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Research interests

• Develop techniques to obtain higher quality 
images from (incomplete) data <=> imaging 
of shapes

• Characterization of shapes <=> estimation 
of singularity orders of imaged reflectors

• Understand physical processes that generate 
the observed singular transitions <=> 
Percolation phenomena



Seismic imaging 
method & some 

challenges
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Seismic data acquisition



Seismic imaging

• create images of the subsurface

• need for higher resolution/
deeper

• clutter and data incompleteness 
are problems 0 1 2 3 km
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Seismic imaging

courtesy 
Apache



Observations
• Earth subsurface is highly heterogeneous, multiscale 

and intermittent (fractal like).

• Seismic data contain bandwidth limited wave fronts.

• Differences in smoothness delineate “layer” structure.

• Imaged waveforms contain coarse-scale information 
on the fine-structure of the transitions.

• Reflection seismology lives by virtue of singularities.

• How can we obtain information on the fine structure?

• How is this fine structure related to the underlying physical 
processes?



Recovery from 
incomplete data









Sparsity-promoting inversion*
 reformulation of the problem

 Curvelet Reconstruction with Sparsity-promoting Inversion (CRSI)
– look for the sparsest/most compressible,

physical solution

signal =y + n noise

curvelet representation of 
ideal data

PCH

x0

KEY POINT OF THE RECOVERY

(P0)















x̃= arg

sparsity constraint
︷ ︸︸ ︷

min
x

‖x‖0 s.t. ‖y−PCHx‖2 ≤ !

f̃= CH x̃

(P1)











x̃= argminx ‖Wx‖1 s.t. ‖y−PCHx‖2 ≤ ε

f̃= CH x̃

(P0)















x̃= arg

sparsity constraint
︷ ︸︸ ︷

min
x

‖x‖0 s.t.

data misfit
︷ ︸︸ ︷

‖y−PCHx‖2 ≤ !

f̃= CH x̃
* inspired by work on Impainting by Elad et. al.,  Stable Signal Recovery (SSR) theory by E. Candès, J. Romberg, T. 
Tao, Compressed sensing by D. Donoho & Fourier Reconstruction with Sparse Inversion (FRSI) by P. Zwartjes



Observations

• Recovery possible for > 80 % data missing

• Works because 

• exploit the high dimensional geometry

• randomness of sampling that breaks the 
aliasing

• Uses ideas from compressive sampling.

• Is “impressive” since we “solve” a norm-one 
problem with 2^30 unknowns.



Selection of the 
sparsity 

representation



Find a representation that is compressible for 
seismic data & images

• multiscale & multidirectional

• intermittent regularity (caustics and pinch 
outs)

• certain invariance properties

Contains wavefronts that are smooth in the 
tangential direction and oscillatory in the normal 
direction.

Problem
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Curvelet in the space domain Curvelet in the Fourier domain

Partitioning example
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Micro-local correspondence

Curvelets
[Candes & Donoho ‘02-’05, Do ‘02, Demanet ‘05, Ying ‘05] 



Curvelets

Collection of wave packets ϕµ(x),

x ∈ R2, indexed by the quadru-

ple of integers µ = (j, k1, k2, ").

ϕµ(x) " 23j/4ϕ(DjRθ!
x − k),

Dj =





2j 0

0 2j/2



 ,

θ" " " · 2−"j/2#.

Tight frame: f =
∑

µ〈f,ϕµ〉ϕµ.

31

[Candes & Donoho ‘02-’05, Do ‘02, Demanet ‘05, Ying ‘05] 



Compression

[From Demanet ‘05][From Demanet ‘05]



Curvelets live in wedges in the 3 D Fourier plane...

3-D curvelets



Partial Reconstruction

Curvelets (1% largest coefficients)

SNR = 6.0 dB



Observations

• Curvelets:

• are multiscale, multi-angular & anisotropic

• detect the ‘wavefront set’

• “invariant” under wave propagation

• Ideal representation for seismology



Imaging 
singularities



• An optimal true-amplitude least-squares prestack 
depth-migration operator [Chavent & Plessix, 99]

• Frequency-domain finite difference amplitude 
preserving migration [Plessix & Mulder, 99]

• A microlocal analysis of migration [ten Kroode, Verdel & Smit, 98]

• TR 06-18: Reverse time migration with optimal 
checkpointing [Symes 2007]

• TR 06-19: Optimal Scaling for Reverse Time 
Migration [Symes 2007]

• The Curvelet Representation of Wave Propagators is 
Optimally Sparses [Demanet and Candes 2005]



Forward problem

• second order hyperbolic PDE

• interested in the singularities of

F [c]u :=

(
1

c2(x)
· ∂2

∂t2
−

d∑

i=1

∂2

∂x2
1

)
u(x, t) = f(x, t)

m = c− c̄



Inverse problem
Minimization:

After linearization (Born app.) forward model with 
noise:

Conventional imaging:

m̃ = arg min
m

‖d− F [m]‖2
2

d(xs, xr, t) =
(
Km

)
(xs, xr, t) + n(xs, xr, t)

(
KT d

)
(x) =

(
KT Km

)
(x) +

(
KT n

)
(x)

y(x) =
(
Ψm

)
(x) + e(x)



So let Ψ = Ψ(x,D) be a pseudodifferential operator of order 0, with homo-
geneous principal symbol a(x, ξ).

in Rd.

Lemma 1. With C ′ some constant, the following holds

‖(Ψ(x,D)− a(xν , ξν))ϕν‖L2(Rn
) ≤ C ′2−|ν|/2. (14)

To approximate Ψ, we define the sequence u := (uµ)µ∈M = a(xµ, ξµ). Let DΨ be the

diagonal matrix with entries given by u. Next we state our result on the approximation of

Ψ by CTDΨC.

Theorem 1. The following estimate for the error holds

‖(Ψ(x,D)− CTDΨC)ϕµ‖L2(Rn
) ≤ C ′′2−|µ|/2, (15)

where C ′′ is a constant depending on Ψ.

This main result proved in Appendix A shows that the approximation error for the

diagonal approximation goes to zero for increasingly finer scales. The approximation derives

from the property that the symbol is slowly varying over the support of a curvelet, an

approximation that becomes more accurate as the scale increases.

Decomposition of the normal operator

By virtue of Theorem 1, the normal operator can be factorized

(
Ψϕµ

)
(x) $

(
CTDΨCϕµ

)
(x) (16)

=
(
AAT ϕµ

)
(x)

with A :=
√

DΨC and AT := CT
√

DΨ. Because the seismic reflectivity can be written as a

superposition of curvelets, we can replace ϕµ in the above equation with the model m. We

15

leading behavior for their composition, the normal operator Ψ, corresponds to that of an

order-one invertible elliptic PsDO .

To make this PsDOamenable to an approximation by curvelets, the following sub-

stitutions are made for the scattering operator and the model: K !→ K (−∆)−1/2 and

m !→ (−∆)1/2 m with ((−∆)αf)∧(ξ) = |ξ|2α · f̂(ξ). Alternatively, these operators can be

made zero-order by composing the data side with a 1/2-order fractional integration along

the time coordinate, i.e., K !→ ∂−1/2
t K (see e.g. 3). After these substitutions, the normal

operator Ψ becomes zero-order. Remark that these subsitutions are similar to the substi-

tution made in the WVD methods, where vaguelettes are introduced according the same

mappings. Before detailing the approximate diagonalization of the normal operator, we

first discuss the properties of continuous curvelets under this operator.

APPROXIMATION OF THE NORMAL OPERATOR

In this section, a diagonal approximation of the normal operator in the curvelet domain is

presented. Invariance properties of curvelets under the normal operator (see also Fig. 2)

are used. The approximation leads to a SVD-like decomposition of the normal operator

and makes large-scale seismic image recovery amenable to optimization. To understand our

approximation, we first list the important properties of continuous curvelets. An upper

bound for the L2-error of the diagonal approximation is discussed next, followed by the

diagonal decomposition of the normal operator and a method to numerically estimate the

diagonal from discrete implementations of the normal operator. We conclude this section

by discussing the empirical performance of the approximation on a synthetic data set.
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• Allows for the decomposition

in Rd.

Lemma 1. With C ′ some constant, the following holds

‖(Ψ(x,D)− a(xν , ξν))ϕν‖L2(Rn
) ≤ C ′2−|ν|/2. (14)

To approximate Ψ, we define the sequence u := (uµ)µ∈M = a(xµ, ξµ). Let DΨ be the

diagonal matrix with entries given by u. Next we state our result on the approximation of

Ψ by CTDΨC.

Theorem 1. The following estimate for the error holds

‖(Ψ(x,D)− CTDΨC)ϕµ‖L2(Rn
) ≤ C ′′2−|µ|/2, (15)

where C ′′ is a constant depending on Ψ.

This main result proved in Appendix A shows that the approximation error for the

diagonal approximation goes to zero for increasingly finer scales. The approximation derives

from the property that the symbol is slowly varying over the support of a curvelet, an

approximation that becomes more accurate as the scale increases.

Decomposition of the normal operator

By virtue of Theorem 1, the normal operator can be factorized

(
Ψϕµ

)
(x) $

(
CTDΨCϕµ

)
(x) (16)

=
(
AAT ϕµ

)
(x)

with A :=
√

DΨC and AT := CT
√

DΨ. Because the seismic reflectivity can be written as a

superposition of curvelets, we can replace ϕµ in the above equation with the model m. We
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(
Ψϕµ

)
(x) !

(
CT DΨCϕµ

)
(x)

=
(
AAT ϕµ

)
(x)

with A :=
√

DΨC and AT := CT
√

DΨ.

Approximation



• Final form

• Solve

y = Ax0 + ε

Recovery

with x0 = ΓCm and ε = Ae.

P :






minx J(x) subject to ‖y −Ax‖2 ≤ ε

m̃ = (AH)†x̃

with

J(x) =

sparsity︷ ︸︸ ︷
α‖x‖1 +β ‖Λ1/2

(
AH

)†
x‖p

︸ ︷︷ ︸
continuity

.



Image recovery
anisotropic diffusion

[Black et. al ’98, Fehmers et. al. ’03 and Shertzer ‘03]

Define

with p=2

Jc(m) = ‖Λ1/2∇m‖p

The anisotropic-diffusion penalty term (see e.g. 24) is given by

Jc(m) = ‖Λ1/2∇m‖22 (28)

with ∇ the discretized gradient matrix defined as ∇ =
[
DT

1 DT
2

]T . The block-diagonal

matrix Λ is location dependent (see Fig. 10, which plots the gradients) and rotates the

gradient towards the tangents of the reflecting surfaces. This rotation matrix is given by

Λ[r] =
1

‖∇r‖22 + 2υ









+D2r

−D1r





(
+D2r −D1r

)
+ υId





(29)

with Di the discretized derivative in the ith coordinate direction and υ a parameter that

controls the fluctuations for regions where the gradient is small. Following (3), this control

parameter is set proportional to the median of |∇r| with | | the length of each gradient

vector (white arrows in Fig. 10). Similar to the diagonal approximation, a reference vector

derived from the migrated image (cf. Eq. 24) is used to calculate the tangential directions

of the reflecting surfaces.

By combining the two different penalty terms that promote sparsity and continuity, we

finally arrive at our approximate formulation for the seismic-amplitude recovery problem

Pε :






minx J(x) subject to ‖y −Ax‖2 ≤ ε

m̃ =
(
AT

)† x

(30)

in which the composite penalty term J(x) is given by

J(x) = αJs(x) + βJc(x), (31)

with α, β ≥ 0 and α + β = 1. The Js(x) = ‖x‖1 is the %1-norm. The second term in the

penalty term is given by Jc(x) = ‖Λ1/2∇
(
AT

)† x‖22. Because the optimization is carried

out over x and not over the model vector m, this expression includes a pseudo-inverse that

is calculated with a few iterations of the LSQR algorithm (35).

26













Observations

• Curvelet invariance and sparsity leads to an 
improved recovery.

• Singularities are preserved during imaging.

• Aside from curvelet sparsity finding appropriate 
penalty functionals are an open problem.

• Synthetic examples have a singularity structure 
that is too restrictive.



Characterizing 
singularities



Problem

• Delineate the structure (stratigraphy) from 
seismic images.

• Parameterize seismic transitions.

• Estimate the parameters from seismic 
images:

• location

• singularity order

• instantaneous phase



Singularity characterization
through waveforms

• generalization of zero- & first-order 
discontinuities

• measures wigglyness / # oscilations / 
sharpness



Singularity characterization
through waveforms

1st order

• generalization of zero- & first-order 
discontinuities

• measures wigglyness / # oscilations / 
sharpness



Singularity characterization
through waveforms

1st order

0-order

• generalization of zero- & first-order 
discontinuities

• measures wigglyness / # oscilations / 
sharpness



Parameterization
Consider Earth as superposition of algebraic singularities

with

yielding (with         the seismic wavelet )

for symmetric cusp transitions. The Γ is the Gamma function. In this model, the zero- and first-order discontinuities

often used to model seismic reflectors are replaced by α-order fractional splines [Unser and Blu, 2000]. Given these

splines, we are able to represent the “layered” Earth by a superposition of Fractional Splines of varying order. This

superposition leads to what we will call a Multi-fractional Spline representation [Herrmann, 2003a], consisting of a

weighted combination of different Fractional Splines

f(x) !
∑

n∈N

cnχαn
±, ∗.(x− xn) (8)

By setting α = 0, we obtain after differentiation the well-known spike train for the reflection density, which consists

of a series of delta-Dirac distributions

r(x) =
∑

n∈N

cnδ(x− xn). (9)

For varying α, we obtain

r(x) =
∑

n∈N

cn
αχαn−1
±, ∗ (x− xn) (10)

with cn
α constants that depend on the order of the Fractional Splines. By construction, the transition-orders are

allowed to vary, a behavior consistent with that of multi-fractals, where the local regularity given by the same α,

changes discontinuously from position to position. For α < 1, the above derivative of Eq. 8 is taken in the sense of

distributions.

Fig. 2 illustrates how changes in the order α influence the transition sharpness and the amplitude/phase charac-

teristics of the induced reflection response for a Ricker wavelet. The response is given by

d(x) = (r ∗ ϕ) (x), (11)

with ϕ(x) the seismic wavelet and r given by Eq. 10. For non-integer α, the transitions have a distinct phase behavior

as demonstrated in Fig. 3, where both the causal (+) and anti-causal (−) transitions are shown together with their

induced waveforms.

Transitions with 0 < α < 1 continuously interpolate between step- (α = 0) and ramp-discontinuities (α = 1),

while the extension to α < 0 yields transitions that, e.g. for α = −1, can be interpreted as a thin layer which acts as

a differentiator for the low frequencies. For α > 0, the transitions defined in Eq.’s 6 and 7 act as α-order fractional

integrators and display the following scale-invariance (irrespective of their instantaneous phase)

χα(σx) = σαχα(x). (12)

8

3.1 Parameterization of the source-function

To construct the dictionary, assumptions are needed regarding the seismic source wavelet. For our purpose, it

suffices to restrict the source-function’s smoothness and wiggliness. The first condition controls the decay of the

Fourier spectrum for frequencies going to infinity whereas the second condition rules the differentiability of the

Fourier transform at zero frequency. Both conditions combined, determine the details of the frequency content of

the source-function. Mathematically, these conditions correspond to

• imposing
∫
|ϕ̂|(ω)|ω|αdω <∞, which means that the wavelet is α-times continuously differentiable, i.e. ϕ ∈ Cα.

• requiring the wavelet ϕ to be orthogonal with respect to some finite-order polynomial,

∫ +∞

−∞
tqϕ(x)dx = 0 ⇐⇒ %{∂q

ωϕ̂}ω=0 = 0 for 0 ≤ q < M. (5)

The first condition limits the high-frequency content by setting the asymptotic decay rate for high frequencies. The

second condition defines the number of vanishing moments and is related to the wavelet’s wiggliness. This latter

property defines the number of derivatives of a smoothing function that define the wavelet. These derivatives are

essential for the definition of wavelets within wavelet theory and can also be found in independent work by Oldenburg

et al. [1981].

3.2 Parametrized Reflector Model

Motivated by empirical findings that the Earth’s subsurface behaves like a multifractal – it is a medium that consists

of accumulations of varying order singularities – we propose a parametric representation for the subsurface that

consists of a superposition of singularities of the type [Herrmann, 2001b, 2003a, Herrmann et al., 2001b, Herrmann,

1997]:

χα
+(x) =






0 x ≤ 0

xα

Γ(α+1) x > 0

, χα
−(x) =






0 x ≥ 0

xα

Γ(α+1) x < 0

(6)

for causal (+) and anti-causal (−) transitions and

χα
∗ (x) =






|x|α
−2 sin(π/2α)Γ(α+1) α not even

x2n

(−1)1+nπΓ(α+1) α = 2n even

(7)

7
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Approach
[Wakin et al ‘05-’-07, M&H ‘07]

• Use a detection-estimation technique

• multiscale detection => segmentation

• multiscale Newton technique to estimate 
the parameterization

• Overlay the image with the parametrization



CWT

Seismic trace
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Observations

• Stratigraphy is detected

• Parameterization provides information on 
the lithology

• Method suffers from curvature in the imaged 
reflectors

• Extension to higher dimensions necessary

• Model that explains different types of 
transitions



Modeling 
singularities



Problem
Earth subsurface is highly heterogeneous

• sedimentary crust

• upper-mantle transition zone

• core-mantle boundary

Smooth relation volume fractions and rock properties.

Homogenization/equivalent medium (EM) theory 
smoothes the singularities during upscaling

• relatively easy for volumetric properties (density)

• notoriously difficult for transport  properties (velocity)

Q: How to model transitions in effective properties?



Our approach
Include connectivity in models for the effective properties 
of bi-compositional mixtures <=> SWITCH

Start with binary mixtures, e.g.

• sand-shale

• gas-hydrate, opal

• upper-mantle mineralogy

Studied two cases:

• elastic properties upper mantle (H & B ‘04)

• fluid-flow properties synthetic rock (B & H ‘04)



Mixing model

Homogeneous mixing (e.g., solid solution) of two 
phases (LP weak and HP strong) can only produce 
gradually varying elastic properties. 

Heterogeneous (e.g. random macroscopic inclusions) 
mixing, then a singularity in the elastic properties must 
arise at the depth where the strong, HP phase becomes 
connected (observed in binary alloys).



Site-percolation model
Assume volume fractions p and q =1–p, are 
linear functions of depth z.

At a critical depth zc, which corresponds to the 
percolation threshold pc = p(zc), an "infinite", 
connected HP cluster is formed.

for z ≥ zc

–not all HP inclusions belong to the infinite cluster.

–isolated HP inclusions can still be found, embedded in 
the remaining LP material and forming with it a 
mixture (M). 



Site percolation
random 
process

Site-percolation model
LP olivine

HP β-spinel volume fraction

elastic properties
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Singularity model



Percolation model

• Relation composition versus seismic 
contains now a critical point <=> switch

• Composition may vary smoothly but 
elastic moduli and velocity may not

• Use the switch to do a singularity-preserving 
upscaling by spatial smoothing the 
composition
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Switch vs no switch
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Upscaled density 
“smooth”
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EM upscaled reflectivity
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Percolation upscaled 
reflectivity
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Observations

• Percolation model preserves the singularities

• Swich model provided “access” to the fine-
structure (connectivity) from macroscopic 
waves 

• Rigorous mathematical framework for the 
“shapes” of these percolation-induced 
transitions is an open problem



Morphology?



Morphology?



Conclusions

• Multiscale compressible signal representations are 
indispensable for acquiring accurate information on 
the imaged waveforms.

• Imaged waveforms carry information on the fine 
structure of the reflectors.

• Multiscale detection-estimation provides estimates for 
the exponents.

• Percolation model provides an interesting perspective. 
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‣  Detect the events

• 1D Complex CWT on seismic trace

• Find local maxima on CWT plane

‣  Isolate the events

• windowing based on location &

scale of event

‣  Estimate characterization of

 windowed events

Detection-Estimation method
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