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Diaconis-Fulton Addition

Finite sets A,B c Z4.

ANB={x1,...,x;}

To form A+B, let Co=AUB and

Cj=Cj—1U{y;}
where y; is the endpoint of a random walk
started at X; and stopped on exiting Cj_l.

Define A+ B =C;.

Abeilan property: the law of A+B does not
depend on the ordering of xq,...,x;.



Internal DLA

Al = {0}, Apn=A4A,_1 —i—{O}.

Lawler, Bramson and Griffeath (1992) proved
that the limiting shape is a ball.

More precisely, for any € >0, with probabil-
ity one we have

Br(l—a) C AL(x)drdJ C B’”(H‘S)
for all sufficiently large r.

Here B, ={xeZ? : |x|<r}, and o, is the
volume of the unit ball in R9,



Divisible Sandpile

e Start with mass 2 on ANB, mass 1 on
AUB—-ANB.

e Each site keeps mass 1, sends excess mass
equally to each neighbor.

o ASt— oo, get a limiting region A® B of sites
with mass 1.
— Sites in d(A® B) have fractional mass.

— Sites outside have zero mass.



Odometer Function

e u(x) = total mass emitted from x.

e Discrete Laplacian:

Aux) = = T u(y) — u(x)
2d

y~X
— mass received — mass emitted
(1 x€ANB
=<0 x€AUB—-ANB
1 xXeEAPB—-AUB.
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Least Superharmonic Majorant

o Let

Yx) = —[x*= Y g(x,y)— ¥ g(xy),

yEA yeEB
where g is the Green’s function for SRW in
74, d>3.

— In dimension two, we use the negative
of the potential kernel in place of g.

e s(x) =inf{d(x) | & superharmonic, ¢ > vy}.

o Claimu=s—y.



Proof of the claim

Let m(x) = amount of mass present at x in
the final state. Then

Au=m—14—1p
<1—-14—1p.

Since
Ay=1,+1p—1

the sum u+vy is superharmonic, so u+vy>s.

Reverse inequality: s—y—u is superharmonic
on A®B and is >0 outside A® B, hence >0
inside as well.



Scaling Limit

e A,BCR? bounded open sets such that d4,0B
have measure zero

o Let
D=AUBU{s > v}
where
2
— _|x]?— y)d —/ y)d
Y(x) = —|x| /Ag(xy)y Bg(xy)y

and s is the least superharmonic majorant
of v.

e Odometer: u=s—y.



Scaling Limit for the Divisible

Sanpile

o Write A" =AN§,Z49.

e Theorem (Levine-P.) Let D,=A"®B", and
let u,, be the corresponding odometer func-
tion. Then

8%un—>u uniformly
and for any € >0
D; C D, C D%

for all sufficiently large n, where D¢, Dt are
the inner and outer e-neighborhoods of D.



Scaling Limit for Diaconis-Fulton
Addition

e Theorem (Levine-P.) Let A,Bc R4 be bounded
open sets with dA,dB having measure zero.
For all € >0, with probability one

Dg CA::_|_B:: CDE::

for all sufficiently large n, where

— D=AUBU{s >},

— Y(x) = —|x|* = [ag(x,y)dy — [pg(x,y)dy;

— s is the least superharmonic majorant of v;

— D¢, DE are the inner and outer
e-neighborhoods of D;

— A" =ANJ,74.



Lower Bound

e Inspired by the Lawler-Bramson-Griffeath
argument for internal DLA.

e Let each random walk continue on after
the particle has aggregated to the cluster.

e Fix ze Dg, and let

— M = number of walks that visit z before
exiting D-.

— L= number of walks that visit z before
exiting D but after aggregating to the
cluster.

o P(z¢ A"+ B") =P(L=M).
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Independent Indicators

e .= number of walks that visit z before ex-
iting D if one walk starts at each point
ye (D—AUB)".

e Since L > L we have

P(L=M)<P(L>M)
<P(L>a)+PM<a).

e Strategy: show EL < EM and use
concentration of measure.
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Dirichlet Problem

o Let
f(z) =EM —EL
= Y  &alad- )Y &b,
ye(D—AUB)* yE(ANB)*

where g, is the Green’s function for SRW
stopped on exiting D-.

e [ hen

Af =1—14:—1p:, on D~
=0, on oD".

e [ he divisible sandpile odometer satisfies

Aun:1—1A::—1B::, on Dy
u, =0, on oDy,.
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Concentration of Measure

e Using the fact that D, — D, u, — u, and the
positivity of u, can show that

f>ced? on D;.

e L and M are sums of §,¢|D| independent
indicators whose means are of order 842,
So EL, EM are of order §,72.

e Large deviations:

P(|L-EL| > \AEL) < 2 EL,
P (M —EM|>AEM) < 2¢~ MM,
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Finishing Up

e Conclude that P(L>M) < de—cedn”

e Summing over z € D; and over n, by Borel-
Cantelli only finitely many of the events
{z¢ A*+B"} occur, a.s.

e Hence D; C A+ B~ for sufficiently large n.
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The Rotor-Router Model

e Deterministic analogue of random walk.

e Invented by Jim Propp.

e Each site x€Z? has a rotor pointing North,
South, East or West.

(Start all rotors pointing North, say.)

e A particle starts at the origin. At each site
it comes to, it

1. Turns the rotor clockwise by 90 degrees;

2. Takes a step in direction of the rotor.
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Rotor-Router Aggregation

e Sequence of lattice regions
Ay ={o}

Ap=A,1U {xn}a

where

o x, € Z2 is the site at which rotor walk
first leaves the region A,,_;.

e Makes sense in Z4 for any d.
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Related Models

e In internal DLA, particles perform random
walk instead of rotor-router walk.

— Lawler, Bramson and Griffeath (1992)

proved that the asymptotic shape is a
ball.

e Sandpiles, or chip-firing: When 4 or more
grains of sand accumulate at a site, it top-
ples, sending one grain to each neighbor.

— Limiting shape might not be a ball (?7)
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The Abelian Property

e Choices of which sites to topple in what
order don’'t affect the final sandpile shape.

e Choices of which particles to route in what
order don’'t affect the final shape gener-
ated.

e Equivalent models:
— Start with n particles at the origin

— If there are m particles at a site, send
lm/4] to each neighbor.

— Sandpile: Leave the extra particles where
they are.

— Rotor: Send extra particles according
to the usual rotor rule.
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Main Result

Theorem (Levine-P.) Let A, be the region of

n particles formed by rotor-router aggregation
in Z4. Then

Br—clogr C An C Br(l—i—c’r_l/dlogr)

where

e By is the ball of radius p centered at the
origin.

o r=(n/oy)/4.

e o, is the volume of the unit ball in RY.

e c.c’ depend only on d.

Corollary: Inradius/Outradius — 1 as n — oo.
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Divisible Sandpile

Start with mass s at the origin.

Each site keeps mass 1, sends excess mass
equally to each neighbor.

AS t — o, get a limiting region A; of mass 1,
fractional mass on 0dAg;, and zero outside.

Theorem: There are constants ¢ and ¢

depending only on d, such that

Br—c C AS C Br—l—c’

where r= (s/w,)!/4.
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Odometer Function

e f(x)= total mass emitted from x.

e Discrete Laplacian:

AF() =55 X F0) — ()

yr~x
— Mmass received — mass emitted
=1

except at the origin and on the boundary.
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T heoretical Solution

Boundary value problem:

Af =1 on As—{o}
Af(o)=1—s
f=0 on 0A;.

Idea: Compare f to the function

Y(x) = |x* — sa(x).
where a is the potential kernel
a(x) = lim (Gu(0) — Gn(x))

and Gy(x) is the expected number of visits
to x by SRW before time n.

a(x) is harmonic off o, and Aa(o) = 1.

Alx]? =1
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Taylor expansion

e Standard estimate:

2
a(x) = _log|x|+k+ O(|x|72)
gives

2s
Y(x) = |x|* - —loglx|+ks+ O(slx| ~2).

e Get a constant K =K(s) such that
— If r<|x| <r+1, then y(x) =K+ 0(1).

— () 2 K+ (r—[)*+0 (1)
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Inner Radius

e f—7is superharmonic in B,

e f—y>—K+O(1) on the boundary, hence on
all of B;,.

e Y dgrows quadratically as we move away from
the boundary

o _'_f>0 on Br_c.
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Outer Radius

e f—v isS harmonic in Ay

e f—y<—K+O(1) on the boundary, hence on
all of Ag.

o If xe Ay with r<|x|<r+1, then f(x) <c.

e Lemma: If yc A, —{o} there exists z~y
with f(z) > f(y)+1.

— Proof. For some neighbor z,

Q)23 ¥ )= FO)+1.

u~y

o ...AS C B},.+C/.
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Adapting the Proof

e Rotor-router odometer:

f(x)=total number of particles emitted from x.

e Instead of Af=1, we only know -2 <Af <4.

e Repeating the argument only gives

Bcr C An C BC/I"
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Smoothing

e [0 do better, let

where Si(x) is a box of side length 2k cen-
tered at x.

e Using A= div grad, we get
1 y f(2)—f)

— 112
e ocas)

o)

if o ¢ Sp(x) and all sites in S;(x) are occupied.

Ag(x)
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Fancier Smoothing

e Let T be the first exit time of B,, and

g(x) =Exf(Xr) —ExT +nE#{j <T|X; =0}.

e Boundary value problem:

Ag(o)=1—n
g=0 on JdA,.

e Want to show f ~g.
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Green’s Function

End up getting
fx)>gx)— Y Y |Gg(x,y)—Gg,(x,2)|.

yGBrZNy

Error gets smaller as x approaches the bound-
ary, and we can show B, _¢joer C An.

But for the outer radius, the error is

Y. Y 1Ga,(xy) = Gy, (x,2)].

Can’t control this, so we need another ap-
proach.
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Spreading Out

e Spherical shells

Se={xeZ% : k<|x|<k+1}.

e Lawler, Bramson, and Griffeath (1992): If
J<k, x€S§;, y€S then

Py(Xp, =y) <C/(k—j)* L.

e Want to show the same holds for rotor-
router walk, with frequency replacing prob-
ability.
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Holroyd-Propp Bound

recurrent graph G
Y C Z sets of vertices
s(x) particles start at x

Stop walks when they hit Z; how many land
in Y7

Let H(x) =Py(X7 €Y). Then

IRR(s,Y) —RW(s5,Y)| < ZG ; |H(u) —H(®v)|

independent of s and the initial rotor posi-
tions!
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Outer Radius

° NJ-:# particles that ever reach shell Sj.

o If r < j<k with Ny > N;/2, then
CN;
(k—j)d-1

N.

hence

e Since B, _clogr IS fully ocCcupied,
k§j+C(rd_llogr)1/d
which gives

An C B (14 cr1/d(1ogr)1+1/d):
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What next?

e Improve the bound on the outer radius.

— The truth: R(n) =max;<,(outrad(A;)—inrad(Ag)).

n R(n)
10 0.822
102 1.588
103 1.637
10* 1.683
10° 1.724
109 1.741

e Does the abelian sandpile have a limiting
shape, and if so, is it a ball?

e Identify the limiting shape of the " broken
rotor’” models.
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