

The Waisman Laboratory for Brain Imaging and Behavior

Encoding Surface Shape Asymmetry: Weighted Spherical Harmonic Representation

Moo K. Chung University of Wisconsin-Madison

http://www.stat.wisc.edu/~mchung mchung@stat.wisc.edu

Joint work with

Kim Dalton, Richard J. Davidson Waisman laboratory for brain imaging and behavior University of Wisconsin-Madison

Abstracts

A recently developed weighted spherical harmonic (SPHARM) representation will be presented. The weighted-SPHARM is a partial differential equation (PDE) based shape representation technique that incorporates surface parameterization, surface data smoothing, and surface normalization in a unified framework. The weighted-SPHARM represents surface data as a weighted linear combination of spherical harmonics in such a way that the representation reduces the Gibbs phenomenon associated with Fourier series. Using the inherent angular symmetry of the spherical harmonics, surface shape can be decomposed into symmetric and asymmetric components. The resulting shape asymmetry index is given as the ratio of positive and negative order harmonics. As an illustration, the methodology is applied in characterizing and detecting abnormal cortical asymmetry pattern of autistic brain.

Outline

•Data

- Motivation
- •Weighted Fourier Series Representation
- Shape Asymmetry Analysis
- Discussion

Data: 3T MRI 16 high functioning autistic subjects (15.93±4.71 years) 12 normal controls (17.08±2.78 years) Right-handed males of compatible age range.

Aim: Quantify abnormal cortical asymmetry pattern in the autistic subjects

Motivation

Problem: Quantify cortical shape asymmetry across hemispheres

Challenge I: Establishing hemispheric surface correspondence

Challenge 2: Establishing intersubject surface correspondence

Multiscale representation of anatomical surface and function defined on surface

Anatomical boundary $\mathcal{M} \in \mathbb{R}^d$ Hilbert space $L^2(\mathcal{M})$ with $\langle g_1, g_2 \rangle = \int_{\mathcal{M}} g_1(p) g_2(p) \ d\mu(p)$ Measurement f(p) at position For a given self-adjoint operator \mathcal{L} measurement + coordinates as the initial value

$$\partial_t g + \mathcal{L}g = 0, g(p, t = 0) = f(p)$$

time = scale, bandwidth of smoothing

 $(\overline{u_1(p)}, \cdots, \overline{u_d(p)}))$

Weighted Fourier series (WFS) representation

$$\mathcal{L}\psi_j = \lambda_j \psi_j$$

PDE
$$g(p,t) = \sum_{j=0}^{\infty} e^{-\lambda_j t} \langle f, \psi_j \rangle \psi_j(p)$$
 Basis expansion
$$= \int_{\mathcal{M}} K_t(p,q) f(q) \ d\mu(q) \qquad \begin{array}{c} \text{Kernel} \\ \text{smoothing} \end{array}$$

\mathcal{L} =Laplace-Beltrami operator

 K_t =Heat kernel

Heat diffusion via FEM (NeuroImage, 2003) = Heat kernel smoothing (NeuroImage, 2005) = WFS representation (IEEE Trans. on Medical Imaging, 2007) approach

Heat kernel on unit sphere

Shape

FWHM vs. bandwidth

Function estimation on manifold

Finite subspace:
$$\mathcal{H}_l = \{\sum_{j=0}^l eta_j \psi_j(p) : eta_j \in \mathbb{R}\}$$

If the kernel is a probability distribution,

$$\sum_{j=0}^{t} e^{-\lambda_j t} \langle f, \psi_j \rangle \psi_j(p) = \arg\min_{h \in \mathcal{H}_l} \int_{\mathcal{M}} K_t(p, q) |f(q) - h(p)|^2 d\mu(q)$$

WFS is the 0th order local polynomial regression! closer measurements are given more weights

Surface-to-surface registration (WFS-correspondence)

The performance of registration will be determined by the choice of a differential operator.

Consider two WFS surfaces v_{i1}, v_{i2} .

Find the displacement d_i that minimizes the discrepancy between two surfaces:

 $v_{i2} - v_{i1} = \arg\min_{d_i \in \mathcal{H}_l} \int_{\mathcal{M}} [v_{i1} + d_i(v_{i1}) - v_{i2}]^2 d\mu(p).$

Surface registration is simply done by subtracting two WFS representations.

Trajectory of surface registration

(ex. Laplace-Beltrami operator: smoothing operator)

single subject average surface

Is WFS-correspondence intuitively correct?

Intuition

For two algebraically defined surfaces, the optimal deformation should be obtained algebraically by hand without a numerical optimization.

What is going on? Displacement field is estimated by matching the surface features of the same frequency while minimizing the goodness of fit.

Summary

WFS = surface representation + surface registration + surface smoothing (fairing) + surface data smoothing

Is it possible to come up with a more unified basis function method that contains surface segmentation ?

Our first attempt

Thin-plate spline (TPS) segmentation

Directly segment and represent the anatomical boundary as the linear combination of thin-plate basis functions (joint work with Xie and Wahba)

Weighted spherical harmonic (SPHRM) representation

When we choose the Laplace-Beltrami operator

Spherical mapping

Deformable surface algorithm (McDonalds et al., 2001) is used to segment surfaces and obtain the mapping from a unit sphere to a cortical surface.

Spherical harmonic of degree I and order m

$$Y_{lm} = \begin{cases} c_{lm} P_l^{|m|}(\cos\theta) \sin(|m|\varphi), & -l \le m \le -1, \\ \frac{c_{lm}}{\sqrt{2}} P_l^0(\cos\theta), & m = 0, \\ c_{lm} P_l^{|m|}(\cos\theta) \cos(|m|\varphi), & 1 \le m \le l, \end{cases}$$

Multiscale representation of surface and x-coordinate

Weighted-SPHARM of cortical thickness

Property: reduction of Gibbs phenomenon (ringing artifacts)

Value one in the circular band

$$\frac{1}{8} < \theta < \frac{1}{4}$$

Weighted-SPHARM representation

80th degree representation

Original Cortex

Outer Surface

Inner Surface

What is the optimal degree?

RMSE over degree

At certain degree, the reduction of residual error is no longer statistically signification

Automatic degree selection

degree

Numerical implementation

Estimating approximately 5,000 eigenvalues per each coordinates = 20,000 eigenvalues for each subjects

Iterative residual fitting (IRF) algorithm

Break one huge linear problem (=6GB) into smaller linear problems (<500MB, the memory limit of my old laptop) and solve the small problems iteratively. (joint work with Li Shen)

MATLAB code available: http://www.stat.wisc.edu/~mchung/softwares/ weighted-SPHARM/weighted-SPHARM.html

Iterative residual fitting (IRF) algorithm

Step I. measurements $f(p_1), \dots, f(p_n)$ Step 2. Set initial degree=0 k=0kProject data Step 3. Solve $f(p_i) = \sum \beta_{km} Y_{km}(p_i)$ into a finite subspace m = -kOnce low frequency parts are Step 3.5. $f \leftarrow f - \hat{f}$ estimated, we throw them away

Step 4. Set degree $k \leftarrow k+1$

Iterate

Application: Tensor-based morphometry (TBM)

Previous approaches for estimating derivatives : local polynomial patch, discrete differential geometric operations, tensor voting

Weakness: not stable and introduce substantial mesh noise

Riemannian metric tensors and local area element

Local area expansion with respect to a template (it ranges between 0 and 1.3)

Application:

78th degree representation = $(2*78+1)^2$ eigenvalues

Autistic

Control

Difference

Classification techniques

Application: Brain-behavior correlation Facial emotion discrimination task response time

response time vs. cortical thickness

Shape asymmetry analysis via weighted-SPHARM

Establishing hemispheric correspondence

Mirror reflection

WFS-correspondence

What is preserved and what is not preserved after mirror reflection ?

$$\widehat{g}(\theta,\varphi) = \sum_{l=0}^{k} \sum_{m=-l}^{l} e^{-l(l+1)\sigma} \langle f, Y_{lm} \rangle Y_{lm}(\theta,\varphi).$$

$$\widehat{g}(\theta, 2\pi - \varphi) = \sum_{l=0}^{k} \sum_{m=-l}^{-1} e^{-l(l+1)\sigma} \langle f, Y_{lm} \rangle Y_{lm}(\theta,\varphi)$$

$$-\sum_{l=0}^{k} \sum_{m=0}^{l} e^{-l(l+1)\sigma} \langle f, Y_{lm} \rangle Y_{lm}(\theta,\varphi)$$

Shape decomposition into symmetric and asymmetric parts

$$S(\theta,\varphi) = \frac{1}{2} \left[\widehat{g}(\theta,\varphi) + \widehat{g}(\theta,2\pi-\varphi) \right] = \sum_{l=0}^{k} \sum_{m=-l}^{-1} e^{-l(l+1)\sigma} \langle f, Y_{lm} \rangle Y_{lm}(\theta,\varphi)$$

$$A(\theta,\varphi) = \frac{1}{2} \left[\widehat{g}(\theta,\varphi) - \widehat{g}(\theta,2\pi-\varphi) \right] = \sum_{l=0}^{k} \sum_{m=0}^{l} e^{-l(l+1)\sigma} \langle f, Y_{lm} \rangle Y_{lm}(\theta,\varphi)$$

Normalized asymmetry index = (L-R)/(L+R)

$$N(\theta,\varphi) = \frac{\widehat{g}(\theta,\varphi) - \widehat{g}(\theta,2\pi-\varphi)}{\widehat{g}(\theta,\varphi) + \widehat{g}(\theta,2\pi-\varphi)} = \frac{\sum_{l=1}^{k} \sum_{m=-l}^{-1} e^{-1(l+1)\sigma} \langle f, Y_{lm} \rangle Y_{lm}(\theta,\varphi)}{\sum_{l=0}^{k} \sum_{m=0}^{l} e^{-l(l+1)\sigma} \langle f, Y_{lm} \rangle Y_{lm}(\theta,\varphi)}$$

Asymmetry analysis of cortical thickness

Asymmetry index

Final result: Statistical parametric map multiple comparison correction via random field theory (Worsley, Taylor)

