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Milgram: Six Degrees of Separation

Social Networks as Networks: [Milgram 1967]

‘ People given letter, asked to forward to one friend.

Q Source: random Omahaians;
Target: stockbroker in Sharon, MA.

‘ Of completed chains, averaged six hops to reach target.
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Milgram: The Explanation?

“the small-world problem”

E) Why is a random Omahaian close to a Sharon stockbroker?
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Standard (pseudosociological, pseudomathematical) explanation:
(Erd6s/Rényi) random graphs have small diameter.

Bogus! 1In fact, many bogosities:
® degree distribution
® clustering coefficients
o ...
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High School Friendships
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Self-reported high school friendships. [Moody 2001]
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High School Friendships
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Homophily

homophily: a person z's friends tend to be ‘similar’ to x.

One explanation for high clustering: (semi)transitivity of similarity.

x,y both friends of u ~= « and u similar; y and w similar
~= « and y similar
~= « and y friends
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Navigability of Social Networks

[Kleinberg 2000]
Milgram experiment shows more than small diameter:

People can construct short paths!

Milgram’s result is algorithmic, no_tﬁexistential.




Homophily and Greedy Applications

homophily: a person z's friends tend to be similar to x.

Key idea: getting closer in “similarity space”
= getting closer in “graph-distance space”

[Killworth Bernard 1978] (“reverse small-world experiment” )
[Dodds Muhamed Watts 2003]
In searching a social network for a target,
most people chose the next step because of
“geographical proximity” or ‘similarity of occupation”
(more geography early in chains; more occupation late.)

Suggests the greedy algorithm in social-network routing:
if aiming for target ¢, pick your friend who’'s ‘most like’ t¢.




Greedy Routing

Greedy algorithm:
if aiming for target ¢, pick your friend who’'s ‘most like’ t¢.

Geography: greedily route based on distance to t.

Occupation: ~ greedily route based on distance
in the (implicit) hierarchy of occupations.

Want Pr [u,v friends] to decay smoothly as d(u,v) increases.
(Need social ‘cues’ to help narrow in on t.
Not just homophily! Can’t just have many disjoint cliques.)
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The LiveJournal Community

= )

WWww.livejournal.com “Baaaaah,” says Frank.

I:> Online blogging community.
I:> Currently 12.8 million users; ~1.3 million in February 2004.

LiveJournal users provide:
Q disturbingly detailed accounts of their personal lives.
Q profiles (birthday, hometown, explicit list of friends)

I:> Yields a social network, with users’ geographic locations.
(~500K people in the continental US.)
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Distance versus LJ link probability
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The Hewlett-Packard Email Community

- [Adamic Adar 2005]

Iinven't

Corporate research community.
Captured email headers over ~3 months.
Define friendship as > 6 emails v — v and > 6 emails v — .

& 488

Yields a social network (n = 430),
with positions in the corporate hierarchy.




Emails and the HP Corporate Hierarchy

[Adamic Adar 2005]

black: HP corporate hierarchy . exchanged emails.




Emails and the HP Corporate Hierarchy
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Requisites for Navigability
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[Kleinberg 2000]:

for a social network to be navigable without global knowledge,
I:> need ‘well-scattered’ friends (to reach faraway targets)

|:> need ‘well-localized’ friends (to home in on nearby targets)




Kleinberg: Navigable Social Networks

[Kleinberg 2000]
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put n people on a k-dimensional grid
connect each to its immediate neighbors
add one long-range link per person; Prlu — v] W.
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Navigability of Social Networks

E) put n people on a k-dimensional grid
I:> connect each to its immediate neighbors

I:> add one long-range link per person; Pr[u — v] 1

d(u,v)®"

4 )
Theorem [Kleinberg 2000]: (short = polylog(n))

If a#k
then no local-information algorithm can find short paths.

If o=k
then people can find short—O(log? n)—paths using

the greedy algorithm.
\_ J




Geography’s Role in Livedournal

|:> By simulating the Milgram experiment, Zm

we find that LJ is navigable via geographically greedy routing.

E) By Kleinberg's theorem,
navigable 2-D geographic mesh = Pr[u — v] x d(u,v) 2.

Original goal of this research:

verify that Pr[u — v] o< d(u,v)~2 in LiveJournal.
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Distance versus link probability
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shows Pry, y[u is friends with v | d(u,v) = d]
Kleinberg's 1/d? highly unsupported!
Not really linear! Link probability levels out to ~ 5 x 105,
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The Livedournal Odyssey

Dot shown for every
inhabited location
in LivedJournal network.

Circles are centered
on Ithaca, NY.
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Each successive circle’s
population increases by 50,000.

Uniform population = radii would decrease quadratically.
(actually mostly increase!)

People don't live on a uniform grid!
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Why does distance fail?

Population density varies widely across the US!

® and e: best friends in Minnesota, strangers in Manhattan.




Rank-Based Friendship

How do we handle non-uniformly distributed populations?

Instead of distance, use rank as fundamental quantity.

rank 4(B) := [{C : d(A,C) < d(A, B)}|

How many people live closer to A than B does?

Rank-Based Friendship : Pr[A is a friend of B] oc 1/rank 4(B).

Probability of friendship o« 1/(number of closer candidates)
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Pr[A is a friend of B] ox 1/rank4(B).

Rank-Based Friendship:

Pr[A is a friend of B] «x 1/d(A, B)*.

Kleinberg (k-dim grid):
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1/rank ~ 1/dF

radius-d ball volume =~ dF

Uniform k-dimensional grid:

For a uniform grid, rank-based friendship

has (essentially) same link probabilities as Kleinberg.




Population Networks

A rank-based population network consists of:

m) = k-dimensional grid L of locations.

. a population P of people, living at points in L (n :=|P|).

‘ a set E C P x P of friendships:

e.g.,

locations rounded
to the nearest
integral point in
longitude/latitude.

® one edge from each person in each ‘direction’
® one edge from each person, chosen by rank-based friendship
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Short Paths and Rank-Based Friendships

[Kumar DLN Tomkins, ESA'06]

~ )
Theorem: For any n-person rank-based population network

in a k-dimensional grid, k = ©(1), for any source s € P
and for a randomly chosen target ¢t € P,
the expected length (over t) of Greedy(s,loc(t)) is O(log3n).
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Is this just like all the other proofs?

Typical proof of navigability:
e Claim: Pr [s friends with « within d(s D of t} Q (#)

® After logn halvings, done!




Is this just like all the other proofs?

Typical proof of navigability:

e Claim: Pr [s friends with « within €& of ¢] = Q( 1 )

@ After logn halvings, donel @

R s

@ Claim is false if {u : d(u,t) < @} < A{u:d(u,t) <d(s,t)}!

Our proof:

e Claim’: Pr [s friends with u within 450 of t] —Q (#)

polylog
for a randomly chosen target t¢.

® After logn halvings, done!



T he Real Theorem

-
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Theorem: For any n-person rank-based population network
in a k-dimensional grid, k = ©(1), for any source s € P
and for a randomly chosen target t € P,
the expected length (over t) of Greedy(s,loc(t)) is O(log3n).

~N

® Intuition: difficulty of halving distance to isolated target ¢

is canceled by low probability of choosing t.

® Real theorem: not just for grids.

(use doubling dimension of metric space instead of k).



Short Paths and Rank-Based Friendships

4 )
Theorem: For any n-person population network in a k-dim grid,

for any source s € P and a randomly chosen target t € P,

the expected length (over t) of Greedy(s,t) is O(log3n).

4 )
Theorem [Kleinberg 2000]: For any n-person uniform-density

population network, any source s, and any target ¢,
the length of Greedy(s,t) is O(log?n) with high probability.

Lose:  expectation (not whp).
_ose: another log factor.

Gain: arbitrary population densities.
Gain? holds in real networks?
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Ranks and Friendships in LiveJournal
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Ranks and Friendships in LiveJournal

link probability
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shows Pry[u is friends with the v : ranky(v) = 7]
very close to 1/r, as required for rank-based friendship!

again, must correct for nongeographic friends.



Ranks and Friendships in LiveJournal

link probability minus €
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probability of rank-r friendship, less ¢ = 5.0 x 10°.



Ranks and Friendships in LiveJournal
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I:> shows probability of rank-r friendship, less e = 5.0 X 10-°.

@) LJ “location resolution” is city-only.
average u's ranks {r,...,r 4+ 1300} are in the same city

I:> = we'll average probabilities over ranks {r,...,r 4+ 1300}




Ranks and Friendships in LiveJournal

link probability minus €, averaged
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Coastal Ranks and Friendships

1le-07 g
> I
= 1e-08 E
@) -
G -
3 -
S C
= I
E 1le-09 =
L West Coast 4
- East Coast @ D,
1e_1o ] ] IIIIIII ] ] IIIIIII ] ] IIIIIII @fg
100 1000 10000 100000
rank
|:> Link probability versus rank.
I:> Restricted to West (CA to WA) and East (VA to ME).
|:> Lines: P(r) o< 7~ 190 and P(r)  r—1.05,

—ég



Geographic/Nongeographic Friendships
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I:> good estimate of friendship probability:
Priu — v] ~ e+ f(d(u,v)) for e & 5.0 x 10~°.

‘e friends’ (nongeographic) ‘f(d) friends' (geographic).

@) LJ: E[number of u's “¢" friends] = ¢ - 500,000 ~ 2.5.
E) LJ: average degree = 8.

~5.5/8 ~ 66% of LJ friendships are ‘“geographic,” 33% are not.




Routing Choices

In real life, many ways to choose a next step when searching!

Geography: greedily route based on distance to t.

Occupation: ~ greedily route based on distance
in the (implicit) hierarchy of occupations.

Age, hobbies, alma mater, ...

Popularity: choose people with high outdegree.
[Adamic Lukose Puniyani Huberman 2001]
[Kim Yoon Han Jeong 2002] ...

What does ‘closest’ mean in real life?
How do you weight various ‘proximities’?

minimum over all proximities? [Dodds Watts Newman 2002]
a more complicated combination?
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Open Directions

A half-sociological, half-computational question ...

Why should rank-based friendship hold, even approximately?

Are there natural processes that generate it?

E.g., a generative process based on ‘“geographic interests” 7




T hank you!

David Liben-Nowell
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