
Modelling self-organizing networks with a hidden metric

Jeannette Janssen

Dalhousie University

joint work with

W. Aiello, A. Bonato, C. Cooper, P. Pralat



Self-organizing networks

Networks created by the interaction of many autonomous agents

Citation network World Wide Web Social networks



A good graph model should...

1. ...reproduce experimentally observed graph properties:

• Degree distribution follows a power law

• Small average distance between nodes, (“Small world”)

• Locally dense, globally sparse.

• Expansion properties (conductance)

• Others..

2. ...include a credible model for agent behaviour guiding the for-

mation of the link structure

3. ...agents should not need global knowledge of the network to

determine their link environment



Common assumptions in the study of real-life networks

Communities in a social network can be recognized

as densely linked subgraphs. 9

FIG. 3 The network of political books described in the text. Vertex colors range from blue to red to represent the values of
the corresponding elements of the leading eigenvector of the modularity matrix.

S = ( s1 |s2 | . . . |sc ). Each column is an index vector now
of (0, 1) elements (rather than ± 1 as previously), such
that

S ij =
1 if vertex i belongs to community j ,
0 otherwise.

(31)

Note that the columns of S are mutually orthogonal, that
the rows each sum to unity, and that the matrix satis�es
the normalization condition Tr( S T S ) = n.

Observing that the δ-symbol in Eq. (18) is now given
by

δ(gi , gj ) =
c

k=1

S ik S jk , (32)

the modularity for this division of the network is

Q =
n

i,j =1

c

k=1

B ij S ik S jk = Tr( S T BS ) , (33)

where here and henceforth we suppress the leading mul-
tiplicative constant 1 / 2m from Eq. (18), which has no
e�ect on the position of the maximum of the modularity.

Writing B = UDU T , where U = ( u1 |u2 | . . . ) is the
matrix of eigenvectors of B and D is the diagonal matrix
of eigenvalues D ii = βi , we then �nd that

Q =
n

j =1

c

k=1

βj (uT
j sk )2 . (34)

Again we wish to maximize this modularity, but now we
have no constraint on the number c of communities; we
can give S as many columns as we like in our e�ort to
make Q as large as possible.

If the elements of the matrix S were unconstrained
apart from the basic conditions on the rows and columns
mentioned above, a choice of c communities would be

equivalent to choosing c − 1 independent, mutually or-
thogonal columns s1 . . . sc− 1 . (Only c− 1 of the columns
are independent, the last being �xed by the condition
that the rows of S sum to unity.) In this case our path
would be clear: Q would be maximized by choosing the
columns proportional to the leading eigenvectors of B .
However, only those eigenvectors corresponding to pos-
itive eigenvalues can give positive contributions to the
modularity, so the optimal modularity would be achieved
by choosing exactly as many independent columns of S as
there are positive eigenvalues, or equivalently by choosing
the number of groups c to be 1 greater than the number
of positive eigenvalues.

Unfortunately, our problem has the additional con-
straint that the index vectors s i have only binary (0 , 1)
elements, which means it may not be possible to �nd as
many index vectors making positive contributions to the
modularity as the set of positive eigenvalues suggests.
Thus the number of positive eigenvalues, plus 1, is an
upper bound on the number of communities and again
we see that there is an intimate connection between the
properties of the modularity matrix and the community
structure of the network it describes.

C. Vector partitioning algorithm

In Section IV.A we maximized the modularity approx-
imately by focusing solely on the term in Q proportional
to the largest eigenvalue of B . Let us now make the more
general (and often better) approximation of keeping the
leading p eigenvalues, where p may be anywhere between
1 and n. Some of the eigenvalues, however, may be neg-
ative, which will prove inconvenient. To get around this
we rewrite Eq. (33) thus:

Q = nα + Tr[ S T U (D − α I )U T S ]

= nα +
n

j =1

c

k=1

(βj − α )
n

i=1

Uij S ik

2

, (35)

Newman, 2006



Common assumptions

Web pages with many common neighbours

contain related topics.
108 W. Lu et al.

Paper A Paper B

Paper C Paper D

Fig. 1 Relation between papers inferred from citation graph

In our work, we propose two different graph-based metrics: the maximum-
flow metric and the authority vector metric. In themaximum-flow metric, one joint
local citation graph is generated from a pair of papers to be compared by following
incoming and outgoing links from both papers. One paper is treated as a source
node and the other as a sink node. Flow capacities are assigned to the edges. Then,
the value of the maximum flow which could be pushed through from source node
to sink node is computed, and used to represent the similarity between the two
papers. In the authority-based metric, a local citation graph is grown separately for
each paper to be compared, by following incoming and outgoing links separately
for each paper. Then, authority weights [17] are computed for all nodes in each
of the local citation graphs. Each paper is then represented by a vector, whose
elements are the authority weights of the nodes in its local citation graph. Finally,
similarity is computed as the vector distance between these vectors.

The motivation for using a citation graph for the evaluation of our graph-
based similarity measures is twofold. Firstly, recent literature in bibliometrics
[14, 15, 24, 25] suggests considerable interest in the comparison and classifica-
tion of documents based on their citation environment. Secondly, the networked
information space formed by scientific papers and their references can be expected
to have a certain homogeneity. Therefore, such a space is more suited for the ini-
tial testing of new ideas than a less homogeneous space such as the World Wide
Web. To emphasize the linked structure of our information space, we chose an on-
line citation index for our studies, namely Citeseer, an online database of scientific



Underlying metric

Such assumptions, commonly used in experimental and heuristic

treatments of real-life networks, imply that there is an a priori ”com-

munity structure” or ”relatedness measure” of the nodes, which is

reflected by the link structure of the graph.

The network is a visible manifestation of an underlying

hidden reality.



Spatial graph models

• Nodes correspond to points in a (high-dimensional) feature space

• The metric distance between nodes is a measure of ”closeness”

• The edge generation is influenced by the position and relative

distance of the nodes

This gives a basis for reverse engineering: given a graph, and as-

suming a spatial model, it is possible to estimate the distribution of

nodes in the feature space from information contained in the graph

structure.



Random geometric graphs

[see book by Penrose ’03]

n node points are randomly

distributed in Euclidean space

according to a given distribution.

Node points are joined by an edge

if and only if their distance is less

than a threshold value t.

Link neighbourhood based on local environment,

but graph properties do not match.



Digression: Rank-based attachment

Preferential attachment:

Linking probability of a node v is proportional to deg(v).

Is it possible to modify the exponent of the power law by

varying the linking probability to (deg(v))α?

• No. Only if α = 1 does the process lead to a power law graph.

Krapivsky, Redner, Leyvraz, 2000

• Instead, rank all the vertices. The linking probability of a node

v is proportional to R(v)−α, where R(v) is the rank of v.

Fortunato, Flammini, Menczer, 2006



Rank-based attachment

Model:

• Parameters: initial degree d ∈ N, linking probability coefficient
α ∈ (0,1).

• At each time t, node v has rank R(v, t) ∈ [1, . . . , t]. Note that
R(·, t) is a bijection.

• G1 consists of a node v1 with rank 1, and d loops.

• Add each time step t, a new node vt+1 is added, together with
d edges with endpoint vt+1. The other endpoints are chosen so
that the probability that vt+1 links to a node u is proportional
to R(u, t)−α.

• A rank is assigned to vt+1, and the ranks of the existing nodes
are updated, according to a pre-defined ranking scheme.



Ranking schemes

1 Each new node vt is given a prestige label `t chosen randomly
from [0,1] The ranking is based on the order of the labels.

Fortunato, Flammini, Menczer ’06

R(vi, t) ∼ `it.

2 Ranking by age. Special case of Protean graphs
Pralat, Wormald ’07

R(vi, t) = i.

3 Random ranking. The new node vt is given a rank rt chosen
u.a.r. from [1, . . . , t].

R(vi, t) ∼ (ri/i)t

All these ranking schemes give a power law

degree distribution with exponent 1 + 1/α.



Ranking schemes

• Novelty ranking: youngest node gets rank 1.

R(vi, t) = t− i + 1.

Degree distribution is exponential.

• Ranking by degree: nodes are ranked in order of decreasing

degree, secondary criterium is age.

Not possible to predict R(v, t).

Power law with exponent 1 + 1/α.



Geometric Preferential Attachment, Model

[Flaxman, Frieze, Vera ’04]

• n points are randomly distributed on a sphere, in sequence.

• Each node i chooses m neighbours among the nodes that are

within a present distance r of i,

• The neighbours are chosen with link probability based on global

degree.

Power law degree distribution

Small separators

Connected whp if r ≥ n−1/2+β logn



Spatial Preferred Attachment (SPA) Model

• Generates directed graphs.

• Nodes are points in Euclidean space.

• Each node has a ”sphere of influ-

ence” centered at the node.

• The size of the sphere of influence

is determined by the in-degree of the

node.

• A new node v can only link to an

existing node u if v falls within the

sphere of influence of u.

• If v falls into the sphere of influence

u, it will link to u with probability p.

u

v



Spatial Preferred Attachment (SPA) Model

• Space: S, the surface of a sphere in R3 of area 1

• Sphere of influence of vertex v at time t: R(v, t), the cap around

v that has area

c1d−(v, t) + c2
t + c3

,

where d−(v, t) is the in-degree of node v at time t.

• G0 is the empty graph.

• At each time step t > 0, a new node vt is chosen u.a.r. from S,

and added to Gt−1 to create Gt.

• For each vertex u of Gt−1 so that v ∈ R(u, t− 1), independently,

a directed edge (vt, u) is created with probability p.



In-degree distribution

Nk,t = the number of vertices of in-degree k at time t.

Let u be a node of in-degree k.

P(vt lands in sphere of influence of node of u) :
c1k + c2
t + c3

P(vt links to u if vt fall in its sphere of influence) : p

E(N0,t+1 −N0,t | Gt) = 1− p
c2

t + c3
N0,t−1.

For k ≥ 1:

E(Nk,t+1 −Nk,t | Gt) = p
c1(k − 1) + c2

t + c3
Nk−1,t−1 − p

c1k + c2
t + c3

Nk,t−1



The in-degree distribution follows a power law with exponent 1+ 1
pc1

:

lim
t→∞

E(N0,t)/t = n0, where n0 =
1

1 + pc2
,

and for all k ≥ 1,

lim
t→∞

E(Nk,t)/t = nk, where nk ∼ k
−(1+ 1

pc1
)
.

The variables Nk,t are concentrated around the mean:

With extreme probability in n, for 0 ≤ k ≤ ( n
logn4)

p/6p+2, for all t ≤ n,

Nk,t = nkt(1 + o(1)).



In-degree distribution: simulations

Cumulative in-degree distribution, obtained from a graph with 1,000,000

nodes.

Parameters: c1 = c2 = c3 = 1. Left: p = 1. Right: p = 0.5.

Generated on a torus.



In-degree of a node

Let vi be the node born at time i.

E(d−(vi, t)) ∼
(

t

i

)pc1

But d−(vi) is not concentrated:

Left: time born vs. in-degree of node.

Right: time vs. maximum deviation of in-degree (log-scale) from the expected

value.



Initial steps matter!

t=5



Number of edges
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left: (i, |{Gi : |E(Gi)| ≤ i}|), right: (i, |{Gi : i− 100 ≤ |E(Gi)| ≤ i + 100}|)

From simulations of 1,000 graphs Gi, i ∈ [1 . . .1000], on 10,000

nodes. Parameters: c1 = c2 = c3 = 1, p = 1.

The sparsest graph had 61,154 edges, the densest one had 102,152

edges.



Out-degree

E(d+(vi)) =
∑

v∈V (Gi−1)

p

(
c1d−(v) + c2

i− 1 + c3

)
=

c2
1− pc1

(1 + o(1)).
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Out-degree sequence: (i,deg+(vi)), c1 = c2 = c3 = 1, p = 1.



Small world

• Graphs generated by SPA-model are acyclic

• The underlying graph is not connected; there are many isolated

nodes

• Conjecture: the largest induced directed path has length O(logn).

• Conjecture: Many long links: Distance between endpoints of an

edge can be large.



Simulation results

p = 1, p = 0.9, and p = 0.8

Generated on the unit square.



Scaling and self-similarity

Let S0 ⊆ S be a convex subset

of S with area c. Then for all k

for which we have concentration

around the mean,

Nk(t) ∩ S0 ∼ cNk(t).

So the in-degree distribution of all

nodes in S0 follows a power law

with the same exponent as the

original graph.

Does the graph induced by all nodes in S0 have many of the same

graph properties as the entire graph?



Estimating the geometry

Is the number of common out-neighbours of a pair of nodes an

indicator of the distance between the nodes?

0 1 765432 1098 14131211 18171615 19

2 common neighbours
max distance 0.519

5 common neighbours
max distance 0.219

10 common neighbours
max distance 0.093

(# common neighbours, distance) for each pair



Future Work

• Generalize the model:

– Node and edge deletion

– Adding edges to existing nodes

– Updating the out-links of a node

• Undirected graphs

• Rank-based preferential attachment: each node v has a rank

r(v, t) at time t, and the area of the sphere of influence of v is

proportional to

r(v, t)−α



Non-uniform distribution of points

Generate points using the principle of cumulative advantage: areas

that contain many points have a higher probability of receiving new

points.

⇒



Future Work: Adapt to real-world networks

• Adapt the model to specific types of real-world networks

• Find the right parameters from power law exponent etc.

• Validate the model by comparing graph properties

• Use the model to estimate the underlying geometry of the nodes


