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Modules, groups, or communities




Modular structure

* Modules are of interest in many cases:

~ World Wide Web

— Citation networks

~ Social networks

~ Metabolic networks

* Properties of modules may be quite different from
average properties of a network
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Graph partitioning

* Find the division into groups of given sizes that
minimizes the cut size, i.e., the number of edges

running between groups



Detecting modules

* Maximizing the number of edges within groups (or
minimizing the number between groups) is not
enough

* A good division into modules not just one with a large
number of edges within groups, but one with a larger
than expected number

* This leads us to the idea of modularity



Modularity

(Newman and Girvan 2004, Newman 2006)

Define modularity to be

Q = (number of edges within groups) —
(expected number within groups).

* Modularity is measured relative to a null model

~ Defined by P;; = probability of an edge between

vertices 7 and j
~ Examples:
>P;=p (Erdos-Rényi random graph)

> Py =kk/2m (“configuration model”)



Matrix formulation

Actual number of edges between i and j is

A 1 if there is an edge (i, j),
71 0 otherwise.

Expected number of edges is P;;.

Modularity is sum of A;; — P;; over all pairs of vertices
(i,j) falling in the same group

Define:

. +1 if vertex i belongs to group 1,
| =1 ifvertexibelongs to group 2.



Q = o 2 [Aij — P;i|5(8i, 8)
— 4}71 ] (Aij — Pij|(sisj + 1)
= ﬁ ] [Aij — Pyjsis;
= ﬁsTBs

where Bf]' — A;f]' — Pf]'

We call B the modularity matrix




* Now we write s as a linear combination of the

eigenvectors u; of the modularity matrix:

n
s = Y au, with 4, =u’s
i—1
I 7 1 >
Q= g B~ g LoF

* Maximize by choosing s parallel to the leading

eigenvector, or failing that, as near parallel as we can

s-{ 1 ifulY >0,
ol -l <o




Example: animal network
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Spectral properties of modularity matrix

* Vector (1,1, 1, ...)1is always an eigenvector of B with
eigenvalue zero, corresponding to all vertices in the
same group

* Eigenvalues can be either positive or negative

~ So long as there is any positive eigenvalue we will

never put all vertices in the same group
* But there may be no positive eigenvalues

~ All vertices in same group gives highest modularity

— We call such networks indivisible



Dividing into more than two groups

* Simplest approach is repeated division into two
groups
~ Divide in two, then divide those parts in two, etc.

* Stop when there is no division that will increase the

modularity

~ But this is precisely when the subgraph is
indivisible

~ Stop when there are no positive eigenvalues of the
modularity matrix



Negative eigenvalues

* Unlike the Laplacian, the modularity matrix has
negative eigenvalues

* These tell us about minimization of the modularity

* A division with negative modularity has fewer edges
than expected within communities (or more than
expected between communities)



* This corresponds to a network with bipartite structure

* Or k-partite in the general case
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Network of word adjacencies
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Vertex classification
(Newman and Leicht 2007)

* We specity a very broad set of possible structures that
we are interested in:




Definition of the model

* There are three kinds of quantities in this approach:

~ Observed data: the pattern of edges observed
between the vertices. These are given to us by the
experimenter.

~ Missing data: We assume that the vertices divide
into ¢ groups. We denote the group to which vertex
1 belongs by ¢;. These are missing data.

~ Model parameters: these describe the patterns of
connection between vertices in different groups.



Definition of the model

Directed case:
7T, = probability of being in group r

and

0,; = probability of a link to vertex 1

These satisty

C
Y =1,
r=1

n
0, =1.
=1

[



Likelihood and log-likelihood

* The likelihood is
Pr(A,gl|r,0) = Pr(Alg, ,0) Pr(gl|m,6)

* Here
Pr(Alg, 7,0) 1—[9 Pr(g|7,6) = ] [ g
* So | Aij_
Pr(A, g|m,0) = 1:[ _775’:‘ 1]_193::,-]'_

L =1InPr(A, g|m,0) = Z[]n Tlg; + ZAff ]119&.’]1
i ]




Unfortunately, we don't know the values of the
missing data, so we can't evaluate this expression

However, we can make a pretty good guess at the

values of the missing data if we know A, , and 6.

More specifically, we can calculate the probability that

g; takes a particular value r thus:

PI‘(A,gI' — T‘TC, 9)
Pr(A|m,0)

qir = Pr(gi =r|A, ,0) =

The numerator we can calculate by summing Pr(A,g |

m,0) over all the gs except g;

The denominator is fixed by the normalization



* The result is:

TC}‘ 1__[] 9?,]

ZS 7_55 H] 65]'1}

dir

* This looks odd: we're saying you can calculate g;,

given the model and the data, and then we're going to
calculate the model from g;, and the data?

* Yes, but we have to do it self-consistently. . .
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Expected likelihood

* We can now make a guess about the value of the log-
likelihood. Our best guess is just the expectation
value:

— Z Z Pr(g|A, t,0) Z{lnmr +ZAI]1119 }
]

c-l =1 0, =1

&N

— ZPI‘(S’I — ?"‘A, 7T,9) {11’1 7Ty + ZAU 11'19?7}
ir ]

Y i [m Tt YAy 1119,,]} |
o ]



* Now it's a straightforward matter to maximize this
with respect to ® and 6 to find the best values. The
result is:

1 L Aijgir
Ty — E ;‘711‘! 91’] — Zi ki‘?ir ’

* So we have w and 0 in terms of 4 and we have g in
terms of wand 6

* To find a self-consistent solution to both sets of
equations, we iterate from a suitable set of starting
values



Expectation-Maximization Algorithm

* Has a number of clear advantages:

~ Very simple: just a few lines of computer code to
implement the method

~ Fast: typically only a few seconds to analyze even a
large network

~ Simultaneously tells us how to group the vertices in
the network and what the appropriate definition is
for the groups

* Derivation is more complicated for undirected case,
but the final equations are exactly the same



Example: Social network




Lexical network
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