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Self-organizing networks

Networks created by the interaction of many autonomous agents
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A good graph model should...

1. ...reproduce experimentally observed graph properties:

e Degree distribution follows a power law

e Small average distance between nodes, (“Small world")
e Locally dense, globally sparse.

e Expansion properties (conductance)

e Others..

2. ...include a credible model for agent behaviour guiding the for-
mation of the link structure

3. ...agents should not need global knowledge of the network to
determine their link environment



Common assumptions in the study of real-life networks

INn a social network can be recognized

as densely linked subgraphs.
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Common assumptions

Web pages with many common neighbours

contain related topics.
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Fig. 1 Relation between papers inferred from citation graph




Underlying metric

Such assumptions, commonly used in experimental and heuristic
treatments of real-life networks, imply that there is an a priori " com-
munity structure” or "relatedness measure’” of the nodes, which is
reflected by the link structure of the graph.

T he network is a visible manifestation of an underlying
hidden reality.




Spatial graph models

e Nodes correspond to points in a (high-dimensional) feature space
e [ he metric distance between nodes is a measure of " closeness”

e [ he edge generation is influenced by the position and relative
distance of the nodes

This gives a basis for reverse engineering: given a graph, and as-
suming a spatial model, it is possible to estimate the distribution of
nodes in the feature space from information contained in the graph
structure.



Random geometric graphs

[see book by Penrose '03]

n node points are randomly
distributed in FEuclidean space
according to a given distribution.

Node points are joined by an edge
if and only if their distance is less
than a threshold value t.

Link neighbourhood based on local environment,
but graph properties do not match.




Digression: Rank-based attachment

Preferential attachment:
Linking probability of a node v is proportional to deg(v).

Is it possible to modify the exponent of the power law by
varying the linking probability to (deg(v))%?

e NOo. Only if « =1 does the process lead to a power law graph.
Krapivsky, Redner, Leyvraz, 2000

e Instead, rank all the vertices. The linking probability of a node
v is proportional to R(v)™%, where R(v) is the rank of v.
Fortunato, Flammini, Menczer, 2006



Rank-based attachment

Model:

e Parameters: initial degree d € N, linking probability coefficient
a € (0,1).

e At each time ¢, node v has rank R(v,t) € [1,...,t]. Note that
R(-,t) is a bijection.

e (71 consists of a node vy with rank 1, and d loops.

e Add each time step ¢, a new node vy is added, together with
d edges with endpoint v;4 1. The other endpoints are chosen so
that the probability that v,y 7 links to a node w is proportional
to R(u,t)™ .

e A rank is assigned to v,y 1, and the ranks of the existing nodes
are updated, according to a pre-defined ranking scheme.



Ranking schemes

1 Each new node v is given a prestige label ¢4 chosen randomly
from [0, 1] The ranking is based on the order of the labels.
Fortunato, Flammini, Menczer '06

R(v;, t) ~ #;t.

2 Ranking by age. Special case of Protean graphs
Pralat, Wormald '07

R(v;,t) = 1.

3 Random ranking. The new node wv; is given a rank r; chosen
u.a.r. from [1,...,¢].

R(v;, t) ~ (r;/1)t

All these ranking schemes give a power law
degree distribution with exponent 1 + 1/a.




Ranking schemes

e Novelty ranking: youngest node gets rank 1.

R(v;,t) =t —1+ 1.

Degree distribution is exponential.

e Ranking by degree: nodes are ranked in order of decreasing
degree, secondary criterium is age.

Not possible to predict R(v,t).

Power law with exponent 1+ 1/a.



Geometric Preferential Attachment, Model

[Flaxman, Frieze, Vera '04]

e 1 points are randomly distributed on a sphere, in sequence.

e Each node 7 chooses m neighbours among the nodes that are
within a present distance r of 1,

e [ he neighbours are chosen with link probability based on global
degree.

Power law degree distribution
Small separators
Connected whp if » > n—1/2%t8ogn




Spatial Preferred Attachment (SPA) Model

Generates directed graphs.

Nodes are points in Euclidean space.
Each node has a ""sphere of influ-
ence” centered at the node.

The size of the sphere of influence
is determined by the in-degree of the
node.

A new node v can only link to an
existing node wu if v falls within the
sphere of influence of w.

If v falls into the sphere of influence
u, 1t will link to «w with probability p.

u ‘\.



Spatial Preferred Attachment (SPA) Model

Space: S, the surface of a sphere in R3 of area 1

Sphere of influence of vertex v at time ¢: R(v,t), the cap around
v that has area

c1d™ (v, t) + ¢
t+c3 ’
where d~ (v, t) is the in-degree of node v at time ¢t.

Go is the empty graph.

At each time step t > 0, a new node v; is chosen u.a.r. from S,
and added to G4_1 to create G;.

For each vertex u of G4_1 so that v € R(u,t — 1), independently,
a directed edge (v, u) is created with probability p.



In-degree distribution
N+ = the number of vertices of in-degree k at time ¢.

Let v be a node of in-degree k.

c1k + co

t+ c3
P(v; links to w if v; fall in its sphere of influence) : p

P(v; lands in sphere of influence of node of u) :

2
KE(N, — N, Gi)=1— Npo+_1.
(No t41 ot | Gt) Py o, Vo
For k > 1:
c1(k—1)4co c1k + co
KE(N — N Gi) = Ni_14.1— Ny
(Nk 41— Nig | Go) =p P k=101~ P Nk



T he in-degree distribution follows a power law with exponent 1+]%1:

1
lim E( NV, t = ng, where =
Jim B(No.)/t = no "0 T T s
and for all £ > 1,
(11
tlim E(Ng )/t = ng, where n; ~ k ( +pcl).
—00 !

The variables N ; are concentrated around the mean:

With extreme probability in n, for 0 < k < (|O§n4)p/6p+2, for all t < n,

Np = nit(1 +o(1)).




In-degree distribution: simulations

Cumulative in-degree distribution, obtained from a graph with 1,000,000
nodes.
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Parameters: ¢; = ¢ = c3
Generated on a torus.
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In-degree of a node

Let v; be the node born at time 1.
_ £\ Pc1
E(d™ (05, 0) ~ ()

But d~(v;) is not concentrated:
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Left: time born vs. in-degree of node.
Right: time vs. maximum deviation of in-degree (log-scale) from the expected

value.



Initial steps matter!




Number of edges
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From simulations of 1,000 graphs G% i € [1...1000], on 10,000
nodes. Parameters: ¢i =co=c3 =1, p=1.

The sparsest graph had 61,154 edges, the densest one had 102,152
edges.



E(dt (v) =

2.

veV(G;—1)

Out-degree
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Small world

Graphs generated by SPA-model are acyclic

The underlying graph is not connected; there are many isolated
nodes

Conjecture: the largest induced directed path has length O(logn).

Conjecture: Many long links: Distance between endpoints of an
edge can be large.



Simulation results

p=1, p=20.9, and p=10.8
Generated on the unit square.



Scaling and self-similarity

Let Sy C S be a convex subset
of S with area ¢. Then for all k
for which we have concentration
around the mean,

N (t) N Sg ~ cNL().

So the in-degree distribution of all
nodes in Sp follows a power law
with the same exponent as the ﬁi
original graph. Nelr e

Does the graph induced by all nodes in Sy have many of the same
graph properties as the entire graph?



Estimating the geometry

Is the number of common out-neighbours of a pair of nodes
indicator of the distance between the nodes?

2 common neighbours
max distance 0.519

5 common neighbours
max distance 0.219

thamwm )

10 common neighbours
max distance 0.093

i

RN RE NN MM\MN

(## common neighbours, distance) for each pair

an



Future Work

e (Generalize the model:
— Node and edge deletion
— Adding edges to existing nodes

— Updating the out-links of a node

e Undirected graphs

e Rank-based preferential attachment: each node v has a rank
r(v,t) at time ¢, and the area of the sphere of influence of v is
proportional to

r(v,t)™ ¢



Non-uniform distribution of points

Generate points using the principle of cumulative advantage: areas
that contain many points have a higher probability of receiving new
points.

o)
o
=
[{a]
z ‘ﬁ?’g'l‘_}4 :.8
= OO @
-y o
P "\“.
o
L}
0.0 0.2 04 06 0.8 1.0



Future Work: Adapt to real-world networks

Adapt the model to specific types of real-world networks

Find the right parameters from power law exponent etc.

Validate the model by comparing graph properties

Use the model to estimate the underlying geometry of the nodes



