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How do you best move a given pile 2 A

»/f/ — \\ —<3 \; ™

of sand to fill a given hole of the A
same volume? ¥ 8
Pile of Sand: a positive Radon measuge™ on a compact convex subset

X C R™.

Hole: another positive Radon measure on X.

Same Volumet < put (X) = = (X) < +o0

move:a Borel, one-to-onemap : X — X

fill: upt = p= (i p=(A) = Yupt(4) = pt (¥~ 1(4))).
best:minimum total work

Work or cost ofi): I (1) = [y |z — ¢ (z)| du™ (z).



Minimize the cost

= [ le-v@ldi* @)

among all‘transport mapsin
A={y: X — X Borel, one-to-oney (™) = p~ }.



Minimize the cost
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among all‘transport mapsin
A={¢ : X — X Borel, one-to-oney (1) =p~ }.

Or in more general case, minimize

b - /X ¢ (2% () du* (@)

for some given cost function: X x X — [0, +o0). For instanceg(z, y) =

|z — y|P for somep > 0.



Minimize the cost

19 = [ o= v (@)ldu* (z)
among all‘transport mapsin

A={¢ : X — X Borel, one-to-oney (1) =p~ }.

Or in more general case, minimize

b - /X ¢ (2% () du* (@)

for some given cost function: X x X — [0, +o0). For instanceg(z, y) =
|z — y|P for somep > 0.

Technical Difficulties:
¢ Highly nonlinearstructure of/.
e No solution whenX = [—1,1], u™ = &y, u~ = 36_1 + 241
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Minimize

) = / c(z,y)dy(z,y)
A
In the class ofransport plans

S OO X [y = ', Ty = i )

Existence: from a simple compactness argument of probability measures



Definition. Givenp € (0,4o0) (usually[1, +c0)), for any two probability
measures,t, u~ € P (X), define

Wy (i n7) = (min [ lo—yPdy(z, gy AP),

distance between measures= minimal cost

Proposition. 17/, is a distance o (.X') and metrizes the weak * topology of
P (X).

Applications: Monge-Kantorovich problem has many applications in Ecc
nomic (Nobel Prize in 1975)Fluid Mechanics; PDE; Optimization; meteo-
rology and oceanography; surface reconstruction;

A Partial list of experts:Ambrosio, Brenier, Caffarelli, Evans, Feldman,
Gangbo, Kinderleher, McCann, Otto, Trudinger, Wang,



But, should we always define cost as an |
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But, should we always define cost as an inte

Answer: Not always.
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Answer: Not always.

Example:What is the best way to ship two items from nearby cities to th

same destination far away.
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Answer: Not always.

Example:What is the best way to ship two items from nearby cities to th

same destination far away.
_|_
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U
First Attempt: Move them directly to their destination.



Answer: Not always.

Example:What is the best way to ship two items from nearby cities to th

same destination far away.
/ :
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Another way: put them on the same truck and transport together!



" A \/ﬂ

A &
A V-shaped path A Y-shaped path

Answer: Transporting two items together might be cheaper than the total c
of transporting them separately. As a result,

e A “Y shaped” path is preferable to a “V shaped” path.

e Here, the cost is naturally given by the actual transport “path”, while tr

transport maps for both types are trivially same. Knowing only maps
not enough here.

In general, aamified structurenight be more efficient than‘@near” struc-
ture consisting of straight lines.



e [rees

e Circulatory systems

e Cardiovasular systems
¢ Railways, Airlines

e Electric power supply

e River channel networks
e Post office mailing system
e Urban transport network
e Marketing

e Ordinary life

e Communications

e Superconductor

Conclusion: Ramified structures
are very common in living and
non-living systems. It deserves a
more general theoretic treatment.






path

Need:
e A class of “transport paths”.

—Broad enough to ensure the existence of optimal transport paths;

e A reasonable cost functional on the category.

— Optimal transport paths should allow some parts overlap in a cost e
cient fashion. Should be “Y-shaped” rather than “V shaped”.

—Nice regularity of optimal transport paths.
|ldea: figuring ousimple casefirst!



An atomic measures a (finite) sum of Dirac measures with positive multi-
plicities.
A Z a;0g,
)

for somex; € X anda; > 0. Let A(X) be the space of all atomic measure:
on X.

Question: What is &ransport patibetween two atomic probability measures
a andb?



A transport path frona to b is a weighted

\ /@ directed graph
G={V(G),EG),w: E(G)— (0,+00)}
/ satisfyingKirchhoff’s laws (for eletrical
circuits):
/\ Y w(e) =" NNaE

for any interior vertex.

Notation: For atomic measuresb € P(X), let
Path(a,b) be the family of all transport paths fromto b.



Note that in general the space Ratlb) might be very large.
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Note that in general the space Ratlb) might be very large.

Want: Find an optimal’Y shaped” or “ramifiedtransport path in Path(a,b).
Thus, we need a suitabt®st functionabn transport paths.

For eachG = {V(G), E(G),w : E(G) — (0,+0)}, define the
M, mass ofG by

Z w (e)“ length(e)

for somea € [0, 1).



Note that in general the space Ratlb) might be very large.

Want: Find an optimal’Y shaped” or “ramifiedtransport path in Path(a,b).
Thus, we need a suitabt®st functionabn transport paths.

For eachG = {V(G), E(G),w : E(G) — (0,+0)}, define the
M, mass ofG by

Z w (e)“ length(e)

for somea € [0, 1).

Result: anM, mass minimizer is indeed “Y-shaped” or “ramified”.



It satisfies a balance equation:

Using this equation, we have a for-
mula to calculate the angles.

In particular, ifao = 0, then the an-
gles arel20°.

Also, if o = 1/2, then the top angle
must bed0e.
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(Xia, 2001)

Lemma. For any G € Path(a,b), there
exists aG € Path(a,b) such thatG
contains nacyclesand

M., (é) (G
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Lemma. For anyG € Path(a,b), there
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M., (é) < M, (G).

Thus, we may consider only transport paths containing no cycles.



(Xia, 2001)

Lemma. For anyG € Path(a,b), there
exists aG € Path(a,b) such thatG

contains nacyclesand
M., (é) < M, (G).

Thus, we may consider only transport paths containing no cycles.

Lemma. If G' contains no cycles, theh < w(e) < 1foranye € E(G).

Thus
M (G) < My (G).



(Xia, 2001)

Lemma. For anyG € Path(a,b), there
exists aG € Path(a,b) such thatG
contains nacyclesand

M., (é) < M, (G).

Thus, we may consider only transport paths containing no cycles.

Lemma. If G' contains no cycles, theh < w(e) < 1foranye € E(G).
Thus
M (G) < M, (G).

Now, given any two probability measures and . —, what is a transport
path fromu™ to 1= ?

ut 22 -= s



?7?

ldea:

e Approximateu ™, ;~ by atomic measures;, b;;

e Transports; to b; by a graph;;

e The limit T of G, (in a suitable sense) is a transportation.ofto 1.

The sequence of triple§a;, b;, G;} is called anapproximating graph se-
guenceof T'.



AssumeX C (), a cube InNR"" of the edge length, with centerc. Let
Qi=1{Q}: heZ™n 0,297}

be a partition of)) into smaller cubes of edge Iengfh

L R K.

Q(i Q] Qz

For any Radon measureon X, let

A = NTek )0,
h

wherec! is the center of)”. Then,A,(h) converges ta weakly as measures.
This is called‘Dyadic approximation of:”.



Duality!!

Answer: View eaclty; as a 1 dimensionalormal currenwith 0G; = b; —a;.

LetU C R'" be any open set.
e D"'(U): C* differentialn—forms inU with compact support.

e An n-currentis an element of the dual spaég,(U) of D"*(U). i.e. an
n—current is a continuous linear functional @ (U). Thus,0—currents
are just distributions.

e For anyT € D, (U), itsboundarydT € D,,_1(U) is given by
dB(W) = T(dv), vy € D"~ H(U).
e Themassof T' € D, (U) is given by
M(T) = sup{Tw) : | < 1,w € DY(U)}
o' € D,(U)is normalif M(T) + M(0T) < +oo.



e Orientedn-dimensional submanifold/ of U with H"" (M) < +oc.

/w—/ < w{z), &(o NS ES

for anyw € D™(U). Note thato| M 8M] andM (| M]) = H"(M).
e Differentialm — n forms¢ € Dm &

/ O N w.
e Rectifiable currents(M, 0, &)
0 o) — /M B ) ) > (o))

Here: M Is a rectifiable n-set] is a locally’H" integrable function and
£(x) is the orientation of/. M.



Definition. Givenu™, u~ € P(X), a normal 1-currentl’ is called atrans-
port pathfrom ™ to 1~ if there exists a sequence of approximating graph
{CLZ', 5 Gz} such that

a b — N, G
In the sense of distributions.

Note that we automatically hav” = 1~ — 1~ as distributions.
For each transport path, we define

N0 (L) = {ai’ig;,{:Gi} lim 1E>1£o M, (Gy) .

Let Path(u™, ) be the family of all transport paths from™ to ;.



Example: How to transport a Lebesgue measure to a Dirac measure?
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In higher dimension case, df > 1— -, then

con(28) ™

///

o0 1 Qo 4
s n(m—1)
o3 () N

Proposition. (Xia, 2001) Suppose > 1 — +. Foranyu €

m

P (X), there exists &' € Path(u,d.) from p to a Dirac measure,. with
M, (T) < +o0.



(Xia, 2001)

Theorem.Givenp™ and = € My(X),a € (1 — =-, 1], there exists an
M, mass minimizets in the family Path(u™, ). Moreoverl\/[ a(S) <
A vmd

oilSill=a) | 2
Sketch of the proof:
° PiCk{aZ-, bz', GZ} with
Mo (Gj) \, inf{Mq(T) : T € Path(u™, ™)}
e \We may assuméG; } has no cycless
M(G;) < My (G;) < C bounded.
e By the compactness of normal currents,
G, SRS R, 1)

e lower semicontinuity oM.



Definition. Giveny™ andu~ € P (X), define
SN ) — min{M,, (T) : T € Path{{Zasy s

Theorem.(Xia, 2001)d,, is a distance orP(X).
Remark:d,, is different from any of the Wassenstein distances.

Theorem.(Xia, 2001)d, metrizes the weak * topology &f(X).



14

Lemma.lf G; € Path(a;, b;) is an Mg, /] Y.
minimizer, thenT € Path(u*, ™) is
alsoan M, minimizerin Path(u™*, u=).

a;
Definition. A transport pathl’ € Path(u™, ) is called anoptimal trans-

port pathif there exists a sequence of appximating grapsb;, G;} such
that eachG; € Path(a;, b;) is anM,, minimizer.




By the lemma, we can pick ourvorite approximating atomic measures

{ai}, {bi}.
We choose “dyadic approximatiogd,,(u)}.

Proposition. For anyu € P(X),
do(p, An(p)) < CA”

with some constan® > 0 and A = 21-2)—1 ¢ (0, 1).

Corollary. If eachG,, Is optimal, then
M, (T) < My (Gp) + 2CA"

A An(p”)
Optimal



Theorem. (Xia, 2002)(P(X), d,) is a length space.

That is, for anyu™, = € P(X), there
exists a continuous map

2 [0,1] = (P(M), da)

with ¢t = dn(u", =) such that ¥ (P(X), da)
P(0) = p, P(T) = p~

and for any0 < s; < s9 <'t,

da((51),9(s2)) = 50 — 51.

In other words, an optimal transport path between Radon measures plays
role of ageodesidetween two points.

Later, we will see that in faagachy(s) is purely atomic for any < s < t.

U751 s dalpt,p)



08¢

06

0.4r

0.2¢

08¢

067

0.4r

0.2r

alpha=0.1 totalvalue=1.4048

02 04 06 08

alpha=0.1 totalvalue=2.1833

totalvalue of the graphs

alpha=0.1 totalvalue=1.7467

08+

06+

04:

0.2+

™
tn

38 ]

—_
tn

1 2 3 4
subdivision depth



08¢

06

0.4r

0.2¢

08¢

067

0.4r

0.2r

alpha=0.5 totalvalue=1.25

02 04 06 08

alpha=0.5 totalvalue=1.521

totalvalue of the graphs

08+

06+

04:

0.2+

—_ =y =y -
w = h (97}

-
P
-

alpha=0.5 totalvalue=1.4037

2 3 4
subdivision depth



08¢

06

0.4r

0.2¢

08¢

067

0.4r

0.2r

alpha=0.95 totalvalue=1.067

02 04 06 08 1

alpha=0.95 totalvalue=1.1176

totalvalue of the graphs

08+

06+

04:

0.2+

-
=
$a

alpha=0.95 totalvalue=1.1005

2 3 4
subdivision depth



alpha=0.95 totalvalue=1.1351

07 0.8 0.9



0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

01

alpha=0.5 totalvalue=2.0178

0.2

0.4

06

0.8



Let « andb be any two atomic measures. For example,

X1
1 [ J
4



Let « andb be any two atomic measures. For example,

e Each transport patt¥ € Path(a,b)
gives a l-current valued matrix

9(G) = (gij). (no cycles!)

e Each transport plafn € Plan(a,b)
IS given by a real valued matrix

D — (uw)




A transport patlz and a transport plam are said to beompatiblef

G = Zuw 8 g?jj°

A compatible pair gives a decomposition@f



A transport patlz and a transport plam are said to beompatiblef

G = Zuw 8 g?jj°

A compatible pair gives a decomposition@f
For instancel/; is compatible withZ while U5 is not.
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A transport patlz and a transport plam are said to beompatiblef

G = Zuw 8 gij-

A compatible pair gives a decomposition@f

For instancel/; is compatible withZ while U5 is not.
5 X, X1 Xo

2
1 1
4 D
X3 X3
1 1 1
4 = = 2L 5 1
4 15 +135 T
1
3
2
Y1 3 Y;

Ys Y Y, Y5

A compatible pair of transport path and transport plan provides the nec
sary transporting information by its unique matrix representa(t@og), (gij)).

uj; = amount of mass from; to y;, while g;; = actual transport path



(Xia, 2001)

e There exist€y € Path (a,b) compatible with ally € Plan (a,b).

e For anyG € Path (a,b), there exists & € Plan (a,b) compatible with
G.

e Given a transport plan € Plan (1™, ™), there exists an optimal trans-
port pathT € Path (u, 1) with least finiteM,, cost among all com-
patible pairgT, ). (mailing problem)

e Given a transport path' € Path (pﬁ , ,u_), there exists an optimal trans-
port plany € Plan (", =) with least! () cost among all compatible
pairs(T’, ).



Let T € Path(u™, ) be any transport path withl,(T) < +oo, not
necessarily optimal.

Theorem. (rectifiability)(Xia, 2001)1" is a real multiplicity 1-rectifiable cur-
rentT = 7(M, 0, &) withdT = u™ — . Moreover,

M, (T) = /M 0(x)*dH1(x)

|dea of proof: Follows from the rectifiable slicing theorem.

Now, assume that' is optimal. Let us see how nicgis.



(Xia, 2002)
For anyp € spt(T') \ spt(0T), there exists an open ball neighborha8glof
p such that
T| By
IS a cone ap consisting of finite union of segments with suitable multiplici-
ties. These segments are balanced by a simple balance equation.

ut

Qb 2,

0




Observation: The support @ may not necessarily bedimensional nearby
its boundary, which is the difference of the given two measures. This
because the boundary itself may everibesan the space, as demonstratec
by letting the initial measure to be the Lebesgue measure.



How about the boundary ?
Observation: The support @f may not necessarily bedimensional nearby
its boundary, which is the difference of the given two measures. This
because the boundary itself may everibesan the space, as demonstratec
by letting the initial measure to be the Lebesgue measure
Solution: Relax yourself and enjoy the ;:!.-;‘;{:_-‘# .
nature. &

The nature has provided a wonderful so- - -- |
lution for us: the leaf vein.



How about the boundary ?

Observation: The support @f may not necessarily bedimensional nearby
its boundary, which is the difference of the given two measures. This
because the boundary itself may everibesan the space, as demonstratec
by letting the initial measure to be the Lebesgue measure.

ST PR 1, VT

ERNRIE Y AR
Solution: Relax yourself and enjoy the >« &
nature.

The nature has provided a wonderful so- - -
lution for us: the leaf vein.

But, how to read this information?



To understand the boundary behavior, a suitable approach is to study
“level sets”of the rectifiable currert’ = 7(M, 0, £) instead. For each > 0,
let

My = {x € M 0GR NS



To understand the boundary behavior, a suitable approach is to study
“level sets”of the rectifiable currert’ = 7(M, 0, £) instead. For each > 0,
let

My = {x € M 0GR NS

Theorem(Xia, 2003). Each level set of an optimal transport path is locall
concentrated on a finite union of bilipschitz curves. These curves enjoy so
nice properties similar to those satisfied by segments near an interior poit



Key ldea of Proof: Decomposition!

e For any optimal weighted directed gragh € Path(a,b), if M%(a) +
M®(b) is bounded above, then we can decompoged

a=ap+agr,b=0p FUENEE=NEEEE

so thatP € Path(ap,bp), R € Path(ap,bpr), the total number of ver-
tices and edges of P are uniformly bounded. The levelrsas contained
in P. Edges ofP’ are "nice”.

e Taking the limits to get the decomposition of optimal transport paths.
Advantage: Graphs are much easier to deal with. Just using combinatol
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Key ldea of Proof: Decomposition!

e For any optimal weighted directed gragh € Path(a,b), if M%(a) +
M®(b) is bounded above, then we can decompoged

a=ap+agr,b=0p FUENEE=NEEEE

so thatP € Path(ap,bp), R € Path(ap,bpr), the total number of ver-
tices and edges of P are uniformly bounded. The levelrsas contained
in P. Edges ofP’ are "nice”.

e Taking the limits to get the decomposition of optimal transport paths.
Advantage: Graphs are much easier to deal with. Just using combinatol

Feedback?A natural question: Can we use this idea to understand tl
dynamic formation of a tree leaf?

YES! (Xia, 2004)
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0=0.68, B=0.38, totalcost=49.5418




Question: Given a measurer, for which «, will we haved, (i, v) < +00?
For simplicity, we choose =Dirac mass.
Recall that ify =Lebesgue measure and> 1 — % then

%%QQY”

= — | \ \ <
5o (AANE 1 a 4 S p
~C > S: ( n m) m L
==l (2 ) 2
OO a \ 7 \
::C§:<@%m)iﬁm/n A
n=1
00

_CZ( ) < +00

Here, dlmensmmn = info1{7== : da(y, 8p) < +oo0}
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Here again, dimension @f = inf, 1 {1~ : da(p1, &) < +00}.
Note, herex is allowed to benegative.



Examples;u = Fat\ Cantor set (i.e. remove an interval of lengtfrom the
middle of |0, 1]).

AL 0\ T 1 o n
L — (21_0‘) <
Z (2) ( 2 ) 2<1—A>nz1 .
s IS
1
e ot =
p
1 > s In 2
1 — « np 2 NN
1=
wherep = ~—5=.

Again, we have dimension @f = inf 1 {12 : da(z,d) < +00}



Example: A =finite union of A; for: = 1,---k. EachA,; is ac—rescale of
A.

O o ©.@)
1 L
E k’n (ﬁ) Un_lL —NSs E (kl_a()')n < RO®
n—1 R =

— k% <1
1 )\ In k
1l — « Ino

<—

Therefore,D (1) = —{2%

il @

Here again, self-similar dimension pf= inf, 1 {1 : da(p1, ) < +00}



For anyu,v € P(X), let
1
D — i
Proposition. (P(X), D) is apseudometric space

That is,D is a metric except thab (., v) = 0 does not implyu = v.
e.g.D(dg, dy) = 0foranyz,y € X because, (o, dy) = |z —y| < +o0, Va.

- do(p, V) < 400}

Definition. For any . andrv, we sayu ~ v if D (u,v) = 0. Thatis,u andv
are equivalent if and only 3 (1, v) < +oo for any 3. The equivalent class
of 1 is denoted byu)| .

Lemma.If p >~ w9, then forany, D (uy,v) = D (9, v) .
Thus, we may define



Theorem.(Xia, 2007)D defines a metric on the equivalent classes of prok
ability measures.

In general, we have

dqus(spt(p) < D(p,00) < dpoy(spt(p))-
Thus, when support gf is nice enough, we get
dimension ofspt(n) = the distance)(u, dg).
As a result, | callD dimensional distance.

Conclusion:Dimensionof a set/measure just the distanctrom it to a Dirac
mass.



Thank You and Enjoy the Nature




