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Zonal Winds on the Gas Giants - Comparison
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Zonal Winds on the Gas Giants - Comparison

m Sfrong, broad equatorial prograde jet.
m Jupiter: ~ 120 m/s, spans +15° longitude.
m Saturn: ~ 300 m/s, spans +30° longitude.
m Flanking retrograde jets.
[ |

m Jupiter: ~ 30 m/s, narrower.
m Saturn: ~ 100 m/s, wider.
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Zonal Winds on the Gas Giants - Depth

Measurement: Gravity Moments

m Measured in-situ for Jupiter (by Juno) and Saturn (by Cassini).

m Deep zonal winds have significant mass flux associated with them.

Assumptions

m Rotation dominates.
Taylor-Proudman: zonal
flow is geostrophic;
z-invariant.
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Measurement: Gravity Moments
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Interior Structures of Jupiter and Saturn

m Negligible conductivity
in outer envelope
10° (molecular hydrogen).

m Electrical conductivity
— increases sharply, yet
£ smoothly, with depth.
S

m Highly conducting at
depth (metallic
10! hydrogen)

Jupiter: French et al. (2012),
50 Saturn: Liu et al. (2008)
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Heimpel and Gomez-Pérez (2011)
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Governing Equations and Numerical Methods

]
Code: MagIC (https://magic-sph.github.io/)

m Pseudo-spectral MHD code.

m Solves governing equations in rotating spherical shell.

m Uses anelastic or Boussinesq approximation.
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Zonal Winds in Simulations

Prograde/Superrotation/Eastward - Retrograde/Subrotation/Westward

surface : = conv.
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Hydrodynamic Study - Results
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Higher degree of stability — zonal winds at mid-high latitudes.
SSL decouples convective region from viscous forces below.
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— zonal winds at mid-high latitudes.
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Magnetohydrodynamic Study - Surface Winds
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Weak magnetic field strength, weakly conducting at SSL boundary
— zonal winds at mid-high latitudes.
SSL decouples convective region from magnetic forces below.

Low A at r., zonal winds tend to same structure in convective envelope.
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Magnetohydrodynamic Study - Winds at Depth
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Truncation Mechanism - Thermal Wind

Vorticity Conservation (azimuthal component of curled N-S eq.):

0 = - + ... (-) : time avg.

Thermal Wind Balance:

Vertical variation <  Latitudinal temperature
of Zonal flow velocity (enfropy) variations
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Thermal Wind Balance:
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Truncation Mechanism - Thermal Wind

Insights

Near perfectly geostrophic (z-invariant) in convective region.
Latitudinal temperature variations lead to zonal wind quenching.
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Truncation Mechanism - Forces

Zonal Force Balance: 0 = (Fag) + (Fc) + (Fr) + (Frma) + (Frmna) + (Fu)

Fag = £9y(sUp) + U0 (Tp)

’_:Mna = % éas (SQB:pB;) + 9, (B:pB;)]

.= —talal)] -t o)

Reduced Zonal Force Balance:
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Truncation Mechanism - Forces

Coriolis Force

Reynolds stress
divergence
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Governing Equations
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Set-up and Non-dimensionalisation

m Consider only stable layer z < 0
m Zonal flow: U = u,

m Meridional stream function:

u=VxUe,
® Induced toroidal magnetic field
b =B,

m codensity perturbation: ¢

m Neglect all non linear terms,
viscosity, poloidal field
perturbations. Set 9/dt = 0.

m Harmonic variation ~ exp(ikx) of

UV,b,c
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Set-up and Non-dimensionalisation

Scaling:
m U= Ux/d,
B V= \T!'ngz
m b= EKoo,uoB
2
mCc= <":—°°;O"5;N
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Simplified Equations

24,V = —ad,b

d,U = MAC kc

(dy — k*)c = —kW

(dy + d, — kK*)b = —exp(~z)d,U
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Simplified Equations

24,V = —d,b
AU = ke
Balance of
Magnetic: A = Z°?—22
(dy — K*)c = —kW Archimedean: N /2
Coriolis: E,. = dgLQ

(dy + d, — kK*)b = —exp(~z)d,U
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Variation with stable layer depth

MAC
1?2 1?3 1?4 10° b)
E 300 9‘\9 a The thin full line is the observed internal
0 T, heat flow and the broken line is the
® 00 e upper bound for the total dissipative
N_mo 57O heating according to Wicht+ (2019).
£ “: oo It is unlikely that the dissipation linked to
& o 0,,0"0 b the zonal winds substantially exceeds
10 o © the internal heat flow.
& oo This would be the case if the stable
« :0: L ° ° c layer boundary was deeper than 2,500
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Variation with stable layer depth

MAC
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Variation with lafitude

0.1
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Colatitude [degr]

Insignificant variation of dg 1 with
colatitude.

Variation of power was found to be
mainly due to change in angle
between gravity and magnetic field.
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Summary

m A Stably stratified Layer (SSL) does not prevent strong zonal winds
from forming in overlying convective envelope.

m SSL’s lead to the decay of zonal flows penetrating down from a
convective region, controlled by the MAC number.

m A thermal wind balance governs the attenuation of zonal flows in
the SSL.
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