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1. STRONG VS. WEAK TURBULENCE

The Whirlpools of Awa by Utagawa Hiroshige (1857), image from The Met collection.

INTRODUCTION - NO ROTATION

(Le Bars JFM 2023)



strong turbulence = vortices and wave breaking!

weak turbulence = no vortices nor breaking,  
but interacting waves through resonant interactions

1. STRONG VS. WEAK TURBULENCE

WEAK WAVE TURBULENCE = LESS KNOWN, BUT POSSIBLY AS IMPORTANT AND 
RELEVANT IN NATURE!

INTRODUCTION - NO ROTATION

(Le Bars JFM 2023)



2. BASIC MODELLING: NON-LINEAR, BUT NOT TOO MUCH
▸ resonant interactions in a world with waves

sustained wave 1:  u1 = a+
1 eiω1t through NL interactions:  and 0…±2ω1t

now if another wave 2: u2 = a+
2 eiω2t through NL interactions: ±ω1 ± ω2

so possible energy transfer from wave 2 to a third wave 3 provided e.g.  
(resonance condition, and same with the wave vectors)

ω3 = ω1 + ω2

▸ wave turbulence = spreads quantities over larger ranges of time and 
length scales by such resonant interactions of waves 

▸ weak turbulence = the amplitude remains small otherwise the waves break 
and generate vorticity 

▸ interactions between 3 waves, but sometimes non constructive… then 
need more than 3!

INTRODUCTION - NO ROTATION

+ρg



3. WAVE TURBULENCE IN THE REAL WORLD
▸ playground for mathematicians: there is a small parameter 
▸ exists in a large variety of systems: e.g. in vibrating plates (e.g. Cobelli et 

al. 2009), in optics (e.g. Picozzi et al.  2014), in cosmology with 
gravitational waves (e.g. Galtier & Nazarenko 2017)… 

▸ of great relevance for geo- and astro-physics!

surface waves internal gravity waves

3-waves resonant interactions occur for capillary 
waves, but they are forbidden for pure gravity 

waves where 4-waves interactions must be 
considered (Falcon & Mordant 2022)

single frequency forcing -> large spectrum

INTRODUCTION - NO ROTATION

3-waves resonant interactions (Brouzet et al. 2016)



3. WAVE TURBULENCE IN THE REAL WORLD
▸ playground for mathematicians: there is a small parameter! 
▸ exists in a large variety of systems: e.g. in vibrating plates (e.g. Cobelli et 

al. 2009), in optics (e.g. Picozzi et al.  2014), in cosmology with 
gravitational waves (e.g. Galtier & Nazarenko 2017)… 

▸ of great relevance for geo- and astro-physics!

surface waves internal gravity waves

3-waves resonant interactions occur for capillary 
waves, but they are forbidden for pure gravity 

waves where 4-waves interactions must be 
considered (Falcon & Mordant 2022) internal wave turbulence as a possible source of Garret & 

Munk spectrum (Le Reun et al. 2018)

Garret & Munk (1972)

INTRODUCTION - NO ROTATION

N=4forcing



seminal study by Yarom & Sharon (2014)1m, 120rpm -> Ek~10—6 and Ro~0.006

A CASE STUDY: 3D-ROTATING TURBULENCE

1. COMPETITION BETWEEN QG AND WAVE TURBULENCE

injectiontime

2D3C PIV



THE ENERGY–ENSTROPHY DOUBLE CASCADE IN 2D

▸ both inertial ranges 
are separated

K = Z =

turbulence broadens the spectra i.e. it spreads quantities over a larger range of k… 
the only way to conserve K & Z given the different k weights: more of the energy is transferred 

toward larger scales while more of the enstrophy is transferred toward smaller scales!

8.3 Two-Dimensional Turbulence 375

Figure 8.7 The energy
spectrum of two-dimensional
turbulence. (Compare with
Fig. 8.3.) Energy supplied at
some rate " is transferred to
large scales, whereas enstro-
phy supplied at some rate ⌘
is transferred to small scales,
where it may be dissipated by
viscosity. If the forcing is lo-
calized at a scale k�1

f then
⌘ ⇡ k2

f ".

It is also possible to obtain (8.67) from scaling arguments similar to those in section
8.2.3. The scaling transformation (8.34) still holds, but now instead of (8.35) we assume
that the enstrophy flux is constant with wavenumber. Dimensionally, and analogously
to (8.35), we have

⌘ ⇠
v3

k

l3

k

⇠ �3r�3; (8.68)

and the constancy of ⌘ gives r D 1 for the scaling exponent. The exponent n determin-
ing the slope of the inertial range is given, as before, by n D �.2r C 1/ yielding the �3

spectra of (8.67). The velocity at a particular wavenumber then scales as

vk ⇠ ⌘1=3k�1; (8.69)

and the time scales as
tk ⇠ lk=vk ⇠ ⌘�1=3: (8.70)

We may also obtain (8.70) by substituting (8.67) into (8.24). Thus, the eddy turnover
time in the enstrophy range of two-dimensional turbulence is length-scale invariant.
The appropriate viscous scale is given by equating the inertial and viscous terms in
(8.39). Using (8.69) we obtain, analogously to (8.28a),

k⌫ ⇠

 
⌘1=3

⌫

!1=2

: (8.71)

The enstrophy dissipation, analogously to (8.30) goes to a finite limit given by

PyZ D ⌫

Z

A

⇣r2⇣ dA ⇠ ⌫k4

⌫ v
2

k⌫
⇠ ⌘; (8.72)

using (8.69) and (8.71). Thus, the enstrophy dissipation in two-dimensional turbulence
is (at least according to this theory) independent of the viscosity.

Forcing 

Vallis 2017

A CASE STUDY: 3D-ROTATING TURBULENCE

2. INVERSE CASCADE, A 2D DYNAMICS



THE ENERGY–ENSTROPHY DOUBLE CASCADE IN 2D

▸ both inertial ranges 
are separated
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Forcing 

Vallis 2017

A CASE STUDY: 3D-ROTATING TURBULENCE

2. INVERSE CASCADE, A 2D DYNAMICS

▸ quasi 2D in geo- and astrophysical flows 
▸ geometrical confinement 
▸ rapid rotation (Taylor Proudman)



▸ with strong forcing, rotating turbulence naturally tends to transfer energy to 
the kz = 0 plane

Favier 2009

side view top view

2. INVERSE CASCADE, A 2D DYNAMICS

A CASE STUDY: 3D-ROTATING TURBULENCE



seminal study by Yarom & Sharon (2014)1m, 120rpm -> Ek~10—6 and Ro~0.006

3. 3D WAVE DYNAMICS

now focusing on large wavenumbers…

A CASE STUDY: 3D-ROTATING TURBULENCE

injection



seminal study by Yarom & Sharon (2014)

▸ a smart, adhoc decomposition to highlight inertial waves

W = 4p

focusing on large wavenumbers, 
here 1.42-2.03 rad/cm 

A CASE STUDY: 3D-ROTATING TURBULENCE

2D3C PIV

3. 3D WAVE DYNAMICS

wave vector angle 
vs. rotation axis



@tuþ ðu #rÞu ¼ &
1

q
rp& f ez ' uþ !r2u; (1)

r # u ¼ 0; (2)

where u ¼ ðux; uy; uzÞ is the velocity field in cartesian coordinates x ¼ ðx; y; zÞ. In the following,
we restrict to the case of a flow invariant along the horizontal direction y. The fluid being incom-
pressible, the motion in the vertical plane ðx; zÞ may be described by a streamfunction wðx; zÞ,
such that u ¼ ð@zw; uy;&@xwÞ. Neglecting viscosity, the linearized equations for small velocity
disturbances are

@t@zw ¼ &
1

q
@xpþ fuy; (3)

@tuy ¼ &f@zw; (4)

& @t@xw ¼ &
1

q
@zp: (5)

These equations may be combined to obtain the equation of propagation for inertial waves

@ttð@xx þ @zzÞwþ f 2@zzw ¼ 0: (6)

Considering a plane wave solution of frequency r and wavevector k ¼ ðk; 0;mÞ

wðx; z; tÞ ¼ w0eiðk#x&rtÞ þ c:c: (7)

where c.c. means complex conjugate. We obtain the anisotropic dispersion relation for inertial
waves

r ¼ sf
m

j
¼ sf cos h; (8)

with j ¼ ðk2 þ m2Þ1=2, s ¼ 61, and h the angle between k and the rotation axis (see Fig. 1). We
see from Eq. (8) that a given frequency r lower than f selects a propagation angle 6h, without
specifying the norm of the wavevector j. The corresponding velocity field is given by

FIG. 1. (Color online) Schematic representation of the wave generator. The excited plane inertial wave has a frequency r0,
a downward phase velocity, a negative helicity (s0 ¼ &1), and propagates at an angle h ¼ cos&1ðr0=f Þ, with f ¼ 2X the
Coriolis parameter.

014105-3 Experimental evidence of a triadic resonance Phys. Fluids 24, 014105 (2012)

Downloaded 09 Jul 2012 to 134.157.146.58. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions

Bordes et al. 2012

▸ inertial waves

A CASE STUDY: 3D-ROTATING TURBULENCE

3. 3D WAVE DYNAMICS



seminal study by Yarom & Sharon (2014)

energy peaks for all w<2W with integration across the 
full range of wavenumbers for different rotation rates  
W (in rad/s): 1.6p  (purple); 2.2p  (cyan); 2.8p  (red); 
3.4p  (green); and 4  (blue).

W = 4p

▸ a smart, adhoc decomposition to highlight inertial waves

A CASE STUDY: 3D-ROTATING TURBULENCE

3. 3D WAVE DYNAMICS

focusing on large wavenumbers, 
here 1.42-2.03 rad/cm 



strong geostrophic turbulence

inertial waves, possibly weak turbulence

coexistence? competition? coupling?

… depends on the shape and strength of the forcing…

▸ strong forcing, or some forcing on the geostrophic modes -> strong 
turbulence, with some subdominant waves 
▸ rotating turbulence naturally tends to transfer energy to the kz = 0 plane 
▸ geostrophic turbulent patterns radiate waves 
▸ inertial waves might spread through triadic interactions 

▸ weak forcing on waves only: inertial wave turbulence with no geostrophic 
component?

… a completely different state of rotating turbulence…

A CASE STUDY: 3D-ROTATING TURBULENCE

4. VARIOUS ASPECTS OF ROTATING TURBULENCE



5. PURE INERTIAL WAVE TURBULENCE?
tides driven with Ro=0.05, W=-0.5 and E=1x10-5

Le Reun et al. (2017)

wave turbulence

… in the small dissipation / small forcing limit: another type of turbulence…

Ro=0.005, W=-0.5 and E=1x10-7 

(same distance from threshold)

A CASE STUDY: 3D-ROTATING TURBULENCE



Le Reun et al. (2017)
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5. PURE INERTIAL WAVE TURBULENCE

OK at small enough Ro
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Le Reun et al. (2017)

0 π/4 π/2
0

1

2

Fr
eq
ue
nc
y

β = 5× 10−3, E = 10−7

10−8

10−7

10−6

10−5

10−4

10−3

θ

10−2 10−1 100 101

Frequency

10−9

10−7

10−5

10−3

A
m
pl
it
ud

e

β = 5× 10−3, E = 10−7

A CASE STUDY: 3D-ROTATING TURBULENCE

5. PURE INERTIAL WAVE TURBULENCE

OK at small enough Ro



Le Reun et al. (2020)

• random forcing = noise that is δ-correlated in time and applied 
to the modes k located in a spherical shell 

• linear forcing = tidal forcing at a given frequency

A CASE STUDY: 3D-ROTATING TURBULENCE

5. PURE INERTIAL WAVE TURBULENCE

Ro=7.5e-3



Galtier (2003, 2023)

▸ anisotropic spectrum         vs.        & 

▸ time decoupling between the fast wave time , the intermediate 
non-linear time , and the long transfer time ttr due to NL wave-
wave interactions -> small parameter  and since 2 waves 

interactions, assume  so  

▸ then as usual,                                                         assuming  

▸ leading to the final spectral prediction

τω = 1/ω
τNL = 1/kul

χ = τω

τNL
τω

τtr
≃ O(χ2) τtr ≃ τ2

NL

τω

the Zakharov-Kolmogorov spectrum

inertial waves dispersion relation ω = 2Ω
k||

k

A CASE STUDY: 3D-ROTATING TURBULENCE

6. SPECTRAL DESCRIPTION OF INERTIAL WAVE TURBULENCE

(e = rate of dissipation of turbulence kinetic energy)



Le Reun et al. (2020)

A CASE STUDY: 3D-ROTATING TURBULENCE

6. SPECTRAL DESCRIPTION OF INERTIAL WAVE TURBULENCE

the Zakharov-Kolmogorov spectrum

A CASE STUDY: 3D-ROTATING TURBULENCE



Le Reun et al. (2020)

-2

▸ isotropic spectrum  (or q~π/2)         
▸ while 2D spectrum                            

E(k) ∼ (ϵΩ)1/2k−2

E(k) ∼ η2/3k−3

6. SPECTRAL DESCRIPTION OF INERTIAL WAVE TURBULENCE

the Zakharov-Kolmogorov spectrum



Le Reun et al. (2020)

7. IN THE REAL WORLD?

Bi-stability of rotating 
turbulence?

but there is a trick: friction specific 
to geostrophic modes to force them 
to remain of small amplitude… 
• finite Ek / Ro effect?
• realistic effect in close domains? 

A CASE STUDY: 3D-ROTATING TURBULENCE



7.     EXPERIMENTAL REALIZATION OF THE INERTIAL WAVE TURBULENCE
▸ weak enough forcing on the waves only -> inertial wave turbulence

size ~80cm, rotation up to 20rpm -> E=10-6

honeycomb grids to help dissipate 
geostrophic motions

Brunet et al. (2020)
Monsalve et al. (2020)

A CASE STUDY: 3D-ROTATING TURBULENCE



Brunet et al. (2020)
Monsalve et al. (2020)

▸ weak enough forcing on the waves only -> inertial wave turbulence

kinetic energy in 
the waves

kinetic energy in 
the geostrophic 

modes

A CASE STUDY: 3D-ROTATING TURBULENCE

7.     EXPERIMENTAL REALIZATION OF THE INERTIAL WAVE TURBULENCE

Re = Ro/Ek



Brunet et al. (2020)
Monsalve et al. (2020)

▸ weak enough forcing on the waves only -> inertial wave turbulence

A CASE STUDY: 3D-ROTATING TURBULENCE

7.     EXPERIMENTAL REALIZATION OF THE INERTIAL WAVE TURBULENCE



▸ weak enough forcing on the waves only -> inertial wave turbulence

in the numerics and experiments, weak forcing of waves only, and very small 
dissipation 

Greenspan theorem (1969): triadic resonance cannot account for wave-to-
geostrophic transfers in the asymptotic limit of vanishing velocity amplitude 
(Ro) and dissipation (Ek)… 

but we do see geostrophic modes growing above some Ro<<1! 

why? and where does the threshold in Ro come from?

8.     A THEORETICAL PARADOX

A CASE STUDY: 3D-ROTATING TURBULENCE



Le Reun et al. (2020) Brunet et al. (2020)

resonant quartets of inertial waves,  
involving one geostrophic modenear-resonant O(kRo)2 triads of inertial waves,  

involving one geostrophic mode

FIGURE 4. (a) Schematic cartoon of a geostrophic mode p in near resonance with both imposed
modes +\-k at the same time

A CASE STUDY: 3D-ROTATING TURBULENCE

8.     A THEORETICAL PARADOX

Mechanism for geostropic mode excitation still under discussion, 
but in both cases, threshold Ro ∝ E1/4



CAN ANY OF THIS APPLY TO PLANETARY CORES 
AND SUBSURFACE OCEANS ?

if yes, completely change our estimates for, e.g., energy dissipation, 
mixing, induction and dynamo, etc.

HOW TO EXCITE INTERNAL WAVES IN PLANETARY 
FLUID LAYERS?



Standard	model	of	planetary	/luid	layers

Busse 1974
Cylindrical radial velocity component
DNS at E = 10-7, Pr = 1, Ra = 2.4x1013

Nataf & Schaeffer 2015

❖ buoyancy driven flows: thermal and/or compositional convection
dynamo capable, with reversals and “Earth-like” patterns (despite 
parameters orders of magnitude off…)



Glatzmaier & Roberts 1995

Standard	model	of	core	/lows

R. Holme, Liverpool

❖ buoyancy driven flows: thermal and/or compositional convection
❖ dynamo capable, with reversals and “Earth-like” patterns

… ok for the Earth today…



Glatzmaier & Roberts 1995

Standard	model	of	core	/lows

❖ but tight energy budget with lots of uncertainties: radiogenic heating, 
temperature contrast , thermal conductivity, age of the inner core, … 

❖ what about other bodies, and especially small bodies ?
❖ subsurface oceans stably stratified ?



Alternative	routes	to	turbulence

e.g. on Earth:
• rotational energy 2x1029 J (lower bound…) 
• necessary for present day dynamo 0.1 - 2 TW (Buffet 2002)
hence, sufficient to power Earth’s dynamo during 3 - 63 Gy…

but how?

❖ gigantic reservoir of energy: rotation

if rigid container and constant rotation: solid body but 
gravitational interactions = small perturbations



tidesprecessionlibration

periodic perturbation 
of the rotation rate

periodic perturbation 
of the rotation direction

periodic perturbation 
of the shape

❖ gigantic reservoir of energy: rotation

❖ if rigid container and constant rotation: solid body 
but gravitational interactions = small perturbations

Alternative	routes	to	turbulence

“harmonic	or	mechanical	forcings” (animations 
from NASA)

DWlib/W0 ~ 7x10-5 Wprec/W0 ~ 10-7 DRtides/R0 ~ 10-7



libration

dimensionless parameters
β=0.34, f=4, e=0.68 and E=2x10-5

periodic perturbation 
of the rotation rate

tides

dimensionless parameters
β=0.07, W=-1 and E=1.5x10-5

precession

dimensionless parameters
a=15o, W=-0.44 and E=2.2x10-5

periodic perturbation 
of the shape

periodic perturbation 
of the rotation direction
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The%turbulent%response%of%Oluid%interiors%to%tidal%and%librational%forcing

ECurrent%work:%Compare%novel%experimental/numerical%results%from%turbulent%
Olows%driven%by%(1)tidal&distortions&to%previous%studies%of%%(2)longitudinal&
libration:%%%%%%%%%%%%%%%%%%%%

Motivation

E%Recent%mechanical%forcing%models%show%that%these%interactions%can%excite%
instabilities%in%the%Oluid%layers%generating%bulk%turbulence.

Important)Parameters Tides Libration

� =
a2 � b2

a2 + b2

Numerics

[3]

⌦
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matching%with%experiments.
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Tide/LibrationEDriven%Elliptical%Instability(TDEI/LDEI)
Mechanical%forcing%establishes%
an%ellipsoidal%base%Olow%with%
frequency,%f%%%.

LDEI

Inertial%modes%are%excited%in%the%frequency%
range

The%resonance%of%two%inertial%modes%coupled%with%
the%base%Olow%can%excite%bulk%turbulent%Olows.

We%set%%%%%%%%%%%%%%%%%%%%%%%%%%to%focus%exclusively%on%TDEI/
LDEI%mechanism%and%the%inertial%mode%are%easily%
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Planetary%Implications%for%TDEI
E%Assume%simpliOied%saturation%velocity%scale%from%current%work.
E%TDEI%scaling%gives%an%estimate,%in%neutrally%stable%Oluid,%for%the%magnetic%Reynolds%
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E%We%Oind%that%Earth,%Io,%Europa,%
the%Early%Moon,%and%three%super%
Earths%may%support%dynamos%via%
TDEI.

Le%Bars%et#al.%Nature2011,%Cebron%et#al.%AA2012,%Grannan%et#al.%POF2014,%Favier%et#al.%POF2015References
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Small	forcing	but	large	consequences



pioneer	work	by	Malkus	(1963,	1968,	1989)

Bulk	injection	by	bulk	instability
Key points: 
❖ small, but regular forcing
❖ natural vibrational states in any rotating fluid = the inertial modes
❖ fluid parametric resonance instability involving the base flow & 2 

inertial waves

parametric 
resonance 
instability

tides, libration, precession
2 resonant inertial modes



Key points: 
❖ small, but regular forcing
❖ natural vibrational states in any rotating fluid = the inertial modes
❖ fluid parametric resonance instability involving the base flow & 2 

inertial waves

pioneer	work	by	Malkus	(1963,	1968,	1989)

❖ the mechanisms and thresholds of 
instabilities are well known (e.g. Le 
Bars et al. ARFM 2015)

❖ extrapolation towards planets
❖ dynamo capable (e.g. Reddy et al. 2018; 

Cebron et al. 2019)

Lemasquerier et al. 2017

Bulk	injection	by	bulk	instability



nonlinear 

self in
teractions

the	nonlinear	fate	of	the	resonance	instability

parametric 
resonance 
instability

linear

destabilisation


process

❖ paradigm of turbulence in rotation

❖ « convective-like » dynamics

❖ case studied in dynamo DNS

~2D geostrophic turbulence
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teractions

cascade of 
triadic resonances

parametric 
resonance 
instability

linear
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3D wave turbulence

base flow

wave 1

wave 2

param
resonance

wave 1.1

wave 1.2
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param
resonance …

…
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…

…

wave 1.1.1
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param
resonance

Inertial wave turbulence

~2D geostrophic turbulence

the	nonlinear	fate	of	the	resonance	instability



nonlinear 

self in
teractions

cascade of 
triadic resonances

parametric 
resonance 
instability

linear

destabilisation


process

3D wave turbulence

compensate large E 
by strong forcing 
amplitude (Ro)… 

OK for linear stability

not for NL effects!

need to study small forcing & 
small dissipation regimes…

~2D geostrophic turbulence

the	nonlinear	fate	of	the	resonance	instability



size ~50cm, rotation up to 90rpm -> E=5x10-6

Le Reun et al. 2019

QG/IWT	competition	con/irmed	by	lab	experiments…



QG/IWT	competition	con/irmed	by	lab	experiments…

Le Reun et al. 2019

forcing increased by  30%



Discrete wave turbulence
14 T. Le Reun, B. Favier and M. Le Bars

0.0 0.5 1.0 1.5 2.0
Frequency !

10
�6

10
�4

10
�2

Ê
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e. Im [û�] ! = 0.54,

�0.5 0.0 0.5
x

�0.5

0.0

0.5

y
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Figure 8. a. Power spectra with labelled peaks. The spectrum at E = 5.0⇥10�6 is the same as
in figure 7 (Roi = 5.17⇥10�2). The E = 7.4⇥10�6 spectrum is determined from an experiment
at input Rossby number Roi = 5.90 ⇥ 10�2, it has been vertically shifted to facilitate the
comparison. Several pairs of triadic resonance relation can be noticed, such as 0.27 + 1.73,
0.54 + 1.46, 0.61 + 1.39 and 0.66 + 1.34. b: azimuthal component of the resonant wave. c to g:
pairs of structures û(r;!) satisfying the triadic resonance condition on the frequency (relation
(2.12)). For each frequency, including ! = 2, we show the component which has the largest
amplitude among the imaginary and real parts of the radial and azimuthal velocity. Lastly, in
all velocity maps, distance is normalised by a and velocity by Roia⌦0.

m1=2 and m2=1

w=2 

m1=2 and m2=3

Le Reun et al. 2019

triadic resonance with the 1st resonant 
waves m0= 1 & w0=2 ±

libration forcing at wf=4 



Discrete wave turbulence

Le Reun et al. 2019



extrapolation	towards	planetary	cores

Mechanism for geostropic mode excitation still under discussion: 
❖ Le Reun et al. 2020: near-resonant triad involving a geostrophic mode -> threshold 

 transiting towards  at moderate forcing (OK with our experiments)
❖ Brunet et al. 2020: resonant quartet, including a geostrophic mode -> threshold 

∝ E1/4 ∝ E1/2

∝ E1/4
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extrapolation	towards	planetary	cores

in any case, wave turbulence may dominate in planetary limit
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❖ flow over topography

Other possible sources of inertial wave turbulence

Burmann & Noir 2018

vorticity in the mid plane
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Fig. 5. Longitudinal rolls beneath the outer boundary. (a) Laboratory experiment at Re = 100 (E = 5 × 10−5 [! = 20 rpm], f ∗ = 2/3, Ro = 0.7 ["# = 60◦], and $ = 0). (b) The
%̂-derivative of the radial velocity component, ∂ur /∂% from the numerical simulation at Re = 100 with E = 10−4, Ro = 1, f ∗ = 1 and $ = 0.35.

Fig. 6. Laboratory flow visualization using Kalliroscope in the boundary turbulence regime at Re = 134 (E = 10−4, Ro = 1.34, $ = 0 and f ∗ = 1). (a) Boundary flow beneath
the outer wall; (b) interior flow along a meridional section of the fluid cavity.

Fig. 7. Compiled experimental results plotted in terms of Re versus E. Flow regimes: stable boundary layer (blue); longitudinal roll instability (green); outer boundary
turbulence (red). The symbol’s denotes inner core size: full sphere $ = 0 (⃝); $ = 0.6 (!); $ = 0.9 (▽). The critical boundary layer Reynolds number are represented by black
solid (Rec1 = 20) and dashed (Rec2 = 120) lines, respectively, for the onset of the longitudinal rolls and boundary turbulence. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of the article.)
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Fig. 5. Longitudinal rolls beneath the outer boundary. (a) Laboratory experiment at Re = 100 (E = 5 × 10−5 [! = 20 rpm], f ∗ = 2/3, Ro = 0.7 ["# = 60◦], and $ = 0). (b) The
%̂-derivative of the radial velocity component, ∂ur /∂% from the numerical simulation at Re = 100 with E = 10−4, Ro = 1, f ∗ = 1 and $ = 0.35.

Fig. 6. Laboratory flow visualization using Kalliroscope in the boundary turbulence regime at Re = 134 (E = 10−4, Ro = 1.34, $ = 0 and f ∗ = 1). (a) Boundary flow beneath
the outer wall; (b) interior flow along a meridional section of the fluid cavity.

Fig. 7. Compiled experimental results plotted in terms of Re versus E. Flow regimes: stable boundary layer (blue); longitudinal roll instability (green); outer boundary
turbulence (red). The symbol’s denotes inner core size: full sphere $ = 0 (⃝); $ = 0.6 (!); $ = 0.9 (▽). The critical boundary layer Reynolds number are represented by black
solid (Rec1 = 20) and dashed (Rec2 = 120) lines, respectively, for the onset of the longitudinal rolls and boundary turbulence. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of the article.)

Noir et al. 2009

❖ flow over topography

Other possible sources of inertial wave turbulence

❖ boundary turbulence

148 J. Noir et al. / Physics of the Earth and Planetary Interiors 173 (2009) 141–152

Fig. 5. Longitudinal rolls beneath the outer boundary. (a) Laboratory experiment at Re = 100 (E = 5 × 10−5 [! = 20 rpm], f ∗ = 2/3, Ro = 0.7 ["# = 60◦], and $ = 0). (b) The
%̂-derivative of the radial velocity component, ∂ur /∂% from the numerical simulation at Re = 100 with E = 10−4, Ro = 1, f ∗ = 1 and $ = 0.35.

Fig. 6. Laboratory flow visualization using Kalliroscope in the boundary turbulence regime at Re = 134 (E = 10−4, Ro = 1.34, $ = 0 and f ∗ = 1). (a) Boundary flow beneath
the outer wall; (b) interior flow along a meridional section of the fluid cavity.

Fig. 7. Compiled experimental results plotted in terms of Re versus E. Flow regimes: stable boundary layer (blue); longitudinal roll instability (green); outer boundary
turbulence (red). The symbol’s denotes inner core size: full sphere $ = 0 (⃝); $ = 0.6 (!); $ = 0.9 (▽). The critical boundary layer Reynolds number are represented by black
solid (Rec1 = 20) and dashed (Rec2 = 120) lines, respectively, for the onset of the longitudinal rolls and boundary turbulence. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of the article.)Ro=0.8, 

w=2.1, 
Ek=6e-5
but axisym…

Sauret et al. 2013 ongoing work with Ankit Barik (Johns Hopkins)



❖ flow over topography

Other possible sources of inertial wave turbulence

❖ boundary turbulence
❖ emission from an adjacent convective layer

Bouffard et al. 2022



Conclusion	&	future	works

✓QG turbulence => « convective 
like » dynamo (see e.g. Reddy et 
al. 2018)

✓wave turbulence => dynamo possible according to 
Moffatt (1970)…  mean field alpha approach 
assuming a packet of wave with helicity symmetry 
breaking and space decoupling, but validation with 
instability & shape, intensity, etc.?

❖ two possible turbulence regimes 

weak 
forcing

strong 
forcing

tidal distorsion,
libration, also precession (?)

weak 
forcing

3D wave turbulence 2D QG turbulence



Conclusion	&	future	works

3D wave turbulence 2D QG turbulence

❖ Moffatt’s wave turbulence dynamo? ongoing work with Emma Kauffman and 
Daniel Lecoanet (Northwestern)

2 inertial waves with equal frequencies and wavenumber magnitude but differing kx and ky, 
Floquet theory -> 2D eigenvalue problem in which the magnetic fields scale like some 

periodic function times an exponential of the growth rate times t



Conclusion	&	future	works
❖ two possible turbulence regimes

❖ Moffatt’s wave turbulence dynamo in planetary cores

❖ dissipation, heat and chemical transport, magnetic induction in subsurface 
oceans?

weak 
forcing

strong 
forcing

tidal distorsion,
libration, also precession (?)

weak 
forcing

3D wave turbulence 2D QG turbulence


