Detecting and Understanding the Large-Scale Structure of Networks

Mark Newman
University of Michigan

Michelle Girvan (Maryland)
Elizabeth Leicht (Michigan)
Modules, groups, or communities
Modular structure

• Modules are of interest in many cases:
 - World Wide Web
 - Citation networks
 - Social networks
 - Metabolic networks

• Properties of modules may be quite different from average properties of a network
Graph partitioning

- Find the division into groups of given sizes that minimizes the *cut size*, i.e., the number of edges running between groups.
Detecting modules

- Maximizing the number of edges within groups (or minimizing the number between groups) is not enough
- A good division into modules not just one with a large number of edges within groups, but one with a larger than expected number
- This leads us to the idea of modularity
Modularity

Define modularity to be

\[Q = (\text{number of edges within groups}) - (\text{expected number within groups}). \]

• Modularity is measured relative to a null model

 - Defined by \(P_{ij} = \) probability of an edge between vertices \(i \) and \(j \)

 - Examples:

 \[P_{ij} = p \text{ (Erdös-Rényi random graph)} \]
 \[P_{ij} = k_i k_j / 2m \text{ (“configuration model”)} \]
Matrix formulation

Actual number of edges between i and j is

$$A_{ij} = \begin{cases}
1 & \text{if there is an edge } (i, j), \\
0 & \text{otherwise.}
\end{cases}$$

Expected number of edges is P_{ij}.

Modularity is sum of $A_{ij} - P_{ij}$ over all pairs of vertices (i,j) falling in the same group.

Define:

$$s_i = \begin{cases}
+1 & \text{if vertex } i \text{ belongs to group 1,} \\
-1 & \text{if vertex } i \text{ belongs to group 2.}
\end{cases}$$
\[
Q = \frac{1}{2m} \sum_{ij} [A_{ij} - P_{ij}] \delta(g_i, g_j)
\]

\[
= \frac{1}{4m} \sum_{ij} [A_{ij} - P_{ij}] (s_i s_j + 1)
\]

\[
= \frac{1}{4m} \sum_{ij} [A_{ij} - P_{ij}] s_i s_j
\]

\[
= \frac{1}{4m} s^T B s
\]

where \(B_{ij} = A_{ij} - P_{ij} \)

We call \(B \) the modularity matrix
• Now we write \(s \) as a linear combination of the eigenvectors \(u_i \) of the modularity matrix:

\[
s = \sum_{i=1}^{n} a_i u_i, \quad \text{with} \quad a_i = u_i^T s
\]

\[
Q = \frac{1}{4m} s^T Bs = \frac{1}{4m} \sum_i a_i^2 \beta_i
\]

• Maximize by choosing \(s \) parallel to the leading eigenvector, or failing that, as near parallel as we can

\[
s_i = \begin{cases}
+1 & \text{if } u_i^{(1)} \geq 0, \\
-1 & \text{if } u_i^{(1)} < 0.
\end{cases}
\]
Example: animal network
Books about politics
Spectral properties of modularity matrix

- Vector (1, 1, 1, ...) is always an eigenvector of B with eigenvalue zero, corresponding to all vertices in the same group.
- Eigenvalues can be either positive or negative.
 - So long as there is any positive eigenvalue we will never put all vertices in the same group.
- But there may be no positive eigenvalues.
 - All vertices in same group gives highest modularity.
 - We call such networks indivisible.
Dividing into more than two groups

- Simplest approach is repeated division into two groups
 - Divide in two, then divide those parts in two, etc.
- Stop when there is no division that will increase the modularity
 - But this is precisely when the subgraph is indivisible
 - Stop when there are no positive eigenvalues of the modularity matrix
Negative eigenvalues

- Unlike the Laplacian, the modularity matrix has negative eigenvalues
- These tell us about minimization of the modularity
- A division with negative modularity has fewer edges than expected within communities (or more than expected between communities)
• This corresponds to a network with bipartite structure
• Or \(k \)-partite in the general case
Network of word adjacencies

- Green circles: Adjective
- Red squares: Noun
Network of word adjacencies

- Adjective
- Noun
Vertex classification
(Newman and Leicht 2007)

- We specify a very broad set of possible structures that we are interested in:
Definition of the model

• There are three kinds of quantities in this approach:
 − Observed data: the pattern of edges observed between the vertices. These are given to us by the experimenter.
 − Missing data: We assume that the vertices divide into c groups. We denote the group to which vertex i belongs by g_i. These are missing data.
 − Model parameters: these describe the patterns of connection between vertices in different groups.
Definition of the model

Directed case:

\[\pi_r = \text{probability of being in group } r \]

and

\[\theta_{ri} = \text{probability of a link to vertex } i \]

These satisfy

\[\sum_{r=1}^{c} \pi_r = 1, \quad \sum_{i=1}^{n} \theta_{ri} = 1. \]
Likelihood and log-likelihood

• The likelihood is

\[\Pr(A, g | \pi, \theta) = \Pr(A | g, \pi, \theta) \Pr(g | \pi, \theta) \]

• Here

\[\Pr(A | g, \pi, \theta) = \prod_{ij} \theta_{g_i,j}^{A_{ij}}, \quad \Pr(g | \pi, \theta) = \prod_{i} \pi_{g_i} \]

• So

\[\Pr(A, g | \pi, \theta) = \prod_{i} \left[\pi_{g_i} \prod_{j} \theta_{g_i,j}^{A_{ij}} \right] \]

\[\mathcal{L} = \ln \Pr(A, g | \pi, \theta) = \sum_{i} \left[\ln \pi_{g_i} + \sum_{j} A_{ij} \ln \theta_{g_i,j} \right] \]
• Unfortunately, we don't know the values of the missing data, so we can't evaluate this expression.

• However, we can make a pretty good guess at the values of the missing data if we know A, π, and θ. More specifically, we can calculate the probability that g_i takes a particular value r thus:

$$q_{ir} = \Pr(g_i = r | A, \pi, \theta) = \frac{\Pr(A, g_i = r | \pi, \theta)}{\Pr(A | \pi, \theta)}.$$

• The numerator we can calculate by summing $\Pr(A, g | \pi, \theta)$ over all the gs except g_i.

• The denominator is fixed by the normalization.
• The result is:

\[q_{ir} = \frac{\pi_r \prod_j \theta_{rj}^{A_{ij}}}{\sum_s \pi_s \prod_j \theta_{sj}^{A_{ij}}} \]

• This looks odd: we're saying you can calculate \(q_{ir} \) given the model and the data, and then we're going to calculate the model from \(q_{ir} \) and the data?

• Yes, but we have to do it self-consistently. . .
Expected likelihood

- We can now make a guess about the value of the log-likelihood. Our best guess is just the expectation value:

\[
\mathcal{L} = \sum_{g_1=1}^{c} \cdots \sum_{g_n=1}^{c} \Pr(g|A, \pi, \theta) \sum_{i} \left[\ln \pi_{g_i} + \sum_{j} A_{ij} \ln \theta_{g_i,j} \right]
\]

\[
= \sum_{ir} \Pr(g_i = r|A, \pi, \theta) \left[\ln \pi_r + \sum_{j} A_{ij} \ln \theta_{rj} \right]
\]

\[
= \sum_{ir} q_{ir} \left[\ln \pi_r + \sum_{j} A_{ij} \ln \theta_{rj} \right].
\]
Now it's a straightforward matter to maximize this with respect to π and θ to find the best values. The result is:

\[
\pi_r = \frac{1}{n} \sum_i q_{ir}, \quad \theta_{rj} = \frac{\sum_i A_{ij} q_{ir}}{\sum_i k_i q_{ir}},
\]

So we have π and θ in terms of q and we have q in terms of π and θ

To find a self-consistent solution to both sets of equations, we iterate from a suitable set of starting values.
Expectation-Maximization Algorithm

• Has a number of clear advantages:

 - Very simple: just a few lines of computer code to implement the method

 - Fast: typically only a few seconds to analyze even a large network

 - Simultaneously tells us how to group the vertices in the network and what the appropriate definition is for the groups

• Derivation is more complicated for undirected case, but the final equations are exactly the same
Example: Social network
Example: Lexical network
Ordinary community detection

EM algorithm
• References:
 - See: \url{http://www.umich.edu/~mejn/pubs.html}