 harizontzl
planes, in lhe rangz An— 255 cm around heiphl iy, A co-rolaling

camera (~750 frames per second) images the light scattercd from tac
traccr particles.

1m, 120rpm -> Ek~10-6 and Ro~0.006
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Figure 8.7 The energy
spectrum of two-dimensional
energy turbulence. (Compare with
transfer Fig. 8.3.) Energy supplied at
some rate ¢ is transferred to
large scales, whereas enstro-
enstrophy !ohy supplied at some rate g
transfer is transferred to small scales,
: where it may be dissipated by
viscosity. If the forcing is lo-
calized at a scale k;~! then
n & kfze.

Wavenumber Vallis 2017

K=[E(k)dk z= [ K°E(k)dk

turbulence broadens the spectra i.e. it spreads quantities over a larger range of k...
the only way to conserve K & Z given the different k weights: more of the energy is transferred
toward larger scales while more of the enstrophy is transferred toward smaller scales!




energy
transfer

enstrophy
transfer

Wavenumber

Figure 8.7 The energy
spectrum of two-dimensional
turbulence. (Compare with
Fig. 8.3.) Energy supplied at
some rate ¢ is transferred to
large scales, whereas enstro-
phy supplied at some rate n
is transferred to small scales,
where it may be dissipated by
viscosity. If the forcing is lo-
calized at a scale k;~! then
n & kfze.

Vallis 2017




A CASE STUDY: 3D-ROTATING TURBULENCE

2. INVERSE CASCADE, A 2D DYNAMICS

» with strong forcing, rotating turbulence naturally tends to transfer energy to
the kz= 0 plane

side view top view

Favier 2009
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Figure 1| Experimental set-up. A laszr sheetilluminates arotating Plexiglas

cylinder tilled with water and seeded with tracor particles. Using a galve n ow fo C“Si n g o n Ia rg e wave n u m be rs oo
mirror, the shest is repeatedly swept vertically througn 30 harizontzl
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camera (~750 frames per second) images the light scattercd from tac

traccr particles.

1m, 120rpm -> Ek~10-6 and Ro~0.006




a smart, adhoc decomposition to highlight inertial waves

o
F =Y

m
)
@
-~
0Q
<
Q.
¢
=
m-
—
~<
N
O
3
N
|

w2 3n/4
@ (rad)




Navier-Stokes equations in a rotating [rame

O | . Vut29xu=—VI+ViurtF
al S

Coriolis
V.ou=70
Poincaré equation (lincar inviscid
limit)

8?V3u 5%
oz T4 gz =0

Dispersion relation ol inertial waves
k

w = 1202 ; = 1282 cos )

Inertial waves frequency is bounded
by 2€2 so that they are expected to
dominatc to low-frequency part of the
spectrum.




a smart, adhoc decomposition to highlight inertial waves

Dispersion relation ol inertial waves
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A CASE STUDY: 3D-ROTATING TURBULENCE

4. VARIOUS ASPECTSOF ROTATINGTURBULENCE

coexistence? competition? coupling?

... depends on the shape and strength of the forcing...

'; strong geostrophic turbulence "

strong forcing, or some forcing on the geostrophic modes -> strong
turbulence, with some subdominant waves

» rotating turbulence naturally tends to transfer energy to the kz= 0 plane
» geostrophic turbulent patterns radiate waves

» inertial waves might spread through triadic interactions

weak forcing on waves only: inertial wave turbulence with no geostrophic
component?

.. a completely different state of rotating turbulence...



tides driven with Ro=0.05, Q=-0.5 and E=1x10-
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OK at small enough Ro
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Le Reun et al. (2017)



OK at small enough Ro
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Le Reun et al. (2017)



() Kendon loreing (b’ Linear loreing (¢) Randow [orcing (d) Linear lorcing
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Fig. 1: (a) and (b): spatio-temparal spectra £(f, ) for the two most extreme simmlations (27 — 107", resolution 5127) nsing

random (a) and linear (b) forcing. The continuous line in panel (a) shows the dispersion relation of inertial wave (4). The value
and the location of the forcing frequency is specitied in panel (b). In panel (b). the secondary locations of energv mirroring the
dispersion relation are hound waves due to non-lincar, non-resonant interaction between inertial waves and the foreing flow.

(c) and (d): snapshots of the vertical vorticity w, taken from simulations using random (c) and linear (d) forcing. Rp=7.5e-3

« random forcing = noise that is 6-correlated in time and applied
to the modes k located in a spherical shell

* linear forcing = tidal forcing at a given frequency

Le Reun et al. (2020)



A CASE STUDY: 3D-ROTATING TURBULENCE

6. SPECTRAL DESCRIPTION OF INERTIAL WAVE TURBULENCE

» anisotropic spectrum VS. S 1, ~ E(ky, ky)k ky

ki)

inertial waves dispersion relation = 297

» time decoupling between the fast wave time 7, = 1/w, the intermediate

non-linear time 7,; = 1/ku;, and the long transfer time t, due to NL wave-

. . Ta) .
wave interactions -> small parameter y = — and since 2 waves
INL
T TEr
. . @
Interactions, assume — =~ 0(;(2) SO T, ~ —
Ttr Lo

Eky,kpkiky  E*(kp, kpklky
T Q

assuming LIRSSE

¢ = rate of dissipation of turbulence kinetic energy)

» then as usual, B

» leading to the final spectral prediction

E(ky ky) ~ Ve /\'15/2/\'“—'/2

the Zakharov-Kolmogorov spectrum ... (2003, 2023)




(¢) Random lorcing (d) Linear [orcing

--- Random forcing
— Linear forcing

- (Geostrophic

E(ky, ky) ~ VeQk > ky

Le Reun et al. (2020)



--- Random forcing
— Linear forcing

Geostrophic

E(ky, k) ~ «/ﬁkf/zk”_l/z

Le Reun et al. (2020)



Fig. 4: (a) and (b): times series of the kinetic energy for two
simulations using linear forcing both carried out at Ro; = 7.5
107 and E = 107%°. In the first simulation (a), geostrophic
friction 1s first applied (grey area) and then released, whereas
in the second (b), no friction 1s applied. The corresponding
snapshots of the vertical vorticity are shown 1n panels (c) and
(d) and taken at times Ro;t = 500 and Ro;t = 90, respectively.

but there is a trick: friction specific
to geostrophic modes to force them

to remain of small amplitude...
¢ finite Ek / Ro effect?
® realistic effect in close domains?

Bi-stability of rotating
turbulence?

Le Reun et al. (2020)



A CASE STUDY: 3D-ROTATING TURBULENCE

/. EXPERIMENTAL REALIZATION OF THE INERTIAL WAVE TURBULENCE

» weak enough forcing on the waves only -> inertial wave turbulence

honeycomb grids to help dissipate
geostrophic motions
1
il

L, =105 c¢m

size ~80cm, rotation up to 20rpm -> E=10-6

Brunet et al. (2020)
Monsalve et al. (2020)



v Without honeycomhb
® With honeycomb

kinetic energy in
the waves

Re = Ro/Ek

kinetic energy in
the geostrophic
modes

800

Brunet et al. (2020)
Monsalve et al. (2020)



Brunet et al. (2020)
Monsalve et al. (2020)



in the numerics and experiments, weak forcing of waves only, and very small
dissipation

Greenspan theorem (1969): triadic resonance cannot account for wave-to-
geostrophic transfers in the asymptotic limit of vanishing velocity amplitude

(Ro) and dissipation (Ek)...
but we do see geostrophic modes growing above some Ro<<1!

why? and where does the threshold in Ro come from?




FIG. 4. An illustrative example of the quartetic secondary
instability. (a) The triadic instability transfers energy from the
mode Kk (at the forcing frequency) to modes at k, and k',
(b) One can build a resonant guartet by keeping k,, inserting a
horizontal wave number ks, and closing the quartet with two
wave vectors k; and k, parallel to k’ and K}, respectively. Kk, is

FIGURE 4. (a) Schematic cartoon of a geostrophic mode p in near resonance with both imposed encrgized by the forcing, Wh.]le kz,h,as veen energlzeq a step (a).

modes +\-k at the same time Through a resonant quartet instability, the geostrophic mode K;s
then spontancousl ¢s. together with k.

Le Reun et al. (2020) Brunet et al. (2020)




CAN ANY OF THIS APPLY TO PLANETARY CORES
AND SUBSURFACE OCEANS ?

if yes, completely change our estimates for, e.g., energy dissipation,
mixing, induction and dynamo, etc.

HOW TO EXCITE INTERNAL WAVES IN PLANETARY
FLUID LAYERS?



Standard model of planetary fluid layers
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Busse 1974

Nataf & Schaeffer 2015

Cylindrical radial velocity component
DNS atE =107, Pr=1, Ra =2.4x1013

* buoyancy driven flows: thermal and / or compositional convection
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* buoyancy driven flows: thermal and /or compositional convection
* dynamo capable, with reversals and “Earth-like” patterns

N,
N,

... 0k for the Earth today...
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* but tight energy budget with lots of uncertainties: radiogenic heatmg,
temperature contrast , thermal conductivity, age of the inner core,

* what about other bodies, and especially small bodies ?

“ subsurface oceans stably stratified ?




Alternative routes to turbulence

“ gigantic reservoir of energy: rotation

e.g. on Earth:

 rotational energy 2x102°] (lower bound...)

* necessary for present day dynamo 0.1 - 2 TW (Buffet 2002)
hence, sufficient to power Earth’s dynamo during 3 - 63 Gy...

but how?



Alternative routes to turbulence

gigantic reservoir of energy: rotation

if rigid container and constant rotation: solid body
but gravitational interactions = small perturbations

>

floezieion PLECESSION

periodic perturbation periodic perturbation periodic perturbation
of the rotation rate of the rotation direction of the shape

“harmonic or mechanical forcings™ eomaon
- 1 NASA)
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periodic perturbation periodic perturbation periodic perturbation

of the rotation rate of the rotation direction of the shape



Bulk injection by bulk instability

pioneer work by Malkus (1963, 1968, 1989)

Key points:

* small, but regular forcing

“ mnatural vibrational states in any rotating fluid = the inertial modes

“ fluid parametric resonance instability involving the base flow & 2
inertial waves

parametric
resonance
instability

—.

==

Base flow 2 resonant inertial modes
tides, libration, precession




Bulk injection by bulk instability

pioneer work by Malkus (1963, 1968, 1989)

Key points:
» small, but regular forcing

“ mnatural vibrational states in any rotating fluid = the inertial modes
“ fluid parametric resonance instability involving the base flow & 2

inertial waves

+ the mechanisms and thresholds of
instabilities are well known (e.g. Le
Bars et al. ARFM 2015)

« extrapolation towards planets

* dynamo capable (e.g. Reddy et al. 2018;
Cebron et al. 2019)
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the nonlinear fate of the resonance instability

parametric
resonance
instability

~ destabilisation
Base flow prOCGSS Inertial modes

= paradigm of turbulence in rotation
+ « convective-like » dynamics
+ case studied in dynamo DNS

Nataf & Schaeffer 2015

Cylindrical radial velocity component
DNS atE =10/, Pr=1, Ra = 2.4x10'¢




the nonlinear fate of the resonance instability

parametric
resonance

instability &7

~2D geostrophic turbulence

~ destabilisation

Base flow prOCGSS Inertial modes
param +
param FERORAnes 3D wave turbulence

resonance

/ wave 1.1.1

wave 1.1.2 KX

wave 1.1

param

resonance wave 1 \
wave 1.2

\
/
wave 2 < Inertial wave turbulence

wave 2.2



the nonlinear fate of the resonance instability

parametric
resonance

instability &7

( =

linear
~ destabilisation
Base flow pI’OCGSS Inertial modes

compensate large E

by strong forcing
amplitude (Ro)...
OK for linear stability



QG/IWT competition confirmed by lab experiments...

size ~50cm, rotation up to 90rpm -> E=5x10-¢

Le Reun et al. 2019



QG/IWT competition confirmed by lab experiments...

forcing increased by 30%

Ro; = 5.17 x 10~ ﬁm, 6.78 x 1072
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Discrete wave turbulence

a. b. Re[iy] w = 2.00,

— ®=2 | 05 o libration forcing at w¢=4
11— E=74x10"F o . R
L5 triadic resonance with the 1st resonant
= 0.0 0.0
L waves mo=1t1 & mp=2
s ' ' | —3.0
0.0 0.5 1.0 1.5 2.0 —0.5 0.0 0.5
Frequency w x
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Le Reun et al. 2019



Discrete wave turbulence

Previous works ..~

O 0 70 OQ

Experiments _.-*"

¢ Above threshold
® Below threshold

m— R0; = 10E"/?

107 107> 1074 1073
Ekman number E

Le Reun et al. 2019



extrapolation towards planetary cores

Rossby number
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Mechanism for geostropic mode excitation still under discussion:
* Le Reun et al. 2020: near-resonant triad involving a geostrophic mode -> threshold
o E'* transiting towards o« E'/? at moderate forcing (OK with our experiments)
+ Brunet et al. 2020: resonant quartet, including a geostrophic mode -> threshold o« E/*



extrapolation towards planetary cores

Rossby number
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| in any case, wave turbulence may dominate in planetary limit

1010 Ekman number




Other possible sources of inertial wave turbulence

“ flow over topography

vorticity in the mid plane

8 _ CAMERA

A, = 0.06 (TOPO 08)

Burmann & Noir 2018



Other possible sources of inertial wave turbulence

+“ flow over topograph}’
“ boundary turbulence

Noir et aII. 2009
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Sauret et al. 201 ongoing work with Ankit Barik (Johns Hopkins)



Other possible sources of inertial wave turbulence

+“ flow over topogl‘aphy
“ boundary turbulence

R/

* emission from an adjacent convective layer
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Conclusion & future works

two possible turbulence regimes

Quasi-2d
saturation

strong
forcing

weak Zd turbulent
forcing saturaton

~ Liguid ccre

3D wave turbulence 2D QG turbulence

v wave turbulence => dynamo possible according to v QG turbulence => « convective
Moffatt (1970)... mean field alpha approach like » dynamo (see e.g. Reddy et
assuming a packet of wave with helicity symmetry al. 2018)

breaking and space decoupling, but validation with
instability & shape, intensity, etc.?



Conclusion & future works

* Moffatt’s wave turbulence dynamo? ongoing work with Emma Kauffman and
Daniel Lecoanet (Northwestern)

\ Growth rate increases as Rm increases. |
05 Predictions show dynamo solutions (i.e. N T

m=0) whereas EVPs show only o s

P decaying solutions.
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The eigenfunctions (boxed) are smooth at low Rm,
and start to show signatures of the inertial waves
as Rm increases.

2 inertial waves with equal frequencies and wavenumber magnitude but differing kx and ky,
Floquet theory -> 2D eigenvalue problem in which the magnetic fields scale like some
periodic function times an exponential of the growth rate times t



Conclusion & future works

two possible turbulence regimes

N , . -
AL --_’.’J

weak 2d turbulent
forc1ng saturat

— Liguid ccre

3D wave turbulence 2D QG turbulence

Motffatt’s wave turbulence dynamo in planetary cores

dissipation, heat and chemical transport, magnetic induction in subsurface
oceans?



