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Allocation rules

I Let Ξ be a discrete subset of Rd .

I An allocation (of Lebesgue measure to Ξ) is a measurable function
ψ : Rd → Ξ ∪ {∞} that satisfies

Vol(ψ−1(∞)) = 0,

Vol(ψ−1(z)) = 1, z ∈ Ξ,

where Vol( · ) is Lebesgue measure in Rd .

I For x ∈ Ξ, we call ψ−1(z) the cell allocated to z .
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Examples

(a) (b)

Figure: (a) The two-dimensional stable marriage allocation for a Poisson
process (picture due to Alexander E. Holroyd). (b) The gradient flow allocation
(picture due to Manjunath Krishnapur).
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Allocation rules contd.

I Let Z be a translation-invariant simple point process in Rd with unit
intensity.

I An invariant allocation rule (of Lebesgue measure to Z ) is a
measurable mapping Z → ψZ such that:

1. a.s. ψZ is an allocation of Lebesgue measure to Z , and
2. the mapping Z → ψZ is translation-equivariant, i.e.

ψZ+x(y) ≡ ψZ (y) + x .

I If a.s. all the cells are bounded, one can consider the allocation
diameter

X = diam(ψ−1
Z (ψZ (0))).

I One object of interest: The rate of decay of the tail P(X > R).
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Extra head rules

I Let Z be a translation-invariant simple point process on Rd with
unit intensity.

I An extra head rule for Z is a random variable T coupled with Z so
that

1. a.s. T ∈ Z , and
2. the random set Z − T has the same distribution as Z conditioned to

have a point at 0.

I The extra head rule is said to be non-randomized if T is measurable
with respect to Z .

I Holroyd & Peres showed that if ψZ is an invariant allocation rule
then T = TZ = ψZ (0) is a non-randomized extra head rule, and
conversely, given a non-randomized extra head rule TZ , the mapping
ψZ (x) = x + TZ−x is an invariant allocation rule.
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Allocation to Poisson points: Existing results

I Talagrand: Randomized allocations for d ≥ 3. Holroyd & Peres used
this to construct an allocation with P(ψZ (0) > R) ≤ C exp(−cRd),
where ψZ (0) is the typical allocation distance.

I Holroyd & Peres: If d = 1, 2 and Z is a standard Poisson point
process of unit intensity in Rd , then the allocation diameter of any
invariant rule X satisfies EX d/2 = ∞.

I Hoffman, Holroyd & Peres: For arbitrary translation-invariant point
process in Rd , d ≥ 1, constructed the stable marriage allocation.

I In the stable marriage allocation, a.s.

1. all the cells are bounded and contain their owners,
2. but not all are connected,
3. and when Z is a Poisson point process the allocation diameter X

satisfies EX d =∞.
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Picture of a stable marriage allocation

Figure: The 2-diml. stable marriage allocation for a Poisson process

Construction: Each star (point of the process) grows a ball at unit rate
and captures all the sites it reaches first, until it is sated (has obtained
volume 1).
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Nazarov, Tsirelson, Sodin, Volberg

I Allocation to the zeros of the Gaussian Entire Function (GEF)

f (z) =
∞∑

n=0

ξn
zn

√
n!
, z ∈ C,

where (ξn)
∞
n=1 are i.i.d. standard complex gaussian random variables.

I Cell of each zero z is defined as the basin of attraction of z with
respect to the flow induced by the random planar vector field
F (z) = z −

(
∇ log |f |

)
(z). (See next slide for a picture of the

corresponding potential U(z) = log |f |(z)− 1
2 |z |

2.)

I Construction due to Nazarov, Sodin & Volberg based on an idea
suggested by Tsirelson.
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Picture of planar potential

Figure: The random planar potential (courtesy of Manjunath Krishnapur).
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Picture of a gradient flow allocation

Figure: The gradient flow allocation (courtesy of Manjunath Krishnapur).

Nazarov, Sodin & Volberg showed that the cells are connected, a.s.
bounded, and there exist absolute constants C , c > 0 such that the
allocation diameter X satisfies

ce−CR(log R)3/2

≤ P(X ≥ R) ≤ Ce−cR(log R)3/2

, R > 1.
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Why equal area in each basin?

I Take a basin of attraction B(z), and a point x ∈ ∂B(z).

I If n is the outward-pointing normal vector at x , then by the
definition of the basin of attraction, F (x) · n = 0.

I Thus, the oriented surface integral∫
∂B(z)

F (x) · n dS = 0.

I Now

div(F ) = 2− 2π
∞∑
i=1

δzi ,

where (zi )i is the set of zeros.
I Thus, by the divergence theorem,∫

∂B(z)

F (x) · n dS =

∫
B(z)

div(F )dx = 2Vol(B(z))− 2π.

I Combining, we get Vol(B(z)) = π.
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Invariance of the travel time

I Fix ε > 0, a zero z , and for each t ≥ 0, let

D(t) = {x = Γ(0) : |Γ(t)− z | < ε}

be the ‘region covered in time t’.

I Let A(t) be the area of B(z)\D(t). By Liouville’s theorem and the
fact that div(F ) = −2 outside (zi )i , it follows that

dA

dt
= −2A(t).

I Gives alternative proof of the equal area theorem. Also, shows that
if τx is the ‘time’ taken by x ∈ B(z) to ‘roll down’ to z , then
P(τx > t) = e−2t .

I In fact, a stronger version holds, where we condition on the
allocation and choose x uniformly in one cell.
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P(τx > t) = e−2t .

I In fact, a stronger version holds, where we condition on the
allocation and choose x uniformly in one cell.
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Gravitational force field due to Poisson points

I Let Z be a standard Poisson process in Rd .

I Consider the random vector field F : Rd → Rd defined by

F (x) =
∑

z∈Z, |z−x|↑

z − x

|z − x |d
, (1)

where the summands are arranged in order of increasing distance
from x .

I First investigated in work of S. Chandrasekhar. Later work by Heath
& Shepp.
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Convergence of the force at the origin

I Since Z = (zi )i is a Poisson process in Rd with unit intensity, it
follows that (|zi |d)i is a Poisson process in R with intensity κd ,
where κd is the volume of the unit ball in Rd .

I Thus, we have

|zi |
i1/d

−−−→
i→∞

κ
−1/d
d a.s.

I If we condition on (|zi |)i , then each zi is distributed uniformly on the
sphere of radius |zi | around the origin, and they are independent.

I For each i , zi/|zi |d has conditional mean 0 and variance bounded by
O

(
|zi |−2(d−1)

)
= O

(
i−2(d−1)/d

)
.

I Thus, a.s. convergence of F (0) follows from the Kolmogorov 3-series
theorem. By stationarity, same is true for every F (x).

I In our paper we have shown that a.s. the series converges
everywhere on Rd \ Z to give a translation-invariant continuously
differentiable random function.
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Distribution of F (0)

I Each component of the vector F (0) has a stable distribution whose
parameters can be explicitly computed (special case by
Chandrasekhar, general proof by Heath & Shepp). We give a sketch
below.

I If F1, . . . ,Fn are i.i.d. copies of the force F , then their sum is the
force exerted by the union of n copies of the poisson process, which
is Poisson scaled by n−1/d .

I Thus, F1(0) + · · ·+ Fn(0) has same law as n(d−1)/dF (0).

I It follows that F (0) is d/(d − 1) stable.
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A rearrangement identity

Lemma
For each u, x ∈ Rd , let

G{u}(x) =
∑
|zi−u|↑

zi − x

|zi − x |d
.

Then for any x , u, v ∈ Rd we have G{u}(x)− G{v}(x) = κd(u − v) a.s.,
where κd is the volume of the unit ball in Rd .

Proof:

I If Nu,x is the number of stars in the ball B(u, |u − x |), then

E
[
G{u}(x)

∣∣∣Nu,x

]
= Nu,x ·

u − x

|u − x |d
.

(Follows from a well-known physics principle.) Thus,
E(G{u}(x)− G{v}(x)) = κd(u − v).

Contd. on next slide...
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Rearrangement identity contd.

I Now, let R > 0 be large, and consider the truncated series

G
{u}
R (x) =

∑
|zi−u|<R

zi − x

|zi − x |d
.

We show that Var(G
{u}
R (x)− G

{v}
R (x)) → 0 as R →∞. This

suffices to complete the proof of the rearrangement identity.
Contd. on next slide...
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Rearrangement identity contd.

Distance > R/2

x

v

u

Ej

I Since G
{u}
R (x)− G

{v}
R (x) is the sum of independent contributions

from the Ej ’s, the variance can be easily bounded.
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Gravitational allocation

I Consider now the integral curves Γ(t) of the vector field F , that is,
solutions of the equation

Γ̇(t) = F (Γ(t)).

We call these curves the gravitational flow curves.

I Denote by Γx the integral curve with initial condition Γx(0) = x .

I To each center z ∈ Z, define its basin of attraction

B(z) = {x ∈ Rd \ Z | Γx(t) ends at z} ∪ {z}.

I Define the gravitational allocation rule

ψZ(x) =

{
z x ∈ B(z) for z ∈ Z,
∞ x /∈

⋃
z∈Z B(z).
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Main result

Theorem
The mapping Z → ψZ is an allocation rule of Lebesgue measure to the
Poisson point process Z. Almost surely all the cells ψ−1(z) are bounded.
The allocation diameter X = diam(ψ−1(ψ(0))) satisfies the following tail
bounds: In dimensions 4 and higher, we have

P(X > R) ≤ C1 exp
[
− c2R(log R)

d−2
d

]
(2)

for some constants C1, c2 > 0 (depending on the dimension d) and all
positive R. In dimension 3, for any α > 0 there exist constants C1, c2 > 0
(depending on α) such that for all R > 0 we have

P(X > R) ≤ C1 exp

[
− c2

R

(log R)
4
3 +α

]
. (3)
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Picture of gravitational allocation

Figure: Simulation of a cell in 3-dimensional gravitational allocation
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Sketch of the proof

I We closely follow a technique introduced in an earlier version of the
paper of Nazarov, Sodin & Volberg, but several new ideas are
required to carry out the steps.

I For L > 0 and x ∈ Rd denote by Q(x , L) the box x + [−L, L]d .

I Let ER denote the event that there exists an integral curve Γ(t)
connecting ∂Q(0,R) and ∂Q(0, 2R).

I Easy to see: If X is the diameter of the basin containing 0, then for
all R > 0,

P(X ≥ cR) ≤ P(ER)

for some constant c depending only on the dimension.
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Sketch contd.

I Introduce a gravitational potential energy function U(x) whose
differences U(x)− U(y) are the line integrals of the gravitational
force.

I Most important observation: Since F (x) = −∇U(x), therefore

d

dt
U(Γ(t)) = < Γ̇(t),∇U(Γ(t))>

= <F (Γ(t)),−F (Γ(t))> = −|F (Γ(t))|2.

In particular, the potential always decreases along a gradient flow.
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Sketch contd.

I We bound P(ER) in terms of discrete events, by dividing space into
a grid S of cubes of side length r ≈ (log R)2/d .

I We fix B = Rα for some appropriate α < 1 and say that a cube is
bad if |U(x)−U(y)| ≤ Br/R for all x , y in the cube, or U(x) < −B
for some x in the cube. (Essentially, a cube is bad if either the
gravitational force or the potential is unusually small inside the
cube.)

I If U(x) ≤ B for all x ∈ Q(0, 2R) (a high probability event for a right
choice of α), then ER happens only if there is a sequence of R/r
connected bad cubes.
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Schematic illustration

4R 2R 0 Γ(T1)

ff
The grid S

Γ

Here T1 is the time at which the curve Γ enters the phase U(x) < −B.
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Final steps

I Step 1: Show that the probability of a cube being bad is small, by
further subdividing into smaller cubes and applying Markov’s
inequality to get a crude bound.

I Step 2: Get an exponentially small bound on the joint probability of
a collection of well-separated cubes being bad (the percolation
step).

I Step 3: Bound P(ER) by summing over all connected sequences of
cubes.

I The percolation step turns out to be rather difficult, mainly due to
the heavy-tailed nature of the force (unlike the
Nazarov-Sodin-Volberg scenario, where the dependence decreases
exponentially with distance).

S. Chatterjee, R. Peled, Y. Peres, D. Romik Gravitational allocation to Poisson points



Final steps

I Step 1: Show that the probability of a cube being bad is small, by
further subdividing into smaller cubes and applying Markov’s
inequality to get a crude bound.

I Step 2: Get an exponentially small bound on the joint probability of
a collection of well-separated cubes being bad (the percolation
step).

I Step 3: Bound P(ER) by summing over all connected sequences of
cubes.

I The percolation step turns out to be rather difficult, mainly due to
the heavy-tailed nature of the force (unlike the
Nazarov-Sodin-Volberg scenario, where the dependence decreases
exponentially with distance).

S. Chatterjee, R. Peled, Y. Peres, D. Romik Gravitational allocation to Poisson points



Final steps

I Step 1: Show that the probability of a cube being bad is small, by
further subdividing into smaller cubes and applying Markov’s
inequality to get a crude bound.

I Step 2: Get an exponentially small bound on the joint probability of
a collection of well-separated cubes being bad (the percolation
step).

I Step 3: Bound P(ER) by summing over all connected sequences of
cubes.

I The percolation step turns out to be rather difficult, mainly due to
the heavy-tailed nature of the force (unlike the
Nazarov-Sodin-Volberg scenario, where the dependence decreases
exponentially with distance).

S. Chatterjee, R. Peled, Y. Peres, D. Romik Gravitational allocation to Poisson points



Final steps

I Step 1: Show that the probability of a cube being bad is small, by
further subdividing into smaller cubes and applying Markov’s
inequality to get a crude bound.

I Step 2: Get an exponentially small bound on the joint probability of
a collection of well-separated cubes being bad (the percolation
step).

I Step 3: Bound P(ER) by summing over all connected sequences of
cubes.

I The percolation step turns out to be rather difficult, mainly due to
the heavy-tailed nature of the force (unlike the
Nazarov-Sodin-Volberg scenario, where the dependence decreases
exponentially with distance).

S. Chatterjee, R. Peled, Y. Peres, D. Romik Gravitational allocation to Poisson points



Sketch of the percolation step

The percolation step states, in essence, that the probability of the
potential difference being simultaneously small across a large number of
well-separated squares is exponentially small in the number of squares.
The key component in the proof is the following bound on the joint
density of the forces at multiple points.

Lemma
Suppose we have x1, . . . , xN ∈ Rd with |xi − xj | > S for every i 6= j . Fix
λ > 0, and let

E =
{

There is at least one star in B(xi , λ) for every 1 ≤ i ≤ N
}
.

Let M the σ-algebra generated by the stars in
(
∪N

i=1B(xi ,S)
)c

. Then

there exist constants c0,C1 > 0 such that if λ < c0S(log N)−1/d , then
conditioned on the event E and on the σ-algebra M, almost surely the
joint density of (F (xi ))1≤i≤N exists and is bounded from above by

(C1λ
d2−d)N .

S. Chatterjee, R. Peled, Y. Peres, D. Romik Gravitational allocation to Poisson points



Sketch of the percolation step

The percolation step states, in essence, that the probability of the
potential difference being simultaneously small across a large number of
well-separated squares is exponentially small in the number of squares.
The key component in the proof is the following bound on the joint
density of the forces at multiple points.

Lemma
Suppose we have x1, . . . , xN ∈ Rd with |xi − xj | > S for every i 6= j . Fix
λ > 0, and let

E =
{

There is at least one star in B(xi , λ) for every 1 ≤ i ≤ N
}
.

Let M the σ-algebra generated by the stars in
(
∪N

i=1B(xi ,S)
)c

. Then

there exist constants c0,C1 > 0 such that if λ < c0S(log N)−1/d , then
conditioned on the event E and on the σ-algebra M, almost surely the
joint density of (F (xi ))1≤i≤N exists and is bounded from above by

(C1λ
d2−d)N .

S. Chatterjee, R. Peled, Y. Peres, D. Romik Gravitational allocation to Poisson points



Remarks

I Proof of the lemma involves actual computation and bounding of
the inverse Jacobian.

I The bound is probably suboptimal, but suffices for our purposes.

I Even after this lemma, many other technical hurdles need to be
overcome.

I Dimensions 3 and 4 are harder, mainly because the invariant
potential is no longer well-defined, and the technicalities are also
more difficult.

S. Chatterjee, R. Peled, Y. Peres, D. Romik Gravitational allocation to Poisson points



Remarks

I Proof of the lemma involves actual computation and bounding of
the inverse Jacobian.

I The bound is probably suboptimal, but suffices for our purposes.

I Even after this lemma, many other technical hurdles need to be
overcome.

I Dimensions 3 and 4 are harder, mainly because the invariant
potential is no longer well-defined, and the technicalities are also
more difficult.

S. Chatterjee, R. Peled, Y. Peres, D. Romik Gravitational allocation to Poisson points



Remarks

I Proof of the lemma involves actual computation and bounding of
the inverse Jacobian.

I The bound is probably suboptimal, but suffices for our purposes.

I Even after this lemma, many other technical hurdles need to be
overcome.

I Dimensions 3 and 4 are harder, mainly because the invariant
potential is no longer well-defined, and the technicalities are also
more difficult.

S. Chatterjee, R. Peled, Y. Peres, D. Romik Gravitational allocation to Poisson points



Remarks

I Proof of the lemma involves actual computation and bounding of
the inverse Jacobian.

I The bound is probably suboptimal, but suffices for our purposes.

I Even after this lemma, many other technical hurdles need to be
overcome.

I Dimensions 3 and 4 are harder, mainly because the invariant
potential is no longer well-defined, and the technicalities are also
more difficult.

S. Chatterjee, R. Peled, Y. Peres, D. Romik Gravitational allocation to Poisson points


