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Detecting mixed dimensionality and density

Motivation

Goal

Detect different dimensions — instead of a global dimension — in
the same point cloud data.
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Dimension estimation

Previous work

© Projection methods: global or local PCA, Isomap, MDS, ...

@ Geometric methods: based on fractal dimensions or
nearest neighbor distances.
» Correlation dimension.
» Capacity dimension and packing numbers.

» Geodesic entropic graphs.

Clustering by dimensionality: [Barbara and Chen], [Gionis et al.],
[Souvenir and Pless], [Huang et al.], [Mordohai and Medioni].
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Local dimension estimation

Levina and Bickel’s approach

Basic idea: proportion of points falling into a ball.

% ~ FO)V(m)Re(x)™

where:
@ k: number of points inside ball. .

n: total number of points. ) )
f(x): local density at point x. o
V(m): volume of the unit sphere in R™. . .k,

Rk(x): Euclidean distance from x to its k-th
nearest neighbor. °
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Local dimension estimation

Levina and Bickel’s approach

Number of points falling into a small sphere B(R, x)
(radius R, centered at x).

N
N(R,x) = 1{xi € B(R,x)}
i=1

Making the approximations:

@ Binomial process by a Poisson process
(n — oo, k moderate, and k/n — 0).

e f(x) = const. in a small sphere.

then, the rate A of the counting process N
Ar,x) = f(x)V(m)ymr™!
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Local dimension estimation

Levina and Bickel’s approach

Log-likelihood of the observed process N(R, x)

R R
L(m(x),a(x))_/o Iog/\(r,x)dN(r,x)—/O A(r, x)dr

ML estimators satisfy dL/00 = 0 and OL/Om = 0 (6 = log f(x)).
Fixing the number of neighbors (kNN-graph) we obtain

12 R
m(x) = [m;bg Rj(x)]
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Detecting mixed dimensionality and density

Our approach - Poisson Mixture Model (PMM)

Consider J mixture components:

vector of parameters ¢ = {7/, 0/, m;j =1,...,J} where
e 7/ is the mixture coefficient for class
o & is the density parameter (f/ = &)

e n¥ is the dimension.

Observable event: y = N(R, x), # points inside ball B(R, x).

Density function:

pyelv) = ZWJP(}’L‘\W

j=1
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Detecting mixed dimensionality and density

Our approach - Poisson Mixture Model (PMM)

Observation sequence: Y ={y;;t=1,..., T}.
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Detecting mixed dimensionality and density

Our approach - Poisson Mixture Model (PMM)
Observation sequence: Y ={y;;t=1,..., T}.
The complete-data density: p(Z, Y|v) = [1,_1 p(zt, y2|¢).
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Detecting mixed dimensionality and density

Our approach - Poisson Mixture Model (PMM)
Observation sequence: Y ={y;;t=1,..., T}.
The complete-data density: p(Z, Y|v) = [1,_1 p(zt, y2|¢).

Hidden-state information: Z = {z; € C;t = 1...T}, where z; = C/ means
that the j-th mixture generates y;. If we choose indicator variables

8 = 8(z, C) = 1 if y; generated by mixtureC/,
0 else.
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Detecting mixed dimensionality and density

Our approach - Poisson Mixture Model (PMM)
Observation sequence: Y ={y;;t=1,..., T}.
The complete-data density: p(Z, Y|¢) = H;l p(zt, ye|©).

Hidden-state information: Z = {z; € C;t = 1...T}, where z; = C/ means
that the j-th mixture generates y;. If we choose indicator variables

1 if y; generated by mixtureC/,
0 else.

& =6(z, ) = {

Completed-data Iog-likelihood

log p(Y, Z|) = ZZ5J log [p(yelze = ¢, ¢/)r]

t=1 j=1
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Detecting mixed dimensionality and density

Our approach - Algorithm PMM
REQUIRE: The point cloud data, J, k.

(IPAM Workshop) May 22, 2007 10 / 30



Detecting mixed dimensionality and density

Our approach - Algorithm PMM
REQUIRE: The point cloud data, J, k.
@ Initialization of ¢, = {r), ml 6)} forall j=1,...,J.
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Detecting mixed dimensionality and density

Our approach - Algorithm PMM
REQUIRE: The point cloud data, J, k.
@ Initialization of ¢, = {r), ml 6)} forall j=1,...,J.

@ EM iterations (until convergence of @ZJ{,)
For each class j=1,...,J,
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Detecting mixed dimensionality and density

Our approach - Algorithm PMM
REQUIRE: The point cloud data, J, k.
@ Initialization of ¢, = {r), ml 6)} forall j=1,...,J.

@ EM iterations (until convergence of @ZJ{,)
For each class j=1,...,J,

» E-step: compute K (y:).
W(ve) = E[51lye, ] = P(5% = 1]ys, ¥n).
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Detecting mixed dimensionality and density

Our approach - Algorithm PMM
REQUIRE: The point cloud data, J, k.
@ Initialization of ¢, = {r), ml 6)} forall j=1,...,J.

@ EM iterations (until convergence of @ZJ{,)
For each class j=1,...,J,
» E-step: compute K (y:).

W(ye) = E[8ilye, ] = P(51 = 1lye, vn)-
> M-step: compute ¢,y = {1, .01}

J

Uhin = argmax Q) + A7 — 1)

r=1
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Detecting mixed dimensionality and density

Our approach - Algorithm PMM
REQUIRE: The point cloud data, J, k.
@ Initialization of ¢, = {r), ml 6)} forall j=1,...,J.
@ EM iterations (until convergence of @ZJ{,)
For each class j=1,...,J,
» E-step: compute K (y:).
’7{1(%) = E[5{|Yt7¢n] = P(J{ = 1lyz, tn).

> M-step: compute v,y = {m, 1, m,1,0,,,}

J

Uhin = argmax Q) + A7 — 1)

r=1

— Soft clustering
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Detecting mixed dimensionality and density

Computation of parameters at step n + 1:

-
77‘{7+1 = Z 1(ve)

Z 1(ye)m(xe) /Z n+1 )/t)]
-1
f,{_H — el = [Z yt)f(xt /Z 1 ]

t

mj =

n+1

1

where fi1(x;) and f(x;) are the Levina and Bickel’s estimators.

— Weighted harmonic means
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Detecting mixed dimensionality and density

Asymptotic behaviour

Levina and Bickel’s technique

E[m(x)] = m, Var[i(x)] =

(dividing by k — 2 instead of k — 1)

PMM approach (hard clustering version)

. ) m . . 1
E[7]=m + ——F—+—— Var[a¥] = (m)?0 | ——~——
W)=+ e Vel = (0 (gt

where N/ is the number of points in class j.
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Experiments

Synthetic data - two mixtures

Swiss roll (700 points) and line (700 points) embedded in R3.
Poisson Mixture Model, k = 10 neighbors.

-5
a0

(a) 2 classes (b) 3 classes
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Experiments

Swiss roll (700 points) and line (700 points) embedded in R3.
k = 10 neighbors.

Synthetic data - two manifolds

Estimated parameters

Estimated parameters
m 1.00 2.01
0 5.70 2.48
s 0.50 0.50
% points in each class
Line || 100 0
SR 0 100

Table: Two Poisson distributions.

m 1.00 | 2.01 | 2.16
0 570 | 255 | 1.52
T 0.50 | 0.48 | 0.02
% points in each class
Line || 100 0 0
SR 0 96.57 | 3.43

(IPAM Workshop)
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Experiments

Synthetic noisy data - two manifolds

Swiss roll (700 points) and line (700 points) embedded in R3, noise

o =0.6.

Poisson Mixture Model, k = 20 neighbors.

(c) 2 classes
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Experiments

Synthetic noisy data - two manifolds

Swiss roll (700 points) and line (700 points) embedded in R3, noise

o =0.6.

k = 20 neighbors.

Estimated parameters

m 3.02 2.38

0 7.69 2.73
s 0.49 0.51
% points in each class
Line || 98.14 1.86
SR 0.86 99.14

Table: Two Poisson distributions.

Estimated parameters
m 3.01 | 240 | 2.26
0 7.70 | 2.88 | 1.72
049 | 048 |0.03

% points in each class

Line || 97.71 | 2.29 0
SR 0.71 | 93.00 | 6.29

Table: Three Poisson distributions.

(IPAM Workshop)
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Experiments

Synthetic data

Swiss roll (2500 points),

line 1 (100 points) and

line 2 (50 points),

embedded in R3.

k = 20 neighbors and 4 classes

0 10 12

Estimated parameters

m 1.94 1.04 0.98 1.93
0 7.12 3.82 2.66 2.57
s 0.9330 | 0.0498 | 0.0167 | 0.0004

% points in each class

Line 0.0 15.69 84.31 0.0
Line (dense) 0.0 99.00 1.00 0.0
Swiss Roll 98.92 1.08 0.0 0.0
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Experiments

Real data - digits

MNIST database of handwritten digits: 784-dimensional image vectors,

test set of 10.000 examples.

Mixture of digits one and two (1135 + 1032 points), k = 10 neighbors.

Estimated parameters

0 11.20 6.80
s 0.4901 | 0.5099
% points in each class
Ones 93.48 6.52
Twos 0 100

Some image examples

Levina and Bickel: Ones: 9.13 Twos: 13.02
Costa and Hero: Ones: 8 Twos: 11

(IPAM Workshop)

PMM 2 classes

Mixture: 11.26
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Experiments

Real data - image patches

k = 18 neighbors and 3 classes.
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Regularized PMM (R-PMM)

Another interpretation of EM

EM is based on the following decomposition of the log-likelihood:

T J
L(Y[ih, H) = "> W(y:) log [plye|v)n]

t=1 j=1

T J
ZZH Yt |0g )]a

t=1 j=1

where H={HW(y;) <1;t=1,...,T,j=1,...,J}.

First term: Expectation of 31/, Z]":l &} log [p(ye|¢/)md] wert. Z.
Second term: Entropy of the membership functions.
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Regularized PMM (R-PMM)

Another interpretation of EM

EM can be seen as an alternate optimization algorithm of the previous
log-likelihood.

E-step:
Maximization of L(Y|y, H) w.r.t. H
with the additional constraint that 37, #(y:) =1, t=1,...,T.

M-step:
Maximization of L( Y|y, H) w.r.t. ¢
J

with an additional constraint for the mixture probabilities: ijl m=1.

4
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Regularized PMM (R-PMM)

Extended functional

Inspired by the neighborhood EM (NEM) [Ambroise, Govaert].

F(¢, H) = L(Y|, H) + a5(H)

where

e S(H) is a regularization term.

@ « is a regularization parameter.
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Regularized PMM (R-PMM)

Regularization term

T J
S(Hy==)_> W()D(t.)j, X, H)

t=1 j=1
where D is a dissimilarity function.
Provides a generic framework for introducing constraints in the soft

classification, besides the ones already present in the PMM model,
dimensionality and density.
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Regularized PMM (R-PMM)

Dissimilarity functions

We propose two possibilities:
© Spatial/ Temporal regularity
Dgri=Y (1-H(y))
s~t
Different neighborhoods s ~ t result in different kinds of

regularization.
@ Spatial intra-class compactness

X
Pt be— X

where Xé'yt is the weighted centroid of class j without considering
point x; (the weights are #(ys)).
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Regularized PMM (R-PMM)

Algorithm R-PMM
REQUIRE: The point cloud data, J, k, and «.
@ Initialization of ¢, = {r), m) 6)} forall j=1,...,J.

@ Iterations (until convergence of v4,):
Foreachclass j=1,...,J,

> lst-step: compute h) . (y:)

ply:|m), 04)mwhe P2

D1y PUyelm, O)whe DX

> 2nd-step: compute 1), ; = {m), 1. 1,001}

h{1+1()/t) =

J

Uhea = argmax F(y), Hpya) + AQ_ 7" — 1)
r=1
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Experiments R-PMM

Synthetic Data

k=30,J=2

S ST T

A7 b AT, P —
. s B

\ P \‘ : i 3 S
M’ N M
PMM R-PMM R-PMM
(Dgr, a = 0.25) (D¢, a = 50)

Gaussian noise of ¢ = 0.66 in 50 of the 300 points of the spiral.
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Experiments R-PMM

Real Data - Yale Faces

- v
Subject 5 Subject 6 Subject 7
Estimated parameters
Experiment || A: Sub. 5and 6 || B: Sub. 5, 6 and 7
m 411 2.78 411 3.11
0 5.16 2.73 4.77 2.60
™ 0.89 0.11 0.81 0.19
points in each class
Subject 5 || 580 5 575 10
Subject 6 0 65 0 65
Subject 7 - - 1 64

R-PMM with Dg (a=0.25, k=35, J=2).
R



Experiments R-PMM

Real Data - Activities in Video

PMM R-PMM (Dg, a = 10)
Cl | C2|C3|C4] CL | C2|C3| C4
Wave 106 | 8 0| 0] 109]| 5 0 0
Jump in place 0 | 127 | 0 0 0 |127 | O 0
Walk 0 2 |81 5 0 0 | 88 0
Jump 0 0 67 | 5 0 0 72 0

R-PMM Dg (J =4, k = 20, 48 x 60 dimensional vectors).

Temporal regularization: 6 prev.and 6 post. frames as neighbors in Dg.
. o

Qe
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Conclusions and future work

Conclusions

Algorithm to estimate and classify different dimensions and densities
in point cloud data.

Natural way to introduce spatial /temporal regularization.

Experiments in synthetic and real data.

Future work/ in progress

Introduce the presence of noise in the model.

Differentiate between manifolds of same dimension.

Analysis of neuroscience data.
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Thank you!

o ) - = = vae
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