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Abstracts
A recently developed weighted spherical harmonic (SPHARM) 
representation will be presented. The weighted-SPHARM is a partial 
differential equation (PDE) based shape representation technique that 
incorporates surface parameterization, surface data smoothing, and 
surface normalization in a unified framework. The weighted-SPHARM 
represents surface data as a weighted linear combination of spherical 
harmonics in such a way that the representation reduces the Gibbs 
phenomenon associated with Fourier series. Using the inherent angular 
symmetry of the spherical harmonics, surface shape can be decomposed 
into symmetric and asymmetric components. The resulting shape 
asymmetry index is given as the ratio of positive and negative order 
harmonics. As an illustration, the methodology is applied in characterizing 
and detecting abnormal cortical asymmetry pattern of autistic brain.
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Data: 3T MRI 
16 high functioning autistic subjects (15.93±4.71 years) 
12 normal controls (17.08±2.78 years)
Right-handed males of compatible age range.

Aim: 
Quantify abnormal cortical asymmetry pattern in the autistic 
subjects



Motivation

Problem: Quantify cortical shape 
asymmetry across hemispheres

Challenge 1: Establishing hemispheric 
surface correspondence

Challenge 2: Establishing intersubject
surface correspondence



Multiscale representation of anatomical 
surface and function defined on surface

M ∈ Rd

〈g1, g2〉 =
∫

M
g1(p)g2(p) dµ(p)

Hilbert space              withL2(M)

Anatomical boundary 

For a given self-adjoint operator L(u1(p), · · · , ud(p))

measurement + coordinates as the initial value

∂tg + Lg = 0, g(p, t = 0) = f(p)
time = scale, bandwidth of smoothing

Measurement                     f(p) at position



Weighted Fourier series (WFS) representation

Lψj = λjψj

g(p, t) =
∞∑

j=0

e−λjt〈f,ψj〉ψj(p)

=
∫

M
Kt(p, q)f(q) dµ(q)

L
=Heat kernelKt

=Laplace-Beltrami operator

PDE Basis expansion

Kernel 
smoothing

   Heat diffusion via FEM (NeuroImage, 2003)

= Heat kernel smoothing (NeuroImage, 2005)

= WFS representation (IEEE Trans. on Medical Imaging, 2007)

Implicit 
nonparametric 

approaches

Explicit 
parametric 
approach



Heat kernel on unit sphere

Shape FWHM vs. bandwidth



Function estimation on manifold

Hl = {
l∑

j=0

βjψj(p) : βj ∈ R}Finite subspace:

l∑

j=0

e−λjt〈f,ψj〉ψj(p) = arg min
h∈Hl

∫

M
Kt(p, q)|f(q) − h(p)|2 dµ(q)

If the kernel is a probability distribution,

WFS is the 0th order local polynomial regression!
closer measurements are given more weights



Surface-to-surface registration
(WFS-correspondence)

The performance of registration will be determined 
by the choice of a differential operator.

Consider two WFS surfaces           .vi1, vi2

Find the displacement      that minimizes the 
discrepancy between two surfaces:          

di

vi2 − vi1 = arg min
di∈Hl

∫

M
[vi1 + di(vi1)− vi2]2 dµ(p).

Surface registration is simply done by subtracting 
two WFS representations.



Trajectory of surface registration
(ex. Laplace-Beltrami operator: smoothing operator)

single 
subject

average 
surface



Is WFS-correspondence
intuitively correct?

Intuition
For two algebraically defined surfaces, the optimal 
deformation should be obtained algebraically by hand 
without a numerical optimization. 

What is going on? 
Displacement field is estimated by matching the surface 
features of the same frequency while minimizing the 
goodness of fit.



Summary
WFS = surface representation 
           + surface registration 
           + surface smoothing (fairing)
           + surface data smoothing 

Is it possible to come up with a more unified basis 
function method that contains surface segmentation ?



Our first attempt

Thin-plate spline 
(TPS) segmentation

Directly segment and 
represent the anatomical 
boundary as the linear 
combination of thin-plate 
basis functions
(joint work with Xie and Wahba)



Weighted spherical harmonic 
(SPHRM) representation 

When we choose the Laplace-Beltrami operator



Spherical mapping

Deformable surface algorithm (McDonalds et al., 2001) is 
used to segment surfaces and obtain the mapping from a 
unit sphere to a cortical surface.



Spherical harmonic of degree l and order m

Lower degree
Coarse detail                         

Higher degree
Fine detail

Ylm =






clmP |m|
l (cos θ) sin(|m|ϕ), −l ≤ m ≤ −1,

clm√
2
P 0

l (cos θ), m = 0,

clmP |m|
l (cos θ) cos(|m|ϕ), 1 ≤ m ≤ l,








Multiscale representation of surface 
and x-coordinate

Original X-coordinate



Weighted-SPHARM of cortical thickness

Cortical thickness

Spherical mapping

1st row:

2nd row:
k∑

m=−k

〈f, Ylm〉Ylm

k∑

m=−k

e−l(l+1)σ〈f, Ylm〉Ylm



Property: reduction of Gibbs 
phenomenon (ringing artifacts)

Traditional SPHARM 
representation

Weighted-SPHARM 
representation

1
8

< θ <
1
4Value one in the circular band



80th degree representation

What is the 
optimal degree?



RMSE over degree
At certain degree, the reduction of residual 
error is no longer statistically signification



Automatic degree selection

1-Pvalue

degree



Numerical implementation

Estimating approximately 5,000 eigenvalues per each 
coordinates = 20,000 eigenvalues for each subjects

Iterative residual fitting (IRF) algorithm

Break one huge linear problem (=6GB) into smaller 
linear problems (<500MB, the memory limit of 
my old laptop) and solve the small problems 
iteratively. (joint work with Li Shen)

MATLAB code available:
http://www.stat.wisc.edu/~mchung/softwares/

weighted-SPHARM/weighted-SPHARM.html

http://www.stat.wisc.edu/~mchung/softwares/weighted-SPHARM/weighted-SPHARM.html
http://www.stat.wisc.edu/~mchung/softwares/weighted-SPHARM/weighted-SPHARM.html
http://www.stat.wisc.edu/~mchung/softwares/weighted-SPHARM/weighted-SPHARM.html
http://www.stat.wisc.edu/~mchung/softwares/weighted-SPHARM/weighted-SPHARM.html


Iterative residual fitting (IRF) algorithm

Step 1.  measurements f(p1), · · · , f(pn)

Step 2.  Set initial degree=0 k = 0

Step 3.  Solve f(pi) =
k∑

m=−k

βkmYkm(pi)
Project data
into a finite 
subspace

Step 4.  Set degree k ← k + 1

Ite r ate Step 3.5. f ← f − f̂ Once low frequency parts are 
estimated, we throw them away 



Application: Tensor-based morphometry (TBM)

Riemannian metric tensors 
and local area element

Previous approaches for 
estimating derivatives
: local polynomial patch, 
discrete differential 
geometric operations, 
tensor voting 

Weakness: not stable and
introduce substantial mesh 
noise



Local area expansion with respect to a template 
(it ranges between 0 and 1.3)



78th degree representation = (2*78+1)^2 eigenvalues

Autistic Control Difference

Classification techniques

Application:



Application:
Brain-behavior correlation
Facial emotion discrimination task response time



response time vs. cortical thickness



Shape asymmetry analysis 
via weighted-SPHARM 



Establishing hemispheric 
correspondence

WFS-correspondence

Mirror reflection



What is preserved 
and what is not 
preserved after
mirror reflection ?

ĝ(θ, ϕ) =
k∑

l=0

l∑

m=−l

e−l(l+1)σ〈f, Ylm〉Ylm(θ, ϕ).

ĝ(θ, 2π − ϕ) =
k∑

l=0

−1∑

m=−l

e−l(l+1)σ〈f, Ylm〉Ylm(θ, ϕ)

−
k∑

l=0

l∑

m=0

e−l(l+1)σ〈f, Ylm〉Ylm(θ, ϕ)



Shape decomposition into 
symmetric and asymmetric parts

S(θ, ϕ) =
1
2

[
ĝ(θ, ϕ) + ĝ(θ, 2π − ϕ)

]
=

k∑

l=0

−1∑

m=−l

e−l(l+1)σ〈f, Ylm〉Ylm(θ, ϕ)

A(θ, ϕ) =
1
2

[
ĝ(θ, ϕ) − ĝ(θ, 2π − ϕ)

]
=

k∑

l=0

l∑

m=0

e−l(l+1)σ〈f, Ylm〉Ylm(θ, ϕ)

Normalized asymmetry 
index = (L-R)/(L+R)

N(θ, ϕ) =
ĝ(θ, ϕ) − ĝ(θ, 2π − ϕ)
ĝ(θ, ϕ) + ĝ(θ, 2π − ϕ)

=
∑k

l=1

∑−1
m=−l e

−1(l+1)σ〈f, Ylm〉Ylm(θ, ϕ)
∑k

l=0

∑l
m=0 e−l(l+1)σ〈f, Ylm〉Ylm(θ, ϕ)



Asymmetry analysis of cortical thickness



Asymmetry index
Cortical
thickness

Weighted
SPHARM

Asymmetry
index

Symmetry
index

Normalized
asymmetry

index



Final result: Statistical parametric map
multiple comparison correction via 

random field theory (Worsley, Taylor)


