
Stratification Learning:

Detecting Mixed Density and Dimensionality

in Point Clouds

Gloria Haro
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Detecting mixed dimensionality and density

Motivation

Goal

Detect different dimensions – instead of a global dimension – in
the same point cloud data.
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Dimension estimation

Previous work

1 Projection methods: global or local PCA, Isomap, MDS, ...

2 Geometric methods: based on fractal dimensions or
nearest neighbor distances.

I Correlation dimension.

I Capacity dimension and packing numbers.

I Geodesic entropic graphs.

Clustering by dimensionality: [Barbara and Chen], [Gionis et al.],
[Souvenir and Pless], [Huang et al.], [Mordohai and Medioni].
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Local dimension estimation

Levina and Bickel’s approach

Basic idea: proportion of points falling into a ball.

k

n
≈ f (x)V (m)Rk(x)m

where:

k: number of points inside ball.

n: total number of points.

f (x): local density at point x .

V (m): volume of the unit sphere in Rm.

Rk(x): Euclidean distance from x to its k-th
nearest neighbor.
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Local dimension estimation

Levina and Bickel’s approach

Number of points falling into a small sphere B(R, x)
(radius R, centered at x).

N(R, x) =
N∑

i=1

1{xi ∈ B(R, x)}

Making the approximations:

Binomial process by a Poisson process
(n →∞, k moderate, and k/n → 0).

f (x) ≈ const. in a small sphere.

then, the rate λ of the counting process N

λ(r , x) = f (x)V (m)mrm−1
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Local dimension estimation

Levina and Bickel’s approach

Log-likelihood of the observed process N(R, x)

L(m(x), θ(x)) =

∫ R

0
log λ(r , x)dN(r , x)−

∫ R

0
λ(r , x)dr

ML estimators satisfy ∂L/∂θ = 0 and ∂L/∂m = 0 (θ = log f (x)).
Fixing the number of neighbors (kNN-graph) we obtain

m̂(x) =

[
1

k − 1

k−1∑
j=1

log
Rk(x)

Rj(x)

]−1
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Detecting mixed dimensionality and density

Our approach - Poisson Mixture Model (PMM)

Consider J mixture components:
vector of parameters ψ = {πj , θj ,mj ; j = 1, . . . , J} where

πj is the mixture coefficient for class j ,

θj is the density parameter (f j = eθj
)

mj is the dimension.

Observable event: y = N(R, x), # points inside ball B(R, x).

Density function:

p(yt |ψ) =
J∑

j=1

πjp(yt |ψj)
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Detecting mixed dimensionality and density

Our approach - Poisson Mixture Model (PMM)

Observation sequence: Y = {yt ; t = 1, . . . ,T}.

The complete-data density: p(Z ,Y |ψ) =
∏T

t=1 p(zt , yt |ψ).

Hidden-state information: Z = {zt ∈ C ; t = 1...T}, where zt = C j means
that the j-th mixture generates yt . If we choose indicator variables

δjt ≡ δ(zt ,C
j) =

{
1 if yt generated by mixtureC j ,

0 else.

Completed-data log-likelihood

log p(Y ,Z |ψ) =
T∑

t=1

J∑
j=1

δjt log
[
p(yt |zt = C j , ψj)πj

]
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Detecting mixed dimensionality and density

Our approach - Algorithm PMM

REQUIRE: The point cloud data, J, k.

1 Initialization of ψj
0 = {πj

0,m
j
0, θ

j
0} for all j = 1, . . . , J.

2 EM iterations (until convergence of ψj
n):

For each class j = 1, . . . , J,

I E-step: compute hj
n(yt).

hj
n(yt) ≡ E [δj

t |yt , ψn] = P(δj
t = 1|yt , ψn).

I M-step: compute ψj
n+1 = {πj

n+1,m
j
n+1, θ

j
n+1}

ψj
n+1 = arg max

ψ
Q(ψ|ψn) + λ(

J∑
r=1

πr − 1)

→ Soft clustering
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Detecting mixed dimensionality and density

Computation of parameters at step n + 1:

πj
n+1 =

1

T

T∑
t=1

hj
n+1(yt)

mj
n+1 =

[∑
t

hj
n+1(yt)m̂(xt)

−1/
∑

t

hj
n+1(yt)

]−1

f j
n+1 = eθj

n+1 =

[∑
t

hj
n+1(yt)f̂ (xt)

−1/
∑

t

hj
n+1(yt)

]−1

where m̂(xt) and f̂ (xt) are the Levina and Bickel’s estimators.

→ Weighted harmonic means
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Detecting mixed dimensionality and density

Asymptotic behaviour

Levina and Bickel’s technique

E[m̂(x)] = m, Var[m̂(x)] =
m2

k − 3

(dividing by k − 2 instead of k − 1)

PMM approach (hard clustering version)

E[m̂j ] = mj +
mj

(k − 1)N j − 1
, Var[m̂j ] = (mj)2O

(
1

N j(k − 1)− 4

)
where N j is the number of points in class j .
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Experiments

Synthetic data - two mixtures

Swiss roll (700 points) and line (700 points) embedded in R3.
Poisson Mixture Model, k = 10 neighbors.

(a) 2 classes (b) 3 classes
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Experiments

Synthetic data - two manifolds

Swiss roll (700 points) and line (700 points) embedded in R3.
k = 10 neighbors.

Estimated parameters

m 1.00 2.01
θ 5.70 2.48

π 0.50 0.50

% points in each class

Line 100 0
SR 0 100

Table: Two Poisson distributions.

Estimated parameters

m 1.00 2.01 2.16
θ 5.70 2.55 1.52

π 0.50 0.48 0.02

% points in each class

Line 100 0 0
SR 0 96.57 3.43

Table: Three Poisson distributions.
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Experiments

Synthetic noisy data - two manifolds

Swiss roll (700 points) and line (700 points) embedded in R3, noise
σ = 0.6.

Poisson Mixture Model, k = 20 neighbors.

(c) 2 classes (d) 3 classes
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Experiments

Synthetic noisy data - two manifolds

Swiss roll (700 points) and line (700 points) embedded in R3, noise
σ = 0.6.

k = 20 neighbors.

Estimated parameters

m 3.02 2.38
θ 7.69 2.73

π 0.49 0.51

% points in each class

Line 98.14 1.86
SR 0.86 99.14

Table: Two Poisson distributions.

Estimated parameters

m 3.01 2.40 2.26
θ 7.70 2.88 1.72

π 0.49 0.48 0.03

% points in each class

Line 97.71 2.29 0
SR 0.71 93.00 6.29

Table: Three Poisson distributions.
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Experiments

Synthetic data

Swiss roll (2500 points),
line 1 (100 points) and
line 2 (50 points),
embedded in R3.
k = 20 neighbors and 4 classes

Estimated parameters
m 1.94 1.04 0.98 1.93
θ 7.12 3.82 2.66 2.57
π 0.9330 0.0498 0.0167 0.0004

% points in each class
Line 0.0 15.69 84.31 0.0

Line (dense) 0.0 99.00 1.00 0.0
Swiss Roll 98.92 1.08 0.0 0.0
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Experiments

Real data - digits

MNIST database of handwritten digits: 784-dimensional image vectors,
test set of 10.000 examples.
Mixture of digits one and two (1135 + 1032 points), k = 10 neighbors.

Some image examples

Estimated parameters
m 8.50 12.82
θ 11.20 6.80
π 0.4901 0.5099
% points in each class

Ones 93.48 6.52
Twos 0 100

PMM 2 classes

Levina and Bickel: Ones: 9.13 Twos: 13.02 Mixture: 11.26
Costa and Hero: Ones: 8 Twos: 11 Mixture: 9
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Experiments

Real data - image patches

k = 18 neighbors and 3 classes.
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Regularized PMM (R-PMM)

Another interpretation of EM

EM is based on the following decomposition of the log-likelihood:

L(Y |ψ,H) =
T∑

t=1

J∑
j=1

hj(yt) log
[
p(yt |ψj)πj

]
−

T∑
t=1

J∑
j=1

hj(yt) log
[
hj(yt)

]
,

where H = {hj(yt) ≤ 1; t = 1, . . . ,T , j = 1, . . . , J}.

First term: Expectation of
∑T

t=1

∑J
j=1 δ

j
t log

[
p(yt |ψj)πj

]
w.r.t. Z .

Second term: Entropy of the membership functions.

(IPAM Workshop) May 22, 2007 20 / 30



Regularized PMM (R-PMM)

Another interpretation of EM

EM can be seen as an alternate optimization algorithm of the previous
log-likelihood.

E-step:

Maximization of L(Y |ψ,H) w.r.t. H

with the additional constraint that
∑J

j=1 hj(yt) = 1, t = 1, . . . ,T .

M-step:

Maximization of L(Y |ψ,H) w.r.t. ψ

with an additional constraint for the mixture probabilities:
∑J

j=1 π
j=1.
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Regularized PMM (R-PMM)

Extended functional

Inspired by the neighborhood EM (NEM) [Ambroise,Govaert].

F (ψ,H) = L(Y |ψ,H) + αS(H)

where

S(H) is a regularization term.

α is a regularization parameter.
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Regularized PMM (R-PMM)

Regularization term

S(H) = −
T∑

t=1

J∑
j=1

hj(yt)D(t, j ,X ,H)

where D is a dissimilarity function.

Provides a generic framework for introducing constraints in the soft
classification, besides the ones already present in the PMM model,
dimensionality and density.
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Regularized PMM (R-PMM)

Dissimilarity functions

We propose two possibilities:

1 Spatial/Temporal regularity

DR :=
∑
s∼t

(1− hj(ys))
2

Different neighborhoods s ∼ t result in different kinds of
regularization.

2 Spatial intra-class compactness

DC :=

∣∣∣∣∣∣xt − X j
c,t

∣∣∣∣∣∣2
2

2
J

∑J
k=1

∣∣∣∣xt − X k
c,t

∣∣∣∣2
2

,

where X j
c,t is the weighted centroid of class j without considering

point xt (the weights are hj(ys)).
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Regularized PMM (R-PMM)

Algorithm R-PMM

REQUIRE: The point cloud data, J, k, and α.

1 Initialization of ψj
0 = {πj

0,m
j
0, θ

j
0} for all j = 1, . . . , J.

2 Iterations (until convergence of ψj
n):

For each class j = 1, . . . , J,

I 1st-step: compute hj
n+1(yt)

hj
n+1(yt) =

p(yt |mj
n, θ

j
n)π

j
ne
−αD(t,j,X ,Hn)∑J

l=1 p(yt |ml
n, θ

l
n)π

l
ne
−αD(t,l,X ,Hn)

,

I 2nd-step: compute ψj
n+1 = {πj

n+1,m
j
n+1, θ

j
n+1}

ψj
n+1 = arg max

ψ
F (ψ,Hn+1) + λ(

J∑
r=1

πr − 1)
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Experiments R-PMM

Synthetic Data

k = 30, J = 2

PMM R-PMM R-PMM
(DR , α = 0.25) (DC , α = 50)

Gaussian noise of σ = 0.66 in 50 of the 300 points of the spiral.

(IPAM Workshop) May 22, 2007 26 / 30



Experiments R-PMM

Real Data - Yale Faces

Subject 5 Subject 6 Subject 7

Estimated parameters
Experiment A: Sub. 5 and 6 B: Sub. 5, 6 and 7

m 4.11 2.78 4.11 3.11
θ 5.16 2.73 4.77 2.60
π 0.89 0.11 0.81 0.19

points in each class
Subject 5 580 5 575 10
Subject 6 0 65 0 65
Subject 7 - - 1 64

R-PMM with DR (α=0.25, k=35, J=2).
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Experiments R-PMM

Real Data - Activities in Video

PMM R-PMM (DR , α = 10)
C1 C2 C3 C4 C1 C2 C3 C4

Wave 106 8 0 0 109 5 0 0
Jump in place 0 127 0 0 0 127 0 0

Walk 0 2 81 5 0 0 88 0
Jump 0 0 67 5 0 0 72 0

R-PMM DR (J = 4, k = 20, 48× 60 dimensional vectors).
Temporal regularization: 6 prev.and 6 post. frames as neighbors in DR .
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Conclusions and future work

Conclusions

Algorithm to estimate and classify different dimensions and densities
in point cloud data.

Natural way to introduce spatial/temporal regularization.

Experiments in synthetic and real data.

Future work/ in progress

Introduce the presence of noise in the model.

Differentiate between manifolds of same dimension.

Analysis of neuroscience data.
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Thank you!
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