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Part II:

Separation of timescales:
When can we consider dynamics on dynamic graphs?



“Power Laws” in data?

• in the WWW .... sure.

• in a social network ... possible.

• in earthquake magnitude ... yes, but to some cutoff.

• in the Internet???

Why power laws cannot continue: Finite size effects, resource
limitations, physical geometric (Internet) vs virtual geometry-free
(WWW)....



Preferential Attachment?

• in the WWW .... sure.

• in a social network ... sure.

• in earthquake magnitude ... obviously not.

• in the Internet

– Router level ... NO!
– AS level ... probably not.



The “Who-is-Who” network in Budapest

(Analysis by Balázs Szendröi and Gábor Csányi)

Bayesian curve fitting→ p(k) = ck−γe−αk



“Power law” → power law with exponential tail

Ubiquitous empirical measurements:

System with: p(x) ∼ x−B exp(−x/C) B C

Full protein-interaction map of Drosophila 1.20 0.038

High-confidence protein-interaction map of Drosophila 1.26 0.27

Gene-flow/hydridization network of plants
as function of spatial distance 0.75 105 m

Earthquake magnitude 1.35 - 1.7 ∼ 1021 Nm

Avalanche size of ferromagnetic materials 1.2 - 1.4 L1.4

ArXiv co-author network 1.3 53

MEDLINE co-author network 2.1 ∼ 5800

PNAS paper citation network 0.49 4.21

(Saturation and PA often put in apriori to explain)



Power laws are observed
Social systems:

• Popularity of web pages: Nk ∼ k−1

• Rank of city sizes (“Zipf’s Law”): Nk ∼ k−1

Connectivity of random graphs at critical point:

• Component sizes: Nk ∼ k−5/2
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Ci = A * i−γ ; γ = 2.054247

The AS-level Internet?

• Internet Autonomous Systems (AS), like ISP’s; Nk ∼ k−2.2



Known Mechanisms for Power Laws

• Phase transitions (singularities)

• Random multiplicative processes (fragmentation)

• Combination of exponentials (e.g. word frequencies)

• Preferential attachment / Proportional attachment
(Polya 1923, Yule 1925, Zipf 1949, Simon 1955, Price 1976,
Barabási and Albert 1999)

Attractiveness is proportional to size:

dP (s)
dt ∝ s

• Add in saturation, get PA with exponential decay.
(Amaral, Scala, Barthélémy, Stanley PNAS 2000), (Börner,
Maru, Goldstone PNAS 2004)



An alternate view, Mandelbrot, 1953: optimization

(Information theory of the statistical structure of language)

• Goal: Optimize information conveyed for unit transmission cost

• Consider an alphabet of d characters, with n distinct words

• Order all possible words by length (A,B,C,....AA,BB,CC....)

• “Cost” of j-th word, Cj ∼ logd j

• Ave cost per word: C =
∑

pjCj, where pj is prob of jth word.

• Ave information per word: H = −
∑

pj log pj

• Minimize: d
dpj

(
C
H

)
=⇒ pj ∼ j−α



Optimization versus Preferential Attachment origin of
power laws

Mandelbrot and Simon’s heated public exchange

• A series of six letters between 1959-61 in Information and
Control.

• Optimization on hold for many years, but recently resurfaced:

• Calson and Doyle, HOT, 1999

• Fabrikant, Koutsoupias, and Papadimitriou, 2002

• Solé, 2002



FKP (Fabrikant, Koutsoupias, and Papadimitriou, 2002)

• Nodes arriving sequentially at random in a unit square.

• Upon arrival, each node connects to an already existing node
that minimizes “cost”: αdij + hj
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• “Bimodal”: initial nodes hubs, remainder leaves.
(CDF hides, PDF very clear).



Tempered Preferential Attachment

[Berger, Borgs, Chayes, D’Souza, Kleinberg, ICALP 2004.]

[Berger, Borgs, Chayes, D’Souza, Kleinberg, CPC, 2005.]

• Optimization
Like FKP, start with linear tradeoffs, but consider a scale-free
metric. (Plus will result in local model.) Gives rise to:

→ PA

→ Saturation

→ Viability
(HETEROGENIETY: Not all children have equal fertility, not all spin-offs equally fit, etc.)



Competition-Induced Preferential Attachment

Consider points arriving sequentially, uniformly at random along
the unit line:

0
2 3 1 4

Each incoming node, t, attaches to an existing node j

(where j < t), which minimizes the function:

Ftj = minj [αtjdtj + hj]

Where αtj = αρtj = αntj/dtj.

The “cost” becomes: Ftj = minj [αntj + hj]



Ftj = minj [αntj + hj]

• αtj = αρtj local density, e.g. real estate in Manhattan.

• Reduces to ntj — number of points in the interval between t

and j

• “Transit domains” — captures realistic aspects of Internet costs
(i.e. AS/ISP-transit requires BGP and peering).

• Like FKP, tradeoff intial connection cost versus usage cost.

• Note cases α = 0 and α > 1.



The process on the line (for 1/3 < α < 1/2)
“Border Toll Optimization Problem” (BTOP)

Ftj = minj [αntj + hj]

0 1

t=1

0 2 1

t=2
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α
α

α

(A local model – connect either to closest node, or its parent.)



“Fertility”/Viability

t=4

t=3

0

0

2 3 1

2 13 4

Node 1 becomes “fertile” at time t = 3.

• Define A = d1/αe

• A node must have A − 1 “infertile” children before giving birth
to a “fertile” child.



Mapping onto a tree
(equal in distribution to the line)
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From line to tree

Integrating out the dependence on interval length from the
conditional probability:

Pr [xt+1 ∈ Ik |π(t)] =
∫

Pr [xt+1 ∈ Ik |π(t), ~s(t)] dP (~s(t))

=
∫

sk(t)dP (~s(t)) =
1

t + 1
,

i.e., The probability to land in the k-th interval is uniform over all

intervals.



Preferential attachment with a cutoff

0 2 13 4

Let dj(t) equal the degree of fertile node j at time t.

The number of intervals contributing to j’s fertility is
max(dj(t), A).

Probability node (t + 1) attaches to node j is:

Pr(t + 1 → j) = max(dj(t), A)/(t + 1).



The process on the tree

Equiv line:
0 2 13 4

0

4
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(4 , .)

(5 , .)

(1 , 3)

(3 , 5)

(2 , .)

Indistinguishable nodes with aging.



The process on degree sequence
(The master equation)

Let N0(t) ≡ number of infertile vertices.

Let Nk(t) ≡ number of fertile vertices of degree k

(for 1 ≤ k < A).

Let NA(t) ≡ number of fertile vertices of degree k ≥ A

(i.e. NA(t) =
∑∞

k=A Nk(t) “the tail”)



The process on degree sequence, cont.

Their expectations follow:

n1(t + 1) = n1(t) +
A

t
nA(t)− 1

t
n1(t)

nk(t + 1) = nk(t) +
k − 1

t
nk−1(t)−

k

t
nk(t), 1 < k < A

nA(t + 1) = nA(t) +
A− 1

t
nA−1(t).

Let: pk(t) = nk(t)/t.



In terms of pk(t) :

p1(t + 1)(t + 1)− p1(t)(t) = ApA(t)− p1(t)

pk(t + 1)(t + 1)− pk(t)(t) = (k − 1)pk−1(t)− kpk(t), 1 < k < A

pA(t + 1)(t + 1)− pA(t)(t) = (A− 1)pA−1(t).

Proposition 1 (Convergence of expectations to stationary
distribution): pk(t) → pk.

p1 = ApA − p1

pk = (k − 1)pk−1 − kpk, 1 < k < A

pA = (A− 1)pA−1.



Proposition (2): (Concentration) (i.e., How big are the
fluctuations about nk(t)?)

Recursion relation

pk = (k − 1)pk−1(t)− kpk(t), 1 < k < A.

Implies

pk =
∏k

i=2

(
i−1
i+1

)
p1, 1 < k < A.



Power law for 1 < k < A

pk

p1
=

k∏
i=2

(
i− 1
i + 1

)
=

2
k(k + 1)

∼ c k−2



Exponential decay for k > A

Recursion relation: pk = A (pk−1 − pk) , k ≥ A.

Implies

pk =
(

A
A+1

)k−A

pA, k ≥ A.

pk =
(

1− 1
A + 1

)k−A

pA =

[(
1− 1

A + 1

)A+1
](k−A)/(A+1)

pA

∼ exp [−(k −A)/(A + 1)] pA.



Generalizing: from A to (A1, A2)

Let the “viability threshold” A1 differ from the “attractiveness
saturation” A2.

Consider the Markov matrix describing the evolution of the
degree sequence (A1 not equal A2)

Limits: A1 = 1, A2 = ∞, Preferential Attachment

A1 = 1, A2 finite, PA with a cutoff

A1 = A2 = 1, uniform.



Degree sequence (summary)

pk = c1k
−γ for k < A2

pk = c2 exp[−k/(A + 1)] for k > A2.

• Power law for d < A2, with γ(A1, A2).

• Exponential decay for d > A2.



MONOTONICITY

We can further show that the exponent γ is bounded, 1 < γ < 3,
and:

• γ is monotonically decreasing with A1.

• γ is monotonically increasing with A2.

This means we can get not only the technological exponents,
2 < γ < 3, but also the “biological” exponents, 1 < γ < 2.



“Power law” → power law with exponential tail

Ubiquitous empirical measurements:

System with: p(x) ∼ x−B exp(−x/C) B C

Full protein-interaction map of Drosophila 1.20 0.038

High-confidence protein-interaction map of Drosophila 1.26 0.27

Gene-flow/hydridization network of plants
as function of spatial distance 0.75 105 m

Earthquake magnitude 1.35 - 1.7 ∼ 1021 Nm

Avalanche size of ferromagnetic materials 1.2 - 1.4 L1.4

ArXiv co-author network 1.3 53

MEDLINE co-author network 2.1 ∼ 5800

PNAS paper citation network 0.49 4.21



Fitting the Internet AS-level topology data

• Three “standard” views (c.f. CAIDA, TR-2005-02, 2005, and SIGCOMM 2006.)

– Traceroute
– BGP tables
– Whois

• First two shown to have power-law degree distributions, in
accords with the standard view first put forth by (Faloutsos)3

SIGCOMM, 1999. (And cited over 1100 times).

• Both views established via traceroute sampling.



Traceroute Sampling

• Recently shown that traceroute methods can bias results,
making underlying graph appear to have power-laws:

– Lakhina, Byers, Crovella, Xie INFOCOM, 2003;
– Achlioptas, Clauset, Kempe, Moore STOC, 2005.

• Counter-arguments– can distinguish heavy-tailed from simple
exponential, but not precise form. Also depends on
“betweeness”, how many probes.....

– Dall’Asta, Alvarez-Hamelin, Barrat, Vazquez, Vespignani
Theo. Comput. Sci. 2006

• Third view (Whois), not power law and no explanation.



TPA and Whois
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 CIPA fit 

• TPA fit, R2 = 0.97 with A1 = 187, and A2 = 90.



Comparing TPA and PA graphs

TPA PA



Example range of TPA graphs

A1 = 10, A2 = 25 A1 = 3, A2 = 20 A1 = 3, A2 = 20, (3-roots)



Numerical efficiency

Simulation of a TPA graph of size N requires:

• cN lnN space.

• Time linear in N .

( c is slightly larger than for standard PA, since need to keep list
of “viable”.)

Note, most optimization models require time∼ N2 (exploration
of all possible alternatives).



Extensions

• Different cost functions and geometries:
– Biological choices? (modularity versus efficiency)
– Open-source software (“systems’ motifs”)
– Economics (whom should you trade with)

• What is the fine-structure? (joint deg dist)

• Validation! — historical data on Internet growth.

• Hierarchy and feedback – emergent for performance/robustness
reasons



Part II: Timescales/Separation of Timescales

Relaxation time as the “characteristic” time for information
flow on a network

R.D, S. Ramanathan, and D. Temple Lang. “Measuring
performance of ad hoc networks using timescales for

information flow”, INFOCOM 2003.



Build up a connected network of mobile nodes

• Can we ever do any routing?

• (i.e., do the nodes move too fast for us to make use of
instantaneous topology?)



Consider a random walk on the instantaneous topology

Communication model:

• Only one conversation at a time (“unicast”).

• So penalize for degree: k neighbors, get to transmit only 1/k

of the time.

• Can choose any other model, what follows holds.



Relaxation time

• Let M be the resulting state-transition matrix (column
normalized).

• Principle eigenvalue λ1 = 1. (All other λi < 1.)

• M t~ui = (λi)t~ui = 1
e~ui =⇒ ti = −1/ ln(λi)

• The relaxation time:

τmax = −1/ ln(λ2)
where λ2 is penultimate eigenvector.



Separation of timescales
(When can you study dynamics on dynamic graphs?)

• τmax estimates characteristic time for information flow on
network.

• Let T be time it takes for sensor to move far enough that its
connectivity changes (i.e., timescale for network topology to
change).

• If τmax � T network topology static during packet delivery
=⇒ routing table useful.

• if τmax > T network topology changes faster than packet can
be delivered =⇒ no clever routing possible (just flooding).



Relaxation time as performance metric
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Fig. 10. (a) A histogram of the values for τ for the same n = 1000 realizations with ρ = 0.1 discussed thus far, however constructed with the AP instead
of CP schemes. The dashed line is the same exponential density plotted in Fig. 7. (b) A scatterplot comparing each of the 1000 instances. The horizontal axis
denotes the value of τ resulting from a CP construction, the vertical axis, from the AP construction. There is one obvious outlier where the value of τ was
not lowered by the AP construction. In all other case τ is lowered, which is especially significant for those realizations with the largest values of τ under the
CP construction.

performance metric for evaluating alternate network construc-
tion schemes. Yet, despite its relevance, no previous work
has quantitatively discussed the relevance nor attempted to
quantify the characteristic time. We introduce a framework
based on the assumption that messages diffuse along the
network. Diffusion means no strategy is used to efficiently
exchange data. If any strategy for routing messages were used
we would expect the value of τ to decrease. Thus the time
obtained by our method is an upper bound on the actual time.

We are also interested in the distribution of this time across
many independent realizations of networks with similar user
densities. This distribution gives insight into the feasibility of
communicating efficiently with ad hoc networks with time-
varying topologies. In particular, if the distribution has a large
variance, we would expect the time to exhibit large fluctuations
as the underlying network topology changes. Instead we find
the empirical distribution is well described by an exponential
distribution. Hence the fluctuations on average will not be large
and the timescale will not change drastically if the underlying
topology changes while the local user density remains fixed.

We also introduce a decentralized algorithm for network
construction, which is a variant of [6]. Instead of optimizing
with respect to minimal power, we optimize with respect to
minimizing τ , the largest timescale. Our adaptive power (AP)
algorithm lets each device set its power level individually
to optimize its own connectivity, using only information of
the current state of its local environment. When compared to
networks generated with the standard common power (CP)
algorithm the networks resulting from the AP construction
have more efficient network topologies and improved perfor-
mance by all three metrics (power consumption, interference,

and timescales). In addition, since the AP scheme uses only
information local to each device, the topology of the network
can change rapidly in response to environmental changes,
such as moving users or time-varying wireless channels; the
construction can be iterated locally as necessary. In fact
many routing algorithms rely upon continually executing route
discovery algorithms, such as ad hoc on demand distance
vector routing[7]. Using the AP construction for topology
and route discovery, “shortcut” paths through the network are
found which would not be found with the CP approach. Thus
the AP networks should have a higher throughput than the CP
ones.

With regards to the power consumption metric, we assumed
that all devices were transmitting at all times (i.e., a high
traffic density limit). More accurately we could instead es-
timate usage and use this to determine power consumption.
In addition, past algorithms for adaptive power during usage
can be overlayed onto the networks we constructed. Such
algorithms are based on devices transmitting at the minimum
power necessary to reach a specific neighbor, not the minimum
power for full network connectivity[20].

Much future work which fits naturally into our framework
involves quantifying distinct regimes for routing. For instance,
answering the question on how large to build routing tables
and how often to refresh them. We expect such answers to
depend on a combination of factors described herein, such
as the density of nodes and traffic, and the relative speed
of the devices with regards to the instantaneous value of
the characteristic time. We now have a way to quantify the
characteristic time. Also, depending on the distance between
the source and destination, we expect that different strategies
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Network growth with feedback

• λ(t): Rate of node arrival

• Range, k(t) = dcN(t)/λ(t)e: Only get a finite set of candidate
parent nodes. (Some fraction, c ≤ 1, of the network allocated
to growth, the rest busy doing other things).

• Optimization function, Fij: How attachment node j is chosen
from k candidates.

• Fitness, F(G(t)): The characteristic timescale for information
flow, τmax

• Feedback: λ(t) evolves in time in response to feedback on the
changes in the fitness of the system as follows:



Feedback

• Feedback: λ(t) evolves in time in response to feedback on the
changes in the fitness of the system as follows:

λ(t + 1) =


λ(t), if F(G(t)) = F(G(t− δ))

λ(t) + 1, if F(G(t)) > F(G(t− δ))

max[λ(t)− 1, 1], if F(G(t)) < F(G(t− δ))



Preliminary results

With feedback, can grow larger, more fit networks in less time.

δ →∞ δ = 10, Nstop = 501 δ = 10, tstop = 167 δ = 2, Nstop = 501
〈N(t)〉 501 501 705.3 ± 10.3 501
〈Time〉 167 130.7± 1.8 167 74.5± 0.7
〈hj〉 1.661± 0.002 1.753± 0.004 1.753± 0.004 1.848± 0.002
〈max hj〉 2.47± 0.05 2.58± 0.05 2.50± 0.05 2.82± 0.05
〈max dj〉 169.1± 0.9 132.1± 1.8 169.8± 1.0 76.4± 0.8
< τc/ ln(N)2.35 > 3.0± 0.1 3.2± 0.1 3.5± 0.1 5.0± 0.1



Summary

• Mixing time, cover time, relaxation time as performance
metrics.

• Establish separation of timescales. (When can we treat a
dynamic graph as static).

• Optimization and network growth



Tempered Preferential Attachment

• Start from optimization framework.

• Gives an underlying mechanism for how PA can arise.

• Gives an underlying mechanism for aging and saturation.

• Introduces Viability.



TPA: Fitting data

• Degree distribution, power law with exponential tail

• A1 6= A2

– Get all the exponents, from 1 < γ < 3.
– Continuously interpolate from uniform attachment, to PA with
cutoff, to PA.

• Numerical efficiency – even though an optimization model.
Requires minimal additional numerical overhead when
compared with standard PA.

TPA: A new class of models for analysis and simulation of
networks.


