Detecting and Understanding the Large-Scale Structure of Networks

Mark Newman
University of Michigan

Michelle Girvan (Maryland) Elizabeth Leicht (Michigan)

Modules, groups, or communities

Modular structure

- Modules are of interest in many cases:
 - World Wide Web
 - Citation networks
 - Social networks
 - Metabolic networks
- Properties of modules may be quite different from average properties of a network

Graph partitioning

• Find the division into groups of given sizes that minimizes the *cut size*, i.e., the number of edges running between groups

Detecting modules

- Maximizing the number of edges within groups (or minimizing the number between groups) is not enough
- A good division into modules not just one with a large number of edges within groups, but one with a *larger* than expected number
- This leads us to the idea of *modularity*

Modularity

(Newman and Girvan 2004, Newman 2006)

Define modularity to be

Q = (number of edges within groups) –(expected number within groups).

- Modularity is measured relative to a null model
 - Defined by P_{ij} = probability of an edge between vertices i and j
 - Examples:
 - $P_{ij} = p$ (Erdös-Rényi random graph)
 - → $P_{ij} = k_i k_j / 2m$ ("configuration model")

Matrix formulation

Actual number of edges between i and j is

$$A_{ij} = \begin{cases} 1 & \text{if there is an edge } (i, j), \\ 0 & \text{otherwise.} \end{cases}$$

Expected number of edges is P_{ij} .

Modularity is sum of $A_{ij} - P_{ij}$ over all pairs of vertices (i,j) falling in the same group

Define:

$$s_i = \begin{cases} +1 & \text{if vertex } i \text{ belongs to group 1,} \\ -1 & \text{if vertex } i \text{ belongs to group 2.} \end{cases}$$

$$egin{array}{lll} Q &=& rac{1}{2m} \sum_{ij} igl[A_{ij} - P_{ij} igr] \delta(g_i, g_j) \ &=& rac{1}{4m} \sum_{ij} igl[A_{ij} - P_{ij} igr] (s_i s_j + 1) \ &=& rac{1}{4m} \sum_{ij} igl[A_{ij} - P_{ij} igr] s_i s_j \ &=& rac{1}{4m} \, \mathbf{s}^T \mathbf{B} \mathbf{s} \end{array}$$

where
$$B_{ij} = A_{ij} - P_{ij}$$

We call **B** the modularity matrix

• Now we write \mathbf{s} as a linear combination of the eigenvectors \mathbf{u}_i of the modularity matrix:

$$\mathbf{s} = \sum_{i=1}^{n} a_i \mathbf{u}_i, \quad \text{with} \quad a_i = \mathbf{u}_i^T \mathbf{s}$$

$$Q = \frac{1}{4m} \mathbf{s}^T \mathbf{B} \mathbf{s} = \frac{1}{4m} \sum_{i} a_i^2 \beta_i$$

 Maximize by choosing s parallel to the leading eigenvector, or failing that, as near parallel as we can

$$s_i = \begin{cases} +1 & \text{if } u_i^{(1)} \ge 0, \\ -1 & \text{if } u_i^{(1)} < 0. \end{cases}$$

Example: animal network

Books about politics

Spectral properties of modularity matrix

- Vector (1, 1, 1, ...) is always an eigenvector of **B** with eigenvalue zero, corresponding to all vertices in the same group
- Eigenvalues can be either positive or negative
 - So long as there is any positive eigenvalue we will never put all vertices in the same group
- But there may be no positive eigenvalues
 - All vertices in same group gives highest modularity
 - We call such networks *indivisible*

Dividing into more than two groups

- Simplest approach is repeated division into two groups
 - Divide in two, then divide those parts in two, etc.
- Stop when there is no division that will increase the modularity
 - But this is precisely when the subgraph is indivisible
 - Stop when there are no positive eigenvalues of the modularity matrix

Negative eigenvalues

- Unlike the Laplacian, the modularity matrix has negative eigenvalues
- These tell us about *minimization* of the modularity
- A division with negative modularity has *fewer* edges than expected within communities (or more than expected between communities)

- This corresponds to a network with bipartite structure
- Or *k*-partite in the general case

Network of word adjacencies

Network of word adjacencies

Adjective

Noun

Vertex classification

(Newman and Leicht 2007)

• We specify a very broad set of possible structures that we are interested in:

Definition of the model

- There are three kinds of quantities in this approach:
 - Observed data: the pattern of edges observed between the vertices. These are given to us by the experimenter.
 - Missing data: We assume that the vertices divide into c groups. We denote the group to which vertex i belongs by g_i . These are missing data.
 - Model parameters: these describe the patterns of connection between vertices in different groups.

Definition of the model

Directed case:

 π_r = probability of being in group r

and

 θ_{ri} = probability of a link to vertex i

These satisfy

$$\sum_{r=1}^{c}\pi_r=1, \qquad \sum_{i=1}^{n} heta_{ri}=1.$$

Likelihood and log-likelihood

The likelihood is

$$Pr(A, g|\pi, \theta) = Pr(A|g, \pi, \theta) Pr(g|\pi, \theta)$$

Here

$$\Pr(A|g,\pi,\theta) = \prod_{ij} \theta_{g_i,j}^{A_{ij}}, \quad \Pr(g|\pi,\theta) = \prod_i \pi_{g_i}$$

• So

$$\Pr(A, g | \pi, \theta) = \prod_{i} \left[\pi_{g_i} \prod_{j} \theta_{g_i, j}^{A_{ij}} \right]$$

$$\mathcal{L} = \ln \Pr(A, g | \pi, \theta) = \sum_{i} \left[\ln \pi_{g_i} + \sum_{j} A_{ij} \ln \theta_{g_i, j} \right]$$

- Unfortunately, we don't know the values of the missing data, so we can't evaluate this expression
- However, we can make a pretty good guess at the values of the missing data if we know A, π , and θ . More specifically, we can calculate the probability that g_i takes a particular value r thus:

$$q_{ir} = \Pr(g_i = r | A, \pi, \theta) = \frac{\Pr(A, g_i = r | \pi, \theta)}{\Pr(A | \pi, \theta)}.$$

- The numerator we can calculate by summing $Pr(A,g \mid \pi,\theta)$ over all the gs except g_i
- The denominator is fixed by the normalization

• The result is:

$$q_{ir} = rac{\pi_r \prod_j heta_{rj}^{A_{ij}}}{\sum_s \pi_s \prod_j heta_{sj}^{A_{ij}}}.$$

- This looks odd: we're saying you can calculate q_{ir} given the model and the data, and then we're going to calculate the model from q_{ir} and the data?
- Yes, but we have to do it self-consistently. . .

Expected likelihood

• We can now make a guess about the value of the loglikelihood. Our best guess is just the expectation value:

$$\overline{\mathcal{L}} = \sum_{g_1=1}^{c} \dots \sum_{g_n=1}^{c} \Pr(g|A, \pi, \theta) \sum_{i} \left[\ln \pi_{g_i} + \sum_{j} A_{ij} \ln \theta_{g_i, j} \right] \\
= \sum_{ir} \Pr(g_i = r|A, \pi, \theta) \left[\ln \pi_r + \sum_{j} A_{ij} \ln \theta_{rj} \right] \\
= \sum_{ir} q_{ir} \left[\ln \pi_r + \sum_{j} A_{ij} \ln \theta_{rj} \right].$$

• Now it's a straightforward matter to maximize this with respect to π and θ to find the best values. The result is:

$$\pi_r = rac{1}{n} \sum_i q_{ir}, \qquad heta_{rj} = rac{\sum_i A_{ij} q_{ir}}{\sum_i k_i q_{ir}},$$

- So we have π and θ in terms of q and we have q in terms of π and θ
- To find a self-consistent solution to both sets of equations, we iterate from a suitable set of starting values

Expectation-Maximization Algorithm

- Has a number of clear advantages:
 - Very simple: just a few lines of computer code to implement the method
 - Fast: typically only a few seconds to analyze even a large network
 - Simultaneously tells us how to group the vertices in the network and what the appropriate definition is for the groups
- Derivation is more complicated for undirected case, but the final equations are exactly the same

Example: Social network

Example: Lexical network

Ordinary community detection

EM algorithm

• References:

- See: http://www.umich.edu/~mejn/pubs.html
- M. E. J. Newman and E. A. Leicht, *Proc. Natl. Acad. Sci.* (in press)
- [–] M. E. J. Newman, *Proc. Natl. Acad. Sci.* **103**, 8577-8582 (2006)
- M. E. J. Newman, *Phys. Rev. E* **74**, 036104 (2006)
- [–] M. E. J. Newman and M. Girvan, *Phys. Rev E* **69**, 026113 (2004)
- [–] M. E. J. Newman, *Phys. Rev. E* **67**, 026126 (2003)