Stratification Learning:

Detecting Mixed Density and Dimensionality in Point Clouds

Gloria Haro

Universitat Politècnica de Catalunya (Spain)

Joint work with:

Gregory Randall: Universidad de la República (Uruguay) Guillermo Sapiro: University of Minnesota (USA)

(IPAM Workshop) May 22, 2007 1 / 30

Motivation

Goal

Detect different dimensions – instead of a global dimension – in the same point cloud data.

(IPAM Workshop) May 22, 2007 2 / 30

Outline

- Motivation
- Previous work
- 3 Local dimension estimation
- 4 Detecting mixed dimensionality and density: PMM
- **5** Experiments PMM
- Regularized PMM
- Experiments R-PMM
- 8 Conclusions and future work

3 / 30

Dimension estimation

Previous work

- Projection methods: global or local PCA, Isomap, MDS, ...
- @ Geometric methods: based on fractal dimensions or nearest neighbor distances.
 - Correlation dimension.
 - Capacity dimension and packing numbers.
 - Geodesic entropic graphs.

Clustering by dimensionality: [Barbara and Chen], [Gionis et al.], [Souvenir and Pless], [Huang et al.], [Mordohai and Medioni].

(IPAM Workshop) May 22, 2007 4 / 30

Local dimension estimation

Levina and Bickel's approach

Basic idea: proportion of points falling into a ball.

$$\frac{k}{n} \approx f(x)V(m)R_k(x)^m$$

where:

- k: number of points inside ball.
- n: total number of points.
- f(x): local density at point x.
- V(m): volume of the unit sphere in \mathbb{R}^m .
- $R_k(x)$: Euclidean distance from x to its k-th nearest neighbor.

5 / 30

Local dimension estimation

Levina and Bickel's approach

Number of points falling into a small sphere B(R,x)(radius R, centered at x).

$$N(R,x) = \sum_{i=1}^{N} \mathbf{1}\{x_i \in B(R,x)\}$$

Making the **approximations**:

- Binomial process by a Poisson process $(n \to \infty, k \text{ moderate, and } k/n \to 0).$
- $f(x) \approx const.$ in a small sphere.

then, the rate λ of the counting process N

$$\lambda(r,x) = f(x)V(m)mr^{m-1}$$

(IPAM Workshop)

Local dimension estimation

Levina and Bickel's approach

Log-likelihood of the observed process N(R,x)

$$L(m(x), \theta(x)) = \int_0^R \log \lambda(r, x) dN(r, x) - \int_0^R \lambda(r, x) dr$$

ML estimators satisfy $\partial L/\partial \theta=0$ and $\partial L/\partial m=0$ ($\theta=\log f(x)$). Fixing the number of neighbors (kNN-graph) we obtain

$$\hat{m}(x) = \left[\frac{1}{k-1} \sum_{j=1}^{k-1} \log \frac{R_k(x)}{R_j(x)}\right]^{-1}$$

7 / 30

Our approach - Poisson Mixture Model (PMM)

Consider J mixture components:

vector of parameters $\psi = \{\pi^j, \theta^j, m^j; j = 1, \dots, J\}$ where

- π^j is the mixture coefficient for class j,
- ullet θ^j is the density parameter $(f^j=e^{\theta^j})$
- m^j is the dimension.

Observable event: y = N(R, x), # points inside ball B(R, x).

Density function:

$$p(y_t|\psi) = \sum_{j=1}^J \pi^j p(y_t|\psi^j)$$

(IPAM Workshop) May 22, 2007

8 / 30

Our approach - Poisson Mixture Model (PMM)

Observation sequence: $Y = \{y_t; t = 1, ..., T\}$.

9 / 30

Our approach - Poisson Mixture Model (PMM)

Observation sequence: $Y = \{y_t; t = 1, ..., T\}$.

The complete-data density: $p(Z, Y|\psi) = \prod_{t=1}^{T} p(z_t, y_t|\psi)$.

9 / 30

Our approach - Poisson Mixture Model (PMM)

Observation sequence: $Y = \{y_t; t = 1, ..., T\}$.

The complete-data density: $p(Z, Y|\psi) = \prod_{t=1}^{T} p(z_t, y_t|\psi)$.

Hidden-state information: $Z = \{z_t \in C; t = 1...T\}$, where $z_t = C^j$ means that the *j*-th mixture generates y_t . If we choose indicator variables

$$\delta_t^j \equiv \delta(z_t, C^j) = \begin{cases} 1 & \text{if } y_t \text{ generated by mixture } C^j, \\ 0 & \text{else.} \end{cases}$$

◆ロト ◆母 ト ◆ 恵 ト ◆ 恵 ・ りゅぐ

9 / 30

Our approach - Poisson Mixture Model (PMM)

Observation sequence: $Y = \{y_t; t = 1, ..., T\}$.

The complete-data density: $p(Z, Y|\psi) = \prod_{t=1}^{T} p(z_t, y_t|\psi)$.

Hidden-state information: $Z = \{z_t \in C; t = 1...T\}$, where $z_t = C^j$ means that the *j*-th mixture generates y_t . If we choose indicator variables

$$\delta_t^j \equiv \delta(z_t, C^j) = \begin{cases} 1 & \text{if } y_t \text{ generated by mixture } C^j, \\ 0 & \text{else.} \end{cases}$$

Completed-data log-likelihood

$$\log p(Y, Z|\psi) = \sum_{t=1}^{T} \sum_{i=1}^{J} \delta_t^j \log \left[p(y_t|z_t = C^j, \psi^j) \pi^j \right]$$

(IPAM Workshop) May 22, 2007 9 / 30

Our approach - Algorithm PMM

REQUIRE: The point cloud data, J, k.

10 / 30

Our approach - Algorithm PMM

REQUIRE: The point cloud data, J, k.

1 Initialization of $\psi_0^j = \{\pi_0^j, m_0^j, \theta_0^j\}$ for all $j = 1, \dots, J$.

10 / 30

Our approach - Algorithm PMM

REQUIRE: The point cloud data, J, k.

- **1** Initialization of $\psi_0^j = \{\pi_0^j, m_0^j, \theta_0^j\}$ for all $j = 1, \dots, J$.
- **2 EM iterations** (until convergence of ψ_n^j): For each class j = 1, ..., J,

10 / 30

Our approach - Algorithm PMM

REQUIRE: The point cloud data, J, k.

- **1** Initialization of $\psi_0^j = \{\pi_0^j, m_0^j, \theta_0^j\}$ for all $j = 1, \dots, J$.
- **2 EM iterations** (until convergence of ψ_n^j): For each class $j=1,\ldots,J$,
 - **E-step**: compute $h_n^j(y_t)$.

$$h_n^j(y_t) \equiv E[\delta_t^j|y_t,\psi_n] = P(\delta_t^j = 1|y_t,\psi_n).$$

4□ > 4□ > 4 = > 4 = > = 990

10 / 30

Our approach - Algorithm PMM

REQUIRE: The point cloud data, J, k.

- **1 Initialization** of $\psi_0^j = \{\pi_0^j, m_0^j, \theta_0^j\}$ for all $j = 1, \dots, J$.
- **EM iterations** (until convergence of ψ_n^J): For each class $i = 1, \ldots, J$,
 - **E-step**: compute $h_p^j(y_t)$.

$$h_n^j(y_t) \equiv E[\delta_t^j|y_t,\psi_n] = P(\delta_t^j = 1|y_t,\psi_n).$$

• **M-step**: compute $\psi_{n+1}^j = \{\pi_{n+1}^j, m_{n+1}^j, \theta_{n+1}^j\}$

$$\psi_{n+1}^j = rg \max_{\psi} Q(\psi|\psi_n) + \lambda(\sum_{r=1}^J \pi^r - 1)$$

(IPAM Workshop) May 22, 2007 10 / 30

Our approach - Algorithm PMM

REQUIRE: The point cloud data, J, k.

- **1** Initialization of $\psi_0^j = \{\pi_0^j, m_0^j, \theta_0^j\}$ for all $j = 1, \dots, J$.
- **2 EM iterations** (until convergence of ψ_n^j): For each class $j=1,\ldots,J$,
 - **E-step**: compute $h_n^j(y_t)$.

$$h_n^j(y_t) \equiv E[\delta_t^j|y_t,\psi_n] = P(\delta_t^j = 1|y_t,\psi_n).$$

▶ **M-step**: compute $\psi_{n+1}^j = \{\pi_{n+1}^j, m_{n+1}^j, \theta_{n+1}^j\}$

$$\psi_{n+1}^{j} = \arg\max_{\psi} Q(\psi|\psi_n) + \lambda(\sum_{r=1}^{J} \pi^r - 1)$$

→ **Soft clustering**

◆ロト ◆母 ト ◆ 恵 ト ◆ 恵 ・ り へ ○

Computation of parameters at step n + 1:

$$\pi_{n+1}^{j} = \frac{1}{T} \sum_{t=1}^{T} h_{n+1}^{j}(y_{t})$$

$$m_{n+1}^{j} = \left[\sum_{t} h_{n+1}^{j}(y_{t}) \hat{m}(x_{t})^{-1} / \sum_{t} h_{n+1}^{j}(y_{t}) \right]^{-1}$$

$$f_{n+1}^{j} = e^{\theta_{n+1}^{j}} = \left[\sum_{t} h_{n+1}^{j}(y_{t}) \hat{f}(x_{t})^{-1} / \sum_{t} h_{n+1}^{j}(y_{t}) \right]^{-1}$$

where $\hat{m}(x_t)$ and $\hat{f}(x_t)$ are the Levina and Bickel's estimators.

→ Weighted harmonic means

11 / 30

Asymptotic behaviour

Levina and Bickel's technique

$$E[\hat{m}(x)] = m,$$
 $Var[\hat{m}(x)] = \frac{m^2}{k-3}$

(dividing by k-2 instead of k-1)

PMM approach (hard clustering version)

$$\mathsf{E}[\hat{m}^j] = m^j + rac{m^j}{(k-1)N^j - 1}, \qquad \quad \mathsf{Var}[\hat{m}^j] = (m^j)^2 O\left(rac{1}{N^j(k-1) - 4}
ight)$$

where N^{j} is the number of points in class j.

- 4 ロ ト 4 昼 ト 4 佳 ト - 佳 - り 9 (P

(IPAM Workshop) May 22, 2007 12 / 30

Synthetic data - two mixtures

Swiss roll (700 points) and line (700 points) embedded in \mathbb{R}^3 . Poisson Mixture Model, k=10 neighbors.

(IPAM Workshop) May 22, 2007 13 / 30

Synthetic data - two manifolds

Swiss roll (700 points) and line (700 points) embedded in \mathbb{R}^3 . k=10 neighbors.

Estimated parameters						
m	1.00 2.01					
θ	5.70	2.48				
π	0.50 0.50					
% points in each class						
Line	100	0				
SR	0 100					

Table: Two Poisson distributions.

Estimated parameters								
m	n 1.00 2.01 2.16							
θ	5.70	2.55	1.52					
π	0.50	0.48	0.02					
% points in each class								
Line	100	0	0					
SR	0	96.57	3.43					

Table: Three Poisson distributions.

Synthetic noisy data - two manifolds

Swiss roll (700 points) and line (700 points) embedded in \mathbb{R}^3 , noise $\sigma = 0.6$.

Poisson Mixture Model, k = 20 neighbors.

15 / 30

Synthetic noisy data - two manifolds

Swiss roll (700 points) and line (700 points) embedded in \mathbb{R}^3 , noise $\sigma=0.6$.

k = 20 neighbors.

Estimated parameters					
m	3.02 2.38				
θ	7.69	2.73			
π	0.49	0.51			
% points in each class					
Line	98.14	1.86			
SR	0.86	99.14			

Table: Two Poisson distributions.

Estimated parameters								
m	m 3.01 2.40 2.26							
θ	7.70	2.88	1.72					
π	0.49	0.48	0.03					
% points in each class								
Line	97.71	2.29	0					
SR	0.71	93.00	6.29					

Table: Three Poisson distributions.

Synthetic data

Swiss roll (2500 points), line 1 (100 points) and line 2 (50 points), embedded in \mathbb{R}^3 . k = 20 neighbors and 4 classes

Estimated parameters							
m	1.94	1.04	0.98	1.93			
θ	7.12	3.82	2.66	2.57			
π	0.9330	0.0498	0.0167	0.0004			
% points in each class							
Line	0.0	15.69	84.31	0.0			
Line (dense)	0.0	99.00	1.00	0.0			
Swiss Roll	98.92	1.08	0.0	0.0			

(IPAM Workshop) May 22, 2007 17 / 30

Real data - digits

MNIST database of handwritten digits: 784-dimensional image vectors, test set of 10.000 examples.

Mixture of digits one and two (1135 + 1032 points), k = 10 neighbors.

Estimated parameters					
m	m 8.50				
θ	11.20	6.80			
π	0.4901	0.5099			
% points in each class					
Ones	93.48	6.52			
Twos	0	100			

Some image examples

PMM 2 classes

Levina and Bickel: Ones: 9.13 Twos: 13.02 Mixture: 11.26 **Costa and Hero:** Ones: 8 Twos: 11 Mixture: 9 Twos: 11 Mixture: 11 Mixture:

(IPAM Workshop) May 22, 2007 18 / 30

Real data - image patches

k = 18 neighbors and 3 classes.

Another interpretation of EM

EM is based on the following decomposition of the log-likelihood:

$$L(Y|\psi, H) = \sum_{t=1}^{T} \sum_{j=1}^{J} h^{j}(y_{t}) \log \left[p(y_{t}|\psi^{j}) \pi^{j} \right]$$
$$- \sum_{t=1}^{T} \sum_{j=1}^{J} h^{j}(y_{t}) \log \left[h^{j}(y_{t}) \right],$$

where
$$H = \{h^j(y_t) \le 1; t = 1, ..., T, j = 1, ..., J\}.$$

First term: Expectation of $\sum_{t=1}^{T} \sum_{j=1}^{J} \delta_t^j \log \left[p(y_t | \psi^j) \pi^j \right]$ w.r.t. Z.

Second term: Entropy of the membership functions.

20 / 30

Another interpretation of EM

EM can be seen as an alternate optimization algorithm of the previous log-likelihood.

E-step:

Maximization of $L(Y|\psi, H)$ w.r.t. H

with the additional constraint that $\sum_{i=1}^{J} h^{j}(y_{t}) = 1$, t = 1, ..., T.

M-step:

Maximization of $L(Y|\psi, H)$ w.r.t. ψ

with an additional constraint for the mixture probabilities: $\sum_{i=1}^{J} \pi^{i} = 1$.

(IPAM Workshop) May 22, 2007 21 / 30

Extended functional

Inspired by the neighborhood EM (NEM) [Ambroise, Govaert].

$$F(\psi, H) = L(Y|\psi, H) + \alpha S(H)$$

where

- S(H) is a regularization term.
- ullet α is a regularization parameter.

<ロ > < 回 > < 回 > < 直 > くき > しき > しき の < (で)

22 / 30

Regularization term

$$S(H) = -\sum_{t=1}^{T} \sum_{j=1}^{J} h^{j}(y_{t}) \mathcal{D}(t, j, X, H)$$

where \mathcal{D} is a dissimilarity function.

Provides a generic framework for introducing constraints in the soft classification, besides the ones already present in the PMM model, dimensionality and density.

23 / 30

Dissimilarity functions

We propose two possibilities:

Spatial/Temporal regularity

$$\mathcal{D}_R := \sum_{s \sim t} (1 - h^j(y_s))^2$$

Different neighborhoods $s \sim t$ result in different kinds of regularization.

Spatial intra-class compactness

$$\mathcal{D}_{C} := \frac{\left\| \left| x_{t} - X_{c,t}^{j} \right| \right|_{2}^{2}}{\frac{2}{J} \sum_{k=1}^{J} \left| \left| x_{t} - X_{c,t}^{k} \right| \right|_{2}^{2}},$$

where $X_{c,t}^{j}$ is the weighted centroid of class j without considering point x_t (the weights are $h^{j}(y_s)$).

(IPAM Workshop) May 22, 2007 24 / 30

Algorithm R-PMM

REQUIRE: The point cloud data, J, k, and α .

- **1** Initialization of $\psi_0^j = \{\pi_0^j, m_0^j, \theta_0^j\}$ for all $j = 1, \dots, J$.
- **1 Iterations** (until convergence of ψ_n^j): For each class j = 1, ..., J,
 - ▶ **1st-step**: compute $h_{n+1}^{j}(y_t)$

$$h_{n+1}^{j}(y_{t}) = \frac{p(y_{t}|m_{n}^{j}, \theta_{n}^{j})\pi_{n}^{j}e^{-\alpha\mathcal{D}(t,j,X,H_{n})}}{\sum_{l=1}^{J}p(y_{t}|m_{n}^{l}, \theta_{n}^{l})\pi_{n}^{l}e^{-\alpha\mathcal{D}(t,l,X,H_{n})}},$$

▶ 2nd-step: compute $\psi_{n+1}^j = \{\pi_{n+1}^j, m_{n+1}^j, \theta_{n+1}^j\}$

$$\psi_{n+1}^j = rg \max_{\psi} F(\psi, H_{n+1}) + \lambda (\sum_{r=1}^J \pi^r - 1)$$

25 / 30

Experiments R-PMM

Synthetic Data

$$k = 30, J = 2$$

PMM

R-PMM (\mathcal{D}_R , $\alpha = 0.25$)

R-PMM (\mathcal{D}_{C} , $\alpha = 50$)

26 / 30

Gaussian noise of $\sigma = 0.66$ in 50 of the 300 points of the spiral.

Experiments R-PMM

Real Data - Yale Faces

Subject 5

Subject 6

Subject 7

	Estimated parameters				
Experiment	A: Su	b. 5 and 6	B: Sub. 5, 6 and 7		
m	4.11	2.78	4.11	3.11	
θ	5.16	2.73	4.77	2.60	
π	0.89	0.11	0.81	0.19	
	points in each class				
Subject 5	580	5	575	10	
Subject 6	0	65	0	65	
Subject 7	-	-	1	64	

R-PMM with \mathcal{D}_R (α =0.25, k=35, J=2).

(IPAM Workshop) May 22, 2007 27 / 30

Experiments R-PMM

Real Data - Activities in Video

	PMM			R-PMM (\mathcal{D}_R , $lpha=10$)				
	C1	C2	C3	C4	C1	C2	C3	C4
Wave	106	8	0	0	109	5	0	0
Jump in place	0	127	0	0	0	127	0	0
Walk	0	2	81	5	0	0	88	0
Jump	0	0	67	5	0	0	72	0

R-PMM \mathcal{D}_R (J=4, k=20, 48×60 dimensional vectors).

Temporal regularization: 6 prev. and 6 post. frames as neighbors in \mathcal{D}_R .

(IPAM Workshop) May 22, 2007 28 / 30

Conclusions and future work

Conclusions

- Algorithm to estimate and classify different dimensions and densities in point cloud data.
- Natural way to introduce spatial/temporal regularization.
- Experiments in synthetic and real data.

Future work/ in progress

- Introduce the presence of noise in the model.
- Differentiate between manifolds of same dimension.
- Analysis of neuroscience data.

(IPAM Workshop) May 22, 2007 29 / 30

Thank you!

30 / 30