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Part Il:

Separation of timescales:
When can we consider dynamics on dynamic graphs?




“Power Laws” in data?

e in the WWW .... sure.
e in a social network ... possible.
e in earthquake magnitude ... yes, but to some cutoff.

e in the Internet???

Why power laws cannot continue: Finite size effects, resource
limitations, physical geometric (Internet) vs virtual geometry-free
(WWW)....



Preferential Attachment?

in the WWW .... sure.
In a social network ... sure.
In earthquake magnitude ... obviously not.

in the Internet

— Router level ... NO!
— AS level ... probably not.



The “Who-is-Who” network in Budapest

(Analysis by Balazs Szendr6i and Gabor Csanyi)

Bayesian curve fitting — p(k) = ck e "



“Power law” — power law with exponential tail

Ubiquitous empirical measurements:

System with: p(z) ~ 2~ " exp(—z/C) B C
Full protein-interaction map of Drosophila 1.20 0.038
High-confidence protein-interaction map of Drosophila | 1.26 0.27
Gene-flow/hydridization network of plants
as function of spatial distance 0.75 10° m
Earthquake magnitude 1.35-1.7 | ~ 10 Nm
Avalanche size of ferromagnetic materials 12-14 | L™*
ArXiv co-author network 1.3 53
MEDLINE co-author network 2.1 ~ 5800
PNAS paper citation network 0.49 4.21

(Saturation and PA often put in apriori to explain)




Power laws are observed
Social systems:

e Popularity of web pages: N, ~ k1

e Rank of city sizes (“Zipf’'s Law”): N}, ~ k1

Connectivity of random graphs at critical point:

e Component sizes: N, ~ k—5/2

The AS-level Internet?

e Internet Autonomous Systems (AS), like ISP’s; N, ~ k=22



Known Mechanisms for Power Laws

e Phase transitions (singularities)
e Random multiplicative processes (fragmentation)
e Combination of exponentials (e.g. word frequencies)

¢ Preferential attachment / Proportional attachment
(Polya 1923, Yule 1925, Zipf 1949, Simon 1955, Price 1976,
Barabasi and Albert 1999)

Attractiveness is proportional to size:

dP(s)
dt

e Add in saturation, get PA with exponential decay.

(Amaral, Scala, Barthélémy, Stanley PNAS 2000), (Borner,
Maru, Goldstone PNAS 2004)



An alternate view, Mandelbrot, 1953: optimization
(Information theory of the statistical structure of language)

e Goal: Optimize information conveyed for unit transmission cost
e Consider an alphabet of d characters, with n distinct words

e Order all possible words by length (A,B,C,....AA,BB,CC....)

e “Cost” of j-th word, C; ~ log, j

e Ave cost per word: C'= > p,;C;, where p; is prob of jth word.
e Ave information per word: H = — ) p;logp;

e Minimize: %ﬁ (&) = pj~j©



Optimization versus Preferential Attachment origin of
power laws

Mandelbrot and Simon’s heated public exchange

e A series of six letters between 1959-61 in Information and
Control.

e Optimization on hold for many years, but recently resurfaced:
e Calson and Doyle, HOT, 1999
e Fabrikant, Koutsoupias, and Papadimitriou, 2002

e Solé, 2002



FKP (Fabrikant, Koutsoupias, and Papadimitriou, 2002)

e Nodes arriving sequentially at random in a unit square.

e Upon arrival, each node connects to an already existing node
that minimizes “cost”: Ozdij -+ hj

e “Bimodal”: initial nodes hubs, remainder leaves.
(CDF hides, PDF very clear).



Tempered Preferential Attachment

[Berger, Borgs, Chayes, D’Souza, Kleinberg, /ICALP 2004.]

[Berger, Borgs, Chayes, D’Souza, Kleinberg, CPC, 2005.]

e Optimization
Like FKP, start with linear tradeoffs, but consider a scale-free
metric. (Plus will result in local model.) Gives rise to:

— PA
— Saturation

— Viability

(HETEROGENIETY: Not all children have equal fertility, not all spin-offs equally fit, etc.)




Competition-Induced Preferential Attachment

Consider points arriving sequentially, uniformly at random along
the unit line:
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Each incoming node, ¢, attaches to an existing node j
(where j < t), which minimizes the function:

Fij = ming [oy;dy; + hyl

Where oy = apy; = ang/dy;.

The “cost” becomes: | I'y; = min; [Omtj T hj]




th - minj [omtj —+ hj]

e ;; = (py; local density, e.g. real estate in Manhattan.

e Reduces to n;; — number of points in the interval between ¢
and j

e “Transit domains” — captures realistic aspects of Internet costs
(i.,e. AS/ISP-transit requires BGP and peering).

e Like FKP, tradeoff intial connection cost versus usage cost.

e Notecasesa = 0and a > 1.



The process on the line (for 1/3 < a < 1/2)
“Border Toll Optimization Problem” (BTOP)

th — minj [omtj -+ hj]

F(30) =a
| F(10)=0 t=3 | F(32)=1

D

t=1
0 1 o 23 1 FGB) =1
F(40) = 3a
F(20) = 0 _
t=2 O (> | =4 o Va o i F(42) 1+2a
F1) =1 F(43)= 1+ a
0o 2 1 o 23 1 4
F(41) = 1

(A local model — connect either to closest node, or its parent.)



“Fertility”/Viability

0 23 1
Y |
0 2 3 1 4

Node 1 becomes “fertile” at time ¢ = 3.
e Define A = |1/«]

e A node must have A — 1 “infertile” children before giving birth
to a “fertile” child.



Mapping onto a tree
(equal in distribution to the line)

0 1
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0 2 1
0 2 3 1
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t=2

t=4
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From line to tree

Integrating out the dependence on interval length from the
conditional probability:

Pr|xiiq € Iy |m(t)]

/ Pr iz, € I (1), 5()] dP(3(0)

[ sewdpe) =

l.e., The probability to land in the k-th interval is uniform over all

Intervals.



Preferential attachment with a cutoff

Let d;(t) equal the degree of fertile node j at time .

The number of intervals contributing to j’s fertility is
max(d;(t), A).

Probability node (¢ + 1) attaches to node j is:

Pr(t+1 — j) = max(d;(t), A)/(t + 1).




The process on the tree

0 2 3 1 4
Equiv line:

(1.3

Indistinguishable nodes with aging.



The process on degree sequence
(The master equation)

Let No(t) = number of infertile vertices.

Let Ni(¢) = number of fertile vertices of degree k
(for 1 < k < A).

Let N4(t) = number of fertile vertices of degree k > A
(i.e. Na(t) = > .- 4 Ni(t) “the tail”)



The process on degree sequence, cont.
Their expectations follow:

m(t+1) = nyt) +§nA(t) —%nl(t)

k—1 k

np(t+1) = ng(t) + ; ng_1(t) — ;nk(t), I<k<A

A—1

nA(t—l—l) = nA(t)—I- ;

nA_l(t).

Let: pk(t) — nk(t)/t.



In terms of py(t) :

pit+1)(E+1) —pi()(t) = Apa(t) —pi(t)
pre(t+1)(t+ 1) — pr(t)(t) (k— Dpr_1(t) — kpi(t), 1<k< A
pa(t+1)(t+1)—p (A—=T1)pa_1(t).

AN
~~
N )
~—
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~—
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Proposition 1 (Convergence of expectations to stationary
distribution):  pg(t) — px.

p1 = Apa—pi
pr = (k—1)pr_1— kps, l<k< A
paA = (A - 1)pA—1-



Proposition (2): (Concentration) (i.e., How big are the
fluctuations about n(¢)?)

Recursion relation

pr = (k — V)pr_1(t) — kpi(t), 1<k<A.

Implies

Pk = Hfzz (211) p1, 1<k<A.




Powerlawfor1 < k< A

k

Z;_]; B H(ZI) :k(k2+1)

1=2

~ ck7?



Exponential decay for £ > A

Recursion relation: p. = A (pr_1 — px) ,

Implies

4\ kA
Pk = <_A+1) pa, k> A.

1 k—A 1 A+17]
— |1 — (1= ——
( A+1> pa ( A+1>

~ exp|—(k—A)/(A+1)]pa.

k> A.

(k—=A)/(A+1)

pPA



Generalizing: from A to (4, A,)

Let the “viability threshold” A differ from the “attractiveness
saturation” A,.

Consider the Markov matrix describing the evolution of the
degree sequence (A1 not equal A2)

Limits: A; = 1, Ay = oo, Preferential Attachment
A1 =1, Ay finite, PA with a cutoff

Ay = Ay = 1, uniform.



Degree sequence (summary)

pr = k™7 for k< As
pr = coexp[—k/(A+1)] for k> As.

e Power law for d < As, with v( A4, As).

e Exponential decay for d > As.



MONOTONICITY

We can further show that the exponent ~ is bounded, 1 < ~ < 3,
and:

e -y Is monotonically decreasing with A;.

e ~v Is monotonically increasing with As.

This means we can get not only the technological exponents,
2 < v < 3, but also the “biological” exponents, 1 < ~v < 2.



“Power law” — power law with exponential tail

Ubiquitous empirical measurements:

System with: p(z) ~ 2~ " exp(—z/C) B C
Full protein-interaction map of Drosophila 1.20 0.038
High-confidence protein-interaction map of Drosophila | 1.26 0.27
Gene-flow/hydridization network of plants
as function of spatial distance 0.75 10° m
Earthquake magnitude 1.35-1.7 | ~ 10°° Nm
Avalanche size of ferromagnetic materials 12-14 | L™*
ArXiv co-author network 1.3 53
MEDLINE co-author network 2.1 ~ 5800
PNAS paper citation network 0.49 4.21




Fitting the Internet AS-level topology data

e [hree “standard” views (c.f. CAIDA, TR-2005-02, 2005, and SIGCOMM 2006.)
— Traceroute
— BGP tables
— Whois

e First two shown to have power-law degree distributions, In
accords with the standard view first put forth by (Faloutsos)?
SIGCOMM, 1999. (And cited over 1100 times).

e Both views established via traceroute sampling.



Traceroute Sampling

e Recently shown that traceroute methods can bias results,
making underlying graph appear to have power-laws:

— Lakhina, Byers, Crovella, Xie INFOCOM, 2003;
— Achlioptas, Clauset, Kempe, Moore STOC, 2005.

e Counter-arguments— can distinguish heavy-tailed from simple
exponential, but not precise form. Also depends on
“betweeness”, how many probes.....

— Dall’Asta, Alvarez-Hamelin, Barrat, Vazquez, Vespignani
Theo. Comput. Sci. 2006

e Third view (Whois), not power law and no explanation.



TPA and Whois

Whois ccdf

0% |
.....

0 Whois data
— CIPA fit

ccdf(d)
le-04 1e-03 1le-02 1e-01 1e+00

I I I I I I I I I
2 5 10 20 50 200 500

degree,d

o TPA fit, R? = 0.97 with A; = 187, and A, = 90.



Comparing TPA and PA graphs

TPA

PA



Example range of TPA graphs

A, = 3, Ay = 20, (3-roots)



Numerical efficiency
Simulation of a TPA graph of size N requires:
e cN In N space.

e [ime linear in N.

( ¢ is slightly larger than for standard PA, since need to keep list
of “viable”.)

Note, most optimization models require time ~ N2 (exploration
of all possible alternatives).



Extensions

e Different cost functions and geometries:
— Biological choices? (modularity versus efficiency)
— Open-source software (“systems’ motifs”)
— Economics (whom should you trade with)

e What is the fine-structure? (joint deg dist)
e Validation! — historical data on Internet growth.

e Hierarchy and feedback — emergent for performance/robustness
reasons



Part Il: Timescales/Separation of Timescales

Relaxation time as the “characteristic” time for information
flow on a network

R.D, S. Ramanathan, and D. Temple Lang. “Measuring
performance of ad hoc networks using timescales for
information flow”, INFOCOM 2003.



Build up a connected network of mobile nodes
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e Can we ever do any routing?

e (l.e., do the nodes move too fast for us to make use of
iInstantaneous topology?)



Consider a random walk on the instantaneous topology

(k—1)k

o 1k(k-1))

1/(k(k—1)) 1/(k(k—1))
Communication model:
e Only one conversation at a time (“unicast”).

e So penalize for degree: k neighbors, get to transmit only 1/k
of the time.

e Can choose any other model, what follows holds.



Relaxation time

e Let M be the resulting state-transition matrix (column
normalized).

e Principle eigenvalue A1 = 1. (All other A; < 1.)
o Mtﬁz — ()\Z)tl—b)ft = lﬁi — {; = —1/111()\@)

e [he relaxation time:

Tmar — —1/1I1()\2)

where )\, is penultimate eigenvector.




Separation of timescales
(When can you study dynamics on dynamic graphs?)

e Tmar €Stimates characteristic time for information flow on
network.

o Let 1’ be time it takes for sensor to move far enough that its
connectivity changes (i.e., timescale for network topology to
change).

o If 7, < 1" network topology static during packet delivery
— routing table useful.

o if T,,ur > 1" network topology changes faster than packet can
be delivered = no clever routing possible (just flooding).



Relaxation time as performance metric

Adaptive power
—1/In(A), compared to exponential density of Common Power

0.0030
|

0.0020
I

Density

0.0010
I

-
e, - -

0.0000
I
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~1/In(%)

R.D, S. Ramanathan, and D. Temple Lang. “Measuring performance of ad
hoc networks using timescales for information flow”, INFOCOM 2003.



Network growth with feedback

e )\(t): Rate of node arrival

e Range, k(t) = [cN(t)/A(t)]: Only get a finite set of candidate
parent nodes. (Some fraction, ¢ < 1, of the network allocated
to growth, the rest busy doing other things).

o Optimization function, F;,: How attachment node j is chosen
from k candidates.

e Fitness, 7(G(t)): The characteristic timescale for information
flow, Tax

e Feedback: \(t) evolves in time in response to feedback on the
changes in the fitness of the system as follows:



Feedback

e Feedback: \(t) evolves in time in response to feedback on the
changes in the fitness of the system as follows:

(A1), if F(G(t)) = F(G(t — )
Mt+1) = A@) + 1, it F(G(t)) > F(G(t — )
\max[)\(t) —1,1], tF(G({)) < F(G(t—9))




Preliminary results

With feedback, can grow larger, more fit networks in less time.

§ — 00 6 = 10, Ngtop = 501 | 6 = 10, tgop = 167
(N(t)) 501 501 705.3 = 10.3
(Time) 167 130.7 £ 1.8 167
(h;) 1.661 & 0.002 1.753 £ 0.004 1.753 £ 0.004
(max h;) 2.47 4 0.05 2.58 +0.05 2.50 & 0.05
(max d,) 169.1 £ 0.9 132.1 £ 1.8 169.8 1.0
< 7./In(N)?35 > 3.0+£0.1 3.2+0.1 3.5+0.1




Summary

e Mixing time, cover time, relaxation time as performance
metrics.

e Establish separation of timescales. (When can we treat a
dynamic graph as static).

e Optimization and network growth



Tempered Preferential Attachment

e Start from optimization framework.
e Gives an underlying mechanism for how PA can arise.
e Gives an underlying mechanism for aging and saturation.

e Introduces Viability.



TPA: Fitting data

e Degree distribution, power law with exponential tall

o Ay # Ay
— Get all the exponents, from 1 < v < 3.

— Continuously interpolate from uniform attachment, to PA with
cutoff, to PA.

e Numerical efficiency — even though an optimization model.

Requires minimal additional numerical overhead when
compared with standard PA.

TPA: A new class of models for analysis and simulation of
networks.




