"Preferential Attachment from Optimization"

Raissa D'Souza UC Davis Dept of Mechanical and Aeronautical Eng. Center for Computational Science and Eng. Santa Fe Institute

Part I: "Emergence of Tempered Preferential Attachment from Optimization"

(April 10, 2007)

Jennifer Chayes (MSR) Christian Borgs (MSR) Noam Berger (UCLA) Bobby Kleinberg (Cornell)

Part II:

Separation of timescales: When can we consider dynamics on dynamic graphs?

"Power Laws" in data?

- in the WWW sure.
- in a social network ... possible.
- in earthquake magnitude ... yes, but to some cutoff.
- in the Internet???

Why power laws cannot continue: Finite size effects, resource limitations, physical geometric (Internet) vs virtual geometry-free (WWW)....

Preferential Attachment?

- in the WWW sure.
- in a social network ... sure.
- in earthquake magnitude ... obviously not.
- in the Internet
 - Router level ... NO!
 - AS level ... probably not.

The "Who-is-Who" network in Budapest

(Analysis by Balázs Szendröi and Gábor Csányi)

Bayesian curve fitting $\rightarrow p(k) = c k^{-\gamma} e^{-\alpha k}$

"Power law" \rightarrow power law with exponential tail

Ubiquitous empirical measurements:

System with: $p(x) \sim x^{-B} \exp(-x/C)$	В	C
Full protein-interaction map of <i>Drosophila</i>	1.20	0.038
High-confidence protein-interaction map of Drosophila	1.26	0.27
Gene-flow/hydridization network of plants		
as function of spatial distance	0.75	$10^5 \ {\sf m}$
Earthquake magnitude	1.35 - 1.7	$\sim 10^{21}\mathrm{Nm}$
Avalanche size of ferromagnetic materials	1.2 - 1.4	$L^{1.4}$
ArXiv co-author network	1.3	53
MEDLINE co-author network	2.1	~ 5800
PNAS paper citation network	0.49	4.21

(Saturation and PA often put in apriori to explain)

Power laws are observed

Social systems:

- Popularity of web pages: $N_k \sim k^{-1}$
- Rank of city sizes ("Zipf's Law"): $N_k \sim k^{-1}$

Connectivity of random graphs at critical point:

• Component sizes: $N_k \sim k^{-5/2}$

The AS-level Internet?

• Internet Autonomous Systems (AS), like ISP's; $N_k \sim k^{-2.2}$

Known Mechanisms for Power Laws

- Phase transitions (singularities)
- Random multiplicative processes (fragmentation)
- Combination of exponentials (e.g. word frequencies)
- Preferential attachment / Proportional attachment (Polya 1923, Yule 1925, Zipf 1949, Simon 1955, Price 1976, Barabási and Albert 1999)

Attractiveness is proportional to size:

 $rac{dP(s)}{dt} \propto s$

 Add in saturation, get PA with exponential decay.
 (Amaral, Scala, Barthélémy, Stanley PNAS 2000), (Börner, Maru, Goldstone PNAS 2004)

An alternate view, Mandelbrot, 1953: optimization

(Information theory of the statistical structure of language)

- Goal: Optimize information conveyed for unit transmission cost
- Consider an alphabet of d characters, with n distinct words
- Order all possible words by length (A,B,C,...,AA,BB,CC....)
- "Cost" of *j*-th word, $C_j \sim \log_d j$
- Ave cost per word: $C = \sum p_j C_j$, where p_j is prob of *j*th word.
- Ave information per word: $H = -\sum p_j \log p_j$

• Minimize:
$$\frac{d}{dp_j} \left(\frac{C}{H} \right) \implies p_j \sim j^{-\alpha}$$

Optimization versus Preferential Attachment origin of power laws

Mandelbrot and Simon's heated public exchange

- A series of six letters between 1959-61 in *Information and Control*.
- Optimization on hold for many years, but recently resurfaced:
- Calson and Doyle, HOT, 1999
- Fabrikant, Koutsoupias, and Papadimitriou, 2002
- Solé, 2002

FKP (Fabrikant, Koutsoupias, and Papadimitriou, 2002)

- Nodes arriving sequentially at random in a unit square.
- Upon arrival, each node connects to an already existing node that minimizes "cost": $\alpha d_{ij} + h_j$

 "Bimodal": initial nodes hubs, remainder leaves. (CDF hides, PDF very clear).

Tempered Preferential Attachment

[Berger, Borgs, Chayes, D'Souza, Kleinberg, *ICALP* 2004.]

[Berger, Borgs, Chayes, D'Souza, Kleinberg, CPC, 2005.]

Optimization

Like FKP, start with linear tradeoffs, but consider a scale-free metric. (Plus will result in local model.) Gives rise to:

\rightarrow Viability

(HETEROGENIETY: Not all children have equal fertility, not all spin-offs equally fit, etc.)

Competition-Induced Preferential Attachment

Consider points arriving sequentially, uniformly at random along the unit line:

Each incoming node, t, attaches to an existing node j (where j < t), which minimizes the function:

 $F_{tj} = \min_j \left[lpha_{tj} d_{tj} + h_j
ight]$ Where $lpha_{tj} = lpha
ho_{tj} = lpha n_{tj}/d_{tj}.$

The "cost" becomes: $F_{tj} = \min_j \left[\alpha n_{tj} + h_j \right]$

$$F_{tj} = \min_j \left[\alpha n_{tj} + h_j \right]$$

- $\alpha_{tj} = \alpha \rho_{tj}$ local density, e.g. real estate in Manhattan.
- \bullet Reduces to n_{tj} number of points in the interval between t and j
- "Transit domains" captures realistic aspects of Internet costs (i.e. AS/ISP-transit requires BGP and peering).
- Like FKP, tradeoff intial connection cost versus usage cost.
- Note cases $\alpha = 0$ and $\alpha > 1$.

The process on the line (for $1/3 < \alpha < 1/2$)

"Border Toll Optimization Problem" (BTOP)

$$F_{tj} = \min_j \left[\alpha n_{tj} + h_j \right]$$

(A local model – connect either to closest node, or its parent.)

"Fertility"/Viability

Node 1 becomes "fertile" at time t = 3.

- Define $A = \lceil 1/\alpha \rceil$
- A node must have A 1 "infertile" children before giving birth to a "fertile" child.

Mapping onto a tree

(equal in distribution to the line)

1

t=4

From line to tree

Integrating out the dependence on interval length from the conditional probability:

$$Pr[x_{t+1} \in I_k | \pi(t)] = \int Pr[x_{t+1} \in I_k | \pi(t), \vec{s}(t)] dP(\vec{s}(t))$$
$$= \int s_k(t) dP(\vec{s}(t)) = \frac{1}{t+1},$$

i.e., The probability to land in the k-th interval is uniform over all

intervals.

Preferential attachment with a cutoff

Let $d_j(t)$ equal the degree of fertile node j at time t.

The number of intervals contributing to *j*'s fertility is $\max(d_j(t), A)$.

Probability node (t + 1) attaches to node j is:

 $Pr(t+1 \to j) = \max(d_j(t), A)/(t+1).$

The process on the tree

Indistinguishable nodes with aging.

The process on degree sequence (The master equation)

Let $N_0(t) \equiv$ number of infertile vertices.

Let $N_k(t) \equiv$ number of fertile vertices of degree k (for $1 \le k < A$).

Let $N_A(t) \equiv$ number of fertile vertices of degree $k \ge A$ (i.e. $N_A(t) = \sum_{k=A}^{\infty} N_k(t)$ "the tail")

The process on degree sequence, cont.

Their expectations follow:

$$n_1(t+1) = n_1(t) + \frac{A}{t}n_A(t) - \frac{1}{t}n_1(t)$$

$$n_k(t+1) = n_k(t) + \frac{k-1}{t}n_{k-1}(t) - \frac{k}{t}n_k(t), \qquad 1 < k < A$$

$$n_A(t+1) = n_A(t) + \frac{A-1}{t} n_{A-1}(t).$$

Let: $p_k(t) = n_k(t)/t$.

In terms of $p_k(t)$:

 $p_{1}(t+1)(t+1) - p_{1}(t)(t) = Ap_{A}(t) - p_{1}(t)$ $p_{k}(t+1)(t+1) - p_{k}(t)(t) = (k-1)p_{k-1}(t) - kp_{k}(t), \quad 1 < k < A$ $p_{A}(t+1)(t+1) - p_{A}(t)(t) = (A-1)p_{A-1}(t).$

Proposition 1 (Convergence of expectations to stationary distribution): $p_k(t) \rightarrow p_k$.

$$p_{1} = Ap_{A} - p_{1}$$

$$p_{k} = (k-1)p_{k-1} - kp_{k}, \qquad 1 < k < A$$

$$p_{A} = (A-1)p_{A-1}.$$

Proposition (2): (Concentration) (i.e., How big are the fluctuations about $n_k(t)$?)

Recursion relation

$$p_k = (k-1)p_{k-1}(t) - kp_k(t), \qquad 1 < k < A.$$
Implies

$$p_k = \prod_{i=2}^k \left(\frac{i-1}{i+1}\right) p_1, \quad 1 < k < A.$$

Power law for 1 < k < A

$$\frac{p_k}{p_1} = \prod_{i=2}^k \left(\frac{i-1}{i+1}\right) = \frac{2}{k(k+1)}$$
$$\sim c k^{-2}$$

Exponential decay for k > A

Recursion relation: $p_k = A (p_{k-1} - p_k), \quad k \ge A.$ Implies $p_k = \left(\frac{A}{A+1}\right)^{k-A} p_A, \quad k \ge A.$

$$p_k = \left(1 - \frac{1}{A+1}\right)^{k-A} p_A = \left[\left(1 - \frac{1}{A+1}\right)^{A+1}\right]^{(k-A)/(A+1)} p_A$$

~ $\exp\left[-(k-A)/(A+1)\right]p_A.$

Generalizing: from A to (A_1, A_2)

Let the "viability threshold" A_1 differ from the "attractiveness saturation" A_2 .

Consider the Markov matrix describing the evolution of the degree sequence (A1 not equal A2)

Limits: $A_1 = 1, A_2 = \infty$, Preferential Attachment

 $A_1 = 1, A_2$ finite, PA with a cutoff

 $A_1 = A_2 = 1$, uniform.

Degree sequence (summary)

$$p_k = c_1 k^{-\gamma}$$
 for $k < A_2$
 $p_k = c_2 \exp[-k/(A+1)]$ for $k > A_2$.

- Power law for $d < A_2$, with $\gamma(A_1, A_2)$.
- Exponential decay for $d > A_2$.

MONOTONICITY

We can further show that the exponent γ is bounded, $1 < \gamma < 3$, and:

- γ is monotonically *decreasing* with A_1 .
- γ is monotonically *increasing* with A_2 .
 - This means we can get not only the technological exponents, $2 < \gamma < 3$, but also the "biological" exponents, $1 < \gamma < 2$.

"Power law" \rightarrow power law with exponential tail

Ubiquitous empirical measurements:

System with: $p(x) \sim x^{-B} \exp(-x/C)$	В	C
Full protein-interaction map of <i>Drosophila</i>	1.20	0.038
High-confidence protein-interaction map of Drosophila	1.26	0.27
Gene-flow/hydridization network of plants		
as function of spatial distance	0.75	$10^5 \ {\sf m}$
Earthquake magnitude	1.35 - 1.7	$\sim 10^{21}\mathrm{Nm}$
Avalanche size of ferromagnetic materials	1.2 - 1.4	$L^{1.4}$
ArXiv co-author network	1.3	53
MEDLINE co-author network	2.1	~ 5800
PNAS paper citation network	0.49	4.21

Fitting the Internet AS-level topology data

- Three "standard" views (c.f. CAIDA, TR-2005-02, 2005, and *SIGCOMM* 2006.)
 - Traceroute
 - BGP tables
 - Whois
- First two shown to have power-law degree distributions, in accords with the standard view first put forth by (Faloutsos)³
 SIGCOMM, 1999. (And cited over 1100 times).
- Both views established via traceroute sampling.

Traceroute Sampling

- Recently shown that traceroute methods can bias results, making underlying graph appear to have power-laws:
 - Lakhina, Byers, Crovella, Xie INFOCOM, 2003;
 - Achlioptas, Clauset, Kempe, Moore STOC, 2005.
- Counter-arguments
 – can distinguish *heavy-tailed* from simple exponential, but not precise form. Also depends on "betweeness", how many probes.....
 - Dall'Asta, Alvarez-Hamelin, Barrat, Vazquez, Vespignani *Theo. Comput. Sci.* 2006
- Third view (Whois), not power law and no explanation.

TPA and Whois

• TPA fit, $R^2 = 0.97$ with $A_1 = 187$, and $A_2 = 90$.

Comparing TPA and PA graphs

Example range of TPA graphs

 $A_1 = 10, A_2 = 25$ $A_1 = 3, A_2 = 20$ $A_1 = 3, A_2 = 20$, (3-roots)

Numerical efficiency

Simulation of a TPA graph of size N requires:

- $cN \ln N$ space.
- Time linear in N.

(c is slightly larger than for standard PA, since need to keep list of "viable".)

Note, most optimization models require time $\sim N^2$ (exploration of all possible alternatives).

Extensions

- Different cost functions and geometries:
 - Biological choices? (modularity versus efficiency)
 - Open-source software ("systems' motifs")
 - Economics (whom should you trade with)
- What is the fine-structure? (joint deg dist)
- Validation! historical data on Internet growth.
- Hierarchy and feedback emergent for performance/robustness reasons

Relaxation time as the "characteristic" time for information flow on a network

R.D, S. Ramanathan, and D. Temple Lang. "Measuring performance of ad hoc networks using timescales for information flow", *INFOCOM* 2003.

Build up a connected network of mobile nodes

- Can we ever do any routing?
- (i.e., do the nodes move too fast for us to make use of instantaneous topology?)

Consider a random walk on the instantaneous topology

Communication model:

- Only one conversation at a time ("unicast").
- So penalize for degree: k neighbors, get to transmit only 1/k of the time.
- Can choose any other model, what follows holds.

Relaxation time

- \bullet Let M be the resulting state-transition matrix (column normalized).
- Principle eigenvalue $\lambda_1=1$. (All other $\lambda_i<1$.)

•
$$M^t \vec{u}_i = (\lambda_i)^t \vec{u}_i = \frac{1}{e} \vec{u}_i \implies t_i = -1/\ln(\lambda_i)$$

• The relaxation time:

$$au_{max} = -1/\ln(\lambda_2)$$

where λ_2 is penultimate eigenvector.

Separation of timescales

(When can you study dynamics on dynamic graphs?)

- au_{max} estimates characteristic time for information flow on network.
- Let T be time it takes for sensor to move far enough that its connectivity changes (i.e., timescale for network topology to change).
- If $au_{max} \ll T$ network topology static during packet delivery \implies routing table useful.
- if $\tau_{max} > T$ network topology changes faster than packet can be delivered \implies no clever routing possible (just flooding).

Relaxation time as performance metric

R.D, S. Ramanathan, and D. Temple Lang. "Measuring performance of ad hoc networks using timescales for information flow", *INFOCOM* 2003.

Network growth with feedback

- $\lambda(t)$: **Rate** of node arrival
- **Range**, $k(t) = \lceil cN(t)/\lambda(t) \rceil$: Only get a finite set of candidate parent nodes. (Some fraction, $c \le 1$, of the network allocated to growth, the rest busy doing other things).
- **Optimization function**, F_{ij} : How attachment node j is chosen from k candidates.
- Fitness, $\mathcal{F}(G(t))$: The characteristic timescale for information flow, τ_{\max}
- **Feedback**: $\lambda(t)$ evolves in time in response to feedback on the changes in the fitness of the system as follows:

Feedback

 Feedback: λ(t) evolves in time in response to feedback on the changes in the fitness of the system as follows:

$$\lambda(t+1) = \begin{cases} \lambda(t), & \text{if } \mathcal{F}(G(t)) = \mathcal{F}(G(t-\delta)) \\ \lambda(t)+1, & \text{if } \mathcal{F}(G(t)) > \mathcal{F}(G(t-\delta)) \\ \max[\lambda(t)-1,1], & \text{if } \mathcal{F}(G(t)) < \mathcal{F}(G(t-\delta)) \end{cases}$$

Preliminary results

With feedback, can grow larger, more fit networks in less time.

	$\delta o \infty$	$\delta = 10$, $N_{ m stop} = 501$	$\delta = 10, t_{stop} = 167$
$\langle N(t) angle$	501	501	705.3 ± 10.3
$\langle \text{Time} \rangle$	167	130.7 ± 1.8	167
$\langle h_j angle$	1.661 ± 0.002	1.753 ± 0.004	1.753 ± 0.004
$\langle \max h_j \rangle$	2.47 ± 0.05	2.58 ± 0.05	2.50 ± 0.05
$\langle \max d_j \rangle$	169.1 ± 0.9	132.1 ± 1.8	169.8 ± 1.0
$< au_c/\ln(N)^{2.35}>$	3.0 ± 0.1	3.2 ± 0.1	3.5 ± 0.1

Summary

- Mixing time, cover time, relaxation time as performance metrics.
- Establish separation of timescales. (When can we treat a dynamic graph as static).
- Optimization and network growth

Tempered Preferential Attachment

- Start from **optimization** framework.
- Gives an underlying mechanism for how PA can arise.
- Gives an underlying mechanism for aging and saturation.
- Introduces Viability.

TPA: Fitting data

- Degree distribution, power law with exponential tail
- $A_1 \neq A_2$
 - Get all the exponents, from $1<\gamma<3.$
 - Continuously interpolate from uniform attachment, to PA with cutoff, to PA.
- Numerical efficiency even though an optimization model. Requires minimal additional numerical overhead when compared with standard PA.

TPA: A new class of models for analysis and simulation of networks.