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January 30, 2025



Contents

1 Background

Zonal Winds on the Gas Giants

Gas Giant Interiors

Previous work

2 Spherical Shell Models - Wulff+ (2022, 2024)

Theory and Methods

Set-Up

Results

3 Jovian Models - Christensen & Wulff (2024)

Theory

Results

Summary



3/37

(Driving and) quenching of zonal flows on gas giants

Background

Zonal Winds

Contents

1 Background

Zonal Winds on the Gas Giants

Gas Giant Interiors

Previous work

2 Spherical Shell Models - Wulff+ (2022, 2024)

Theory and Methods

Set-Up

Results

3 Jovian Models - Christensen & Wulff (2024)

Theory

Results

Summary



4/37

(Driving and) quenching of zonal flows on gas giants

Background

Zonal Winds

Zonal Winds on the Gas Giants

Jupiter and Saturn Surfacesφ

90

60

30

0

30

60

90

la
tit

ud
e 

[
]

SaturnJupiter

(source: Jupiter: NASA/JPL/Space Science Institute, Saturn: NASA/JPL)



4/37

(Driving and) quenching of zonal flows on gas giants

Background

Zonal Winds

Zonal Winds on the Gas Giants

Measured Surface uφ

90

60

30

0

30

60

90

la
tit

ud
e 

[
]

SaturnJupiter

Jupiter: Tollefson et al. (2017). Saturn: Garćıa-Melendo et al. (2011), rot. period Mankovich et al. (2019).
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Zonal Winds on the Gas Giants - Comparison

Strong, broad equatorial prograde jet.

Jupiter: ∼ 120 m/s, spans ±15◦ longitude.

Saturn: ∼ 300 m/s, spans ±30◦ longitude.

Flanking retrograde jets.

Multiple jets at higher latitudes.

Jupiter: ∼ 30 m/s, narrower.

Saturn: ∼ 100 m/s, wider.
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Measurement: Gravity Moments

Measured in-situ for Jupiter (by Juno) and Saturn (by Cassini).

Deep zonal winds have significant mass flux associated with them.

Assumptions

Rotation dominates.

Taylor-Proudman: zonal

flow is geostrophic;

z-invariant.

Zonal flow decay is radially

dependent.
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Jupiter: ∼ 2, 500 km, Saturn: ∼ 8, 000 km Galanti et al. (2020).

Question

How are the zonal winds truncated at depth?
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Zonal Winds

Jupiter Saturn

Consequences

Zonal winds restricted to non-conducting region.

Outer envelope fully convective - ?

Negligible conductivity

in outer envelope

(molecular hydrogen).

Electrical conductivity

increases sharply, yet

smoothly, with depth.

Highly conducting at

depth (metallic

hydrogen)

Jupiter: French et al. (2012),

Saturn: Liu et al. (2008)
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→ multiple zonal jets
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Hydrodynamic Models

Heimpel, Aurnou, Wicht (2005)

Thin, convecting shell with stress-free boundary conditions

→ multiple zonal jets ... but what quenches the winds at depth?
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Background

Previous work

Partly Conducting Models

Heimpel and Gómez-Pérez (2011)

Sharp transition to high electrical conductivity

→ Equatorial jet ... but only weak flow inside magnetic tangent cylinder
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Hydrodynamic models, with stress-free lower boundary:

Mid-high latitude zonal winds ✓

Zonal wind truncation mechanism ×

Magnetohydrodynamic models with increasing conductivity:

Mid-high latitude zonal winds ×

Zonal wind truncation mechanism ×

→ Proposal of Stably Stratified Layer (SSL): Christensen et al. (2020).
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Theory and Methods

Governing Equations and Numerical Methods

Mass Conservation

Momentum Conservation (Navier-Stokes equation)

Energy Equation

Induction Equation

Code: MagIC (https://magic-sph.github.io/)

Pseudo-spectral MHD code.

Solves governing equations in rotating spherical shell.

Uses anelastic or Boussinesq approximation.
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Hydrodynamic Model

Outer 2/3 convecting.

Lower 1/3 stably

stratified.

Rigid lower boundary

condition.

Vary degree of stability

→ N

Ω =
√

Ra

Pr
g̃

dS∗

dr
E

N: Brunt Väisälä frequency



17/37

(Driving and) quenching of zonal flows on gas giants

Spherical Shell Models - Wulff+ (2022, 2024)

Set-Up

Model Set-Up

Hydrodynamic Model Magnetohydrodynamic Model

Outer 2/3 convecting.

Lower 1/3 stably

stratified.

Rigid lower boundary

condition.

Outer 2/3 convecting.

Lower 1/3 stably

stratified.

Exponentially

increasing electrical

conductivity.

Imposed axial dipole.

Vary degree of stability

→ N

Ω =
√

Ra

Pr
g̃

dS∗

dr
E

N: Brunt Väisälä frequency

Vary electrical conductivity σ
Vary imposed field strength Bdip

→ Λ =
B2

dip
σ

ρ̃Ω

Λ: Elsasser Number
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Zonal Winds in Simulations

Prograde/Superrotation/Eastward - Retrograde/Subrotation/Westward

u

zonal avg.
u = u + u′

time avg.

u
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Hydrodynamic Study - Results

Roφ, colour-scale ±0.03

a)
conv.

b)
N/ = 1.01

c)
N/ = 3.19

d)
N/ = 10.10

Higher degree of stability→ zonal winds at mid-high latitudes.

SSL decouples convective region from viscous forces below.
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Roφ, colour-scale ±0.018

(0.8ro) = 1.30 10 5 (0.8ro) = 1.80 10 2

Weak magnetic field strength, weakly conducting at SSL boundary

→ zonal winds at mid-high latitudes.
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Magnetohydrodynamic Study - Surface Winds

Roφ, colour-scale ±0.018
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Weak magnetic field strength, weakly conducting at SSL boundary

→ zonal winds at mid-high latitudes.

SSL decouples convective region from magnetic forces below.

Low Λ at rc , zonal winds tend to same structure in convective envelope.
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Magnetohydrodynamic Study - Winds at Depth
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Vorticity Conservation (azimuthal component of curled N-S eq.):

0 = 2∂z⟨uφ⟩ −
RaE

Pr

g̃

r
∂θ⟨sc⟩+ ... ⟨·⟩ : time avg.

Thermal Wind Balance:

2∂z⟨uφ⟩ ≈
RaE

Pr

g̃

r
∂θ⟨sc⟩.

Vertical variation ↔ Latitudinal temperature

of Zonal flow velocity (entropy) variations



24/37

(Driving and) quenching of zonal flows on gas giants

Spherical Shell Models - Wulff+ (2022, 2024)

Results

Truncation Mechanism - Thermal Wind

Thermal Wind Balance:

2∂z⟨uφ⟩ ≈
RaE

Pr

g̃

r
∂θ⟨sc⟩.

u 2 zu ERa
Pr

g
r sc
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Truncation Mechanism - Thermal Wind

Insights

Near perfectly geostrophic (z-invariant) in convective region.

Latitudinal temperature variations lead to zonal wind quenching.

Question

What causes the meridional circulation leading to the temperature

structure alteration?
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Truncation Mechanism - Forces

Zonal Force Balance: 0 = ⟨FAd⟩+ ⟨FC⟩+ ⟨FR⟩+ ⟨FMa⟩+ ⟨FMna⟩+ ⟨Fν⟩

FAd = us

s
∂s(suφ) + uz∂z(uφ)

FC = 2

E
us

FR = 1

s2 ∂s

[
s2u′su

′
φ

]
+ ∂z

[
u′zu
′
φ

]
FMa = −1

EPm

[
1

s2 ∂s

(
s2Bφ Bs

)
+ ∂z

(
Bφ Bz

)]
FMna = −1

EPm

[
1

s2 ∂s

(
s2B′φB′s

)
+ ∂z

(
B′φB′z

)]
Fν = − 1

s2 ∂s

[
s3∂s

(
uφ

s

)]
− ∂z [∂z (uφ)] .

Reduced Zonal Force Balance: 0 ≈ ⟨FC⟩+ ⟨FR⟩+ ⟨FMa⟩

Coriolis, Reynolds Stresses, Large-scale Maxwell Stresses
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Theory

Governing Equations

∂u
∂t

+ (u · ∇)u = −∇P − 2Ω × u + Fν +
J × B

ρ̃
+ Cg

∂B
∂t

= ∇ × (u × B) − ∇ × (
1

µ0σ
∇ × B)

∂C

∂t
+ u · ∇C =

1

ρ̃
∇ · (κρ̃∇C)

∇ · (ρ̃u) = 0, ∇ · B = 0
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Theory

Set-up and Non-dimensionalisation

Consider only stable layer z < 0

Zonal flow: U = uy

Meridional stream function:

u = ∇ ×Ψey

Induced toroidal magnetic field:

b = By

codensity perturbation: c

Neglect all non linear terms,

viscosity, poloidal field

perturbations. Set ∂/∂t = 0.

Harmonic variation ∼ exp(ikx) of

U, Ψ, b, c



29/37

(Driving and) quenching of zonal flows on gas giants

Jovian Models - Christensen & Wulff (2024)

Theory

Set-up and Non-dimensionalisation

Scaling:

U = Ũκ/dσ

Ψ = Ψ̃κσoB2

ρoΩ

b = b̃κσoµoB

c = c̃
σodσ B2N2

ρogΩ
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Simplified Equations

2dzΨ = −dzb

dzU = MAC kc

(dzz − k
2)c = −kΨ

(dzz + dz − k
2)b = − exp(−z)dzU



30/37

(Driving and) quenching of zonal flows on gas giants

Jovian Models - Christensen & Wulff (2024)

Theory

Simplified Equations

2dzΨ = −dzb

dzU = MAC kc

(dzz − k
2)c = −kΨ

(dzz + dz − k
2)b = − exp(−z)dzU

MAC =
(

N

Ω

)2 σoB2d2
σ

2ρoκ

Balance of

Magnetic: Λ = σoB2

ρoΩ

Archimedean: N/Ω

Coriolis: Eκ = κ
d2

σΩ
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Results

Variation with stable layer depth

Jupiter-like case at mid-latitude as

function of the depth of the stable

layer boundary for a wind velocity of

25 m/s, characteristic latitudinal

wavelength of the zonal jets inside the

tangent cylinder 10,000 km, stability

N/Ω = 1.

a) Decay range d0.1,

b) driving power,

c) maximum value of the local

magnetic Reynolds number.
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Results

Variation with stable layer depth

a)

Jet velocity drops tenfold over a depth

of 100-300 km.

At lower MAC (shallower stable layer

boundary) winds penetrate deeper

into the stable layer.
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Results

Variation with stable layer depth

b)

The thin full line is the observed internal

heat flow and the broken line is the

upper bound for the total dissipative

heating according to Wicht+ (2019).

It is unlikely that the dissipation linked to

the zonal winds substantially exceeds

the internal heat flow.

This would be the case if the stable

layer boundary was deeper than 2,500

km
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Results

Variation with stable layer depth

c)

A large magnetic reynolds number

would perturb the poloidal magnetic

field. Such distortions are not observed.

Taking Rmloc = 3 as an upper limit

requires the stable layer boundary to

be no deeper than 2,600 km

→ almost identical to the constraint

based on the driving power.
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Results

Variation with latitude

Insignificant variation of d0.1 with

colatitude.

Variation of power was found to be

mainly due to change in angle

between gravity and magnetic field.
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Summary

A Stably stratified Layer (SSL) does not prevent strong zonal winds

from forming in overlying convective envelope.

SSL’s lead to the decay of zonal flows penetrating down from a

convective region, controlled by the MAC number.

A thermal wind balance governs the attenuation of zonal flows in

the SSL.
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Shallow Stable Layer?

0.96RJ

0.85RS

Jupiter Saturn
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Conclusion

For mid-high latitude jets to form on Jupiter and Saturn a Stably

Stratified Layer must be located where jet quenching begins, above

highly electrically conducting depths.
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