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Research interests

® Develop techniques to obtain higher quality
images from (incomplete) data <=> imaging
of shapes

® Characterization of shapes <=> estimation
of singularity orders of imaged reflectors

® Understand physical processes that generate
the observed singular transitions <=>
Percolation phenomena




SEISMIC IMAGING
METHOD & SOME
CHALLENGES



Seismic data acquisition
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Observations

Earth subsurface is highly heterogeneous, multiscale
and intermittent (fractal like).

Seismic data contain bandwidth limited wave fronts.

Differences in smoothness delineate “layer” structure.

Imaged waveforms contain coarse=-scale information
on the fine=-structure of the transitions.

Reflection seismology lives by virtue of singularities.
How can we obtain information on the fine structure?

How is this fine structure related to the underlying physical
brocesses?
















Sparsity-promoting inversion®

® reformulation of the problem

signal — y pCH

curvelet representation of
ideal data

® Curvelet Reconstruction with Sparsity-promoting Inversion (CRSI)

— look for the sparsest/most compressible,
physical solution KEY POINT OF THE RECOVERY

sparsity constraint data misfit

X = argminy |[Wx||; st [[y—PC"x|; <ce¢

(Pr) <

f=Cx

* inspired by work on Impainting by Elad et. al., Stable Signal Recovery (SSR) theory by E. Candeés, J. Romberg, T.
Tao, Compressed sensing by D. Donoho & Fourier Reconstruction with Sparse Inversion (FRSI) by P. Zwartjes




Observations

® Recovery possible for > 80 % data missing
® Works because
® exploit the high dimensional geometry

® randomness of sampling that breaks the
aliasing

® Uses ideas from compressive sampling.

® |s “impressive” since we “solve” a norm-one
problem with 2430 unknowns.







Problem

Find a representation that is compressible for
seismic data & images

e multiscale & multidirectional

¢ intermittent regularity (caustics and pinch
outs)

® certain invariance properties

Contains wavefronts that are smooth in the
tangential direction and oscillatory in the normal
direction.




Wavefront detection

Offset (m)
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Curvelets

[Candes & Donoho ‘02-'05, Do ‘02, Demanet ‘05, Ying “05]

Partitioning example

Curvelet in the space domain Curvelet in the Fourier domain
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Micro-local correspondence



Curvelets

[Candes & Donoho “02-'05, Do “02, Demanet ‘05, Ying ‘05]

Collection of wave packets ¢,,(z),
r € R?, indexed by the quadru-
ple of integers 1 = (7, k1, ko, /).

pu(x) ~ 23j/490(DjR9£$ — k),

270

D; = |
0 927/2

Oy ~ 0. 27L3/2]

Tight frame: f =3 (f,¢u)pu-




Compression

Interested in functions discontinuous along a piecewise smooth (C'?)

interface, and otherwise smooth (C?).

Theorem (Candes, Donoho). For such a model f, the best m-term

curvelet expansion f,, obeys

If = fml]? < Cm~%(logm)*.

Note: wavelets would give O(m™1), so do ridgelets (Candes).

[From Demanet ‘05]




3-D curvelets

Curvelets live in wedges in the 3 D Fourier plane...



PARTIAL RECONSTRUCTION
CURVELETS (1% LARGEST COEFFICIENTS)
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Observations

® Curvelets:
® are multiscale, multi-angular & anisotropic
® detect the ‘wavefront set’
® “invariant” under wave propagation

® Ideal representation for seismology







An optimal true-amplitude least-squares prestack
depth-migration operator [Chavent & Plessix, 99]

Frequency-domain finite difference amplitude
preserving migration [Plessix & Mulder, 99]

A microlocal analysis of migration [ten kroode,verdel & smit, 98]

TR 06-18: Reverse time migration with optimal
CheCkPOinting [Symes 2007]

TR 06-19: Optimal Scaling for Reverse Time
Migration [symes 2007]

The Curvelet Representation of Vave Propagators is
Optlma”y Sparses [Demanet and Candes 2005]




Forward problem

® second order hyperbolic PDE

® interested in the singularities of

m ==¢—C




Inverse problem

Minimization:
m = argmin ||d — F[m]||3
m™m

After linearization (Born app.) forward model with
noise:

d(zs, 2y, t) = (Km)(xs, zp, t) + n(zs, 2y, t)
Conventional imaging:
(K" d)(z) (K*Km)(z)+ (K" n)(z)
y(x) (Tm)(z) + e()




Approximation

So let ¥ = ¥(x, D) be a pseudodifferential operator of order 0, with homo-
geneous principal symbol a(x, £).

K— KA or K 8;1/2K
m o (~A)2m  with  ((=8)*/)"€) = € f(©).

Lemma 1. With C' some constant, the following holds

|(¥(2, D) — a(s, &))¢0ll oy < €277, (14)

To approximate W, we define the sequence u := (u,)em = a(z,,&,). Let Dy be the

diagonal matrix with entries given by u. Next we state our result on the approximation of

U by CTDyC.







Approximation

Theorem 1. The following estimate for the error holds

|(¥(x, D) — C"DyC)ppll o gy < C"27 W72,

where C" is a constant depending on V.

Allows for the decomposition

(\I’%&) (z) (CTD‘I’CS%) (z)
(AATSOM) (z)

with A := v/Dg¢C and A := C*/Dy.



Recovery

Final form

y = Axg+ €

with xg = I'Cm and € = Ae.

Solve miny J(x) subject to |y — Ax|s <e€

m = (AH)Tx

sparsity
/_/\ T
J(x) = af[x|ls +5 A"/ (A7) x|, .

_J/

WV
continuity




Image recovery

anisotropic diffusion

[Black et. al '98, Fehmers et. al. ‘03 and Shertzer ‘03]

Jo(m) = [|AY2Vm],
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Observations

Curvelet invariance and sparsity leads to an
improved recovery.

Singularities are preserved during imaging.

Aside from curvelet sparsity finding appropriate
penalty functionals are an open problem.

Synthetic examples have a singularity structure
that is too restrictive.







Problem

® Delineate the structure (stratigraphy) from
seismic images.

® Parameterize seismic transitions.

® Estimate the parameters from seismic
Images:

® |ocation
® singularity order

® instantaneous phase




Singularity characterization
through waveforms
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¢ generalization of zero- & first-order
discontinuities

® measures wigglyness / # oscilations /
sharpness
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Parameterization

Consider Earth as superposition of algebraic singularities

= Z " XY (T — x4

with neN

| T'(a+1) | T'(a+1)

yielding (witho(z) the seismic wavelet )

d(z) = (rx @) (x) with r@) =Y xi?

neN




Approach

[Wakin et al “05-"-07, M&H “07]

® Use a detection-estimation technique
® multiscale detection => segmentation

® multiscale Newton technique to estimate
the parameterization

® Opverlay the image with the parametrization




Seismic trace

[ nratinn







Observations

Stratigraphy is detected

Parameterization provides information on
the lithology

Method suffers from curvature in the imaged
reflectors

Extension to higher dimensions necessary

Model that explains different types of
transitions







Problem

Earth subsurface is highly heterogeneous
® sedimentary crust
® upper-mantle transition zone
® core-mantle boundary
Smooth relation volume fractions and rock properties.

Homogenization/equivalent medium (EM) theory
smoothes the singularities during upscaling

® relatively easy for volumetric properties (density)

® notoriously difficult for transport properties (velocity)

Q: How to model transitions in effective properties?



Our approach

Include connectivity in models for the effective properties
of bi-compositional mixtures <=> SWITCH

Start with binary mixtures, e.g.
® sand-shale
® gas-hydrate, opal
® upper-mantle mineralogy
Studied two cases:

® elastic properties upper mantle (H & B ‘04)

® fluid-flow properties synthetic rock (B & H ‘04)



Mixing model

Homogeneous mixing (e.g., solid solution) of two
phases (LP weak and HP strong) can only produce
gradually varying elastic properties.

Heterogeneous (e.g. random macroscopic inclusions)
mixing, then a singularity in the elastic properties must
arise at the depth where the strong, HP phase becomes
connected (observed in binary alloys).




Site-percolation mode]

Assume volume fractions p and g =|-p, are
linear functions of depth z.

At a critical depth z_, which corresponds to the
percolation threshold p_ = p(z,), an "infinite",
connected HP cluster is formed.

forz 2z

—not all HP inclusions belong to the infinite cluster.

—isolated HP inclusions can still be found, embedded in
the remaining LP material and forming with it a

mixture (M).




Site-percolation model

LP - olivine

Varying composition binary mixture

random Site percolation

process p_<0.59
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random Site percolation
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Singularity model

1
665

LP matrix HP inclusions . HP matrix with LP inclusions

depth [km]




Percolation model

® Relation composition versus seismic
contains NOW a critical point <=> switch

® Composition may vary smoothly but
elastic moduli and velocity may not

® Use the switch to do a singularity-preserving
upscaling by spatial smoothing the
composition




Volume fraction
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Switch vs no switch

Velocity from lithology

Equivalent medium
Nl Percolation model
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Switch vs no switch
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Upscaled densit

“smooth”

computer simulation
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Upscaled velocity
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EM upscaled reflectivity
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Percolation upscaled
reflectivity
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Observations

® Percolation model preserves the singularities

® Swich model provided “access” to the fine-
structure (connectivity) from macroscopic
waves

® Rigorous mathematical framework for the
“shapes” of these percolation-induced
transitions is an open problem




Morphology!?

Varying composition binary mixture




Morphology!?

Varying composition binary mixture




Conclusions

Multiscale compressible signal representations are
indispensable for acquiring accurate information on

the imaged waveforms.

Imaged waveforms carry information on the fine
structure of the reflectors.

Multiscale detection-estimation provides estimates for
the exponents.

Percolation model provides an interesting perspective.
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Detection-Estimation method

)

» Detect the events

e 1D Complex CWT on seismic trace

* Find local maxima on CWT plane

e windowing based on location &

scale of event

» Isolate the events >
N

» Estimate characterization of

windowed events
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Actual and estimated trace

Amplitude
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Real Seismic Data (Migrated)
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Reconstructed Seismic Data (Estimated)
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Singularity Order of Seismic Data (Estimated)
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