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Smoothing Rocks by Chipping 

Basic question:
What is the shape of rocks as they erode?

 NSF grants CHE0532969 (PLK) and DMR0535503 (SR).

Aristotle:
Rounding by faster erosion at exposed corners.

Main result: 
Final shape not round 

inspired by Durian et al., PRL 97, 028001 (2006); 
                                        PRE 75, 021301 (2007) 

as found by Durian et al.



Motivation: Stone Skipping

Kurt Steiner of Emporium, PA

World record holder (a count of 40)

Warming up for the world-record skip
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We first report a quantitative experimental study of the collision of a spinning disk
with water, from a single to many skips. We then focus on the high spin limit and
propose a simple model which enables us to discuss both the physical origin of the
bounces and the source of the dissipation which fixes the number of skips.

1. Introduction
“One, two, three, four”: this is the number of skips achieved by the stone in figure 1.
The rules of competition for skipping stones have never changed (Thomson 2000):

a stone or a shell is thrown over a water surface and the maximum number of
bounces distinguishes the winner. Part of the attraction of this game comes from the
puzzling questions it raises: How can a stone bounce on water? How many skips can
it achieve?

The impact of objects on water has been the object of a large amount of work
in the literature (von Kármán 1930; Johnson & Reid 1975; Johnson 1998). Most
of these works have focused (mainly due to military applications, e.g. Dambusters)
on the impact of spherical and cylindrical objects, and clarified rebound conditions
as a function of impact velocity. If R characterizes the size of the object, U its
velocity and ρ, ν, σ the fluid properties (respectively density, kinematic viscosity and
surface tension) all the above studies are in the limit of large Reynolds number
(Re ≡ UR/ν # 1) and large Weber number (ρU 2R/σ # 1) where inertial effects
dominate both viscous and surface forces. Our study belongs to the same domain.
However, even if the phenomena at play are similar in the case of stone skipping, the
case of a flat (generally spinning) object like a stone is more difficult. In this latter case,
a few theoretical analyses have attempted to extract the physical mechanisms (Stong
1968; Crane 1988; Bocquet 2003) and recently, three of us have published the first
quantitative experimental results on the first bounce (Clanet, Hersen & Bocquet 2004).
This study has motivated extensive numerical simulations (Nagahiro & Hayakawa
2005; Yabe et al. 2005). Here, we first complete our previous results by showing the
skipping stone domain in a general phase diagram. Then, we extend the study to
several skips and determine the origin of the dissipation responsible for the end of
the skipping.

2. Experimental setup
The conventions used throughout the article are presented in figure 2: a model

stone of thickness h and radius R has a translation velocity U and spinning velocity
Ω ≡ Ωn, where n is the unit vector normal to its surface. The orientation of the



Doug Durian’s Erosion Machine

rock



Evolution of a Square Rock
Durian et al., PRL 97, 028001 (2006); 
                      PRE 75, 021301 (2007)
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What should we expect?

If vinterface ∝ local curvature,

Mullins (1956);
many differential geometry publications
                     

→ circular final shape for d = 2
(not true for d > 2).
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But... Final Shape is not Circular
Durian et al., Phys. Rev. Lett. 97, 028001 (2006); 
                     Phys. Rev. E 75, 021301 (2007) 
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Chipping Model
geometry of 
single event L1 L2
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Numerical Realizations (100 corners)



Angle Evolution for Bisection

nk ≡ # corners with “angle” k k ≡ − ln2(2θ/π)

= number of halvings
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Angle Evolution for Bisection

nk ≡ # corners with “angle” k k ≡ − ln2(2θ/π)

= number of halvings

dnk

dt
= −

nk

t
+

2

t
nk−1Continuum limit:

nk(t) =
12

t

(2 ln t)k

k!
Result:
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c(x, t) = fraction of angles x = θ/2π
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broad distribution of angles
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Simulation Results
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Summary

Eroding rocks are not round (in d=2)

Robust with respect to extensions 
preferentially chip more prominent corners

chip away more than one corner

Large fluctuations between realizations 



P. L. Krapivsky, S.Redner and J.Tailleur
PRE 69, 026125 (2004)

Smoothing of Interfaces at T=0  

Basic question:

How interfaces evolve at zero temperature?

Dynamics:

Glauber (mostly);   time-dependent GL

Interfaces: 
Corner (quadrant); Finger; Square 



Dynamics

Below we consider (if not stated otherwise)

1. Ising spins subject to the
zero-temperature Glauber dynamics

2. Even coordination number (e.g. a
hypercubic lattice)

3. Periodic boundary conditions

Definition of the zero-temperature Glauber
dynamics

Pick up a random spin and compute the
energy change ∆E if it were to flip:

1. If ∆E < 0 flip it

2. If ∆E > 0 do not flip it

3. If ∆E < 0 flip it with probability 1/2



An Interface Between Ordered Phases

• The straight interface is stable

• An evolving interface must have corners

• The simplest evolving interface is the
wedge

_
+

tS
y

x+

1. There is always one more spin to flip up
than down

2. Hence 〈St〉 = t and x, y ∼
√

t

3. The interface recedes diffusively



Limiting Shape: Macroscopic Approach

1. The interface becomes progressively
less random as t → ∞

2. After (x, y) → (x/
√

t, y/
√

t), the interface
approaches a deterministic limiting
shape.

We first analyze the limiting shape in the
framework of the TDGL equation, or
better its reduction to the interface
dynamics (Allen and Cahn).

• The AC asserts that the interface
velocity is proportional to the local
curvature

yt =
yxx

1 + y2
x

• The solution must be self-similar on
dimensional grounds

y(x, t) =
√

t Y (X), X = x/
√

t



• The prediction of the TDGL equation
(dashed) slightly differs from the exact
limiting shape (solid)
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Partitions

....y 210 yy

This Young diagram is a representation of
the partition of St. Above is the
partitioning of 22 into {7, 6, 4, 2, 1, 1, 1}.



Limiting Shape: Microscopic Approach

1. There are p(t) ∼ t−1 exp(2π
√

t/6)
partitions of t (Hardy, Ramanujan)

2. Let each occurs with the same weight
1/p(t)

3. Then the limiting shape (Temperley 52)

e−λx + e−λy = 1, λ =
π√
6t

This prediction is hardly distinguishable
from the exact limiting shape

A few more predictions

• A Langevin equation approach shows
that

〈(St − t)2〉 ∝ t3/2

• The probability to return to the
original (wedge) state is e−

√
t



Exclusion Processes

The interface dynamics is identical to the
symmetric exclusion process (SEP)

1. The interface (rotated by 45◦) and the
corresponding particle configuration

2. The wedge corresponds to particles in
(−∞, 0) and empty space for (0,∞)

The asymmetric exclusion process (ASEP)
is identical to the interface dynamics in the
presence of a magnetic field.



Calculation

In the long time ‘hydrodynamic’ limit

∂n

∂t
=

∂2n

∂z2
n(z, t = 0) =

{
1 z < 0
0 z > 0

The interface (x, y) is determined from

y(x, t) =
∫ ∞

x−y
dz n(z, t)



Calculation (magnetic field)

The hydrodynamic description is provided by ‘Burgers’

∂

∂t
n +

∂

∂z
n(1− n) = 0

n(z, t) =
1
2
×






2 z < −t
1− z/t |z| < t

0 z > t

√
x +

√
y =

√
t

The interface is parabola ! (Rost, 81)



Continuation (magnetic field)

The x = y diagonal crosses the interface at

x = y =
1
4

t

Why? The flux in ASEP n(1− n) is 1/4 at the origin.

More precisely: The number of particles Nt which

have crossed the (0, 1) bond up to time t is

Nt =
1
4

t + t1/3ν

(Johansson, Spohn, et at)



Evolution of the Finger

+
+

-
-

1. The flip of the lowest spin is an
irreversible step that causes the height
to advance by one

2. The finger recedes with velocity v ∼ 1/L

3. In the co-moving reference frame, the
shape of the finger becomes more and
more deterministic as L → ∞

4. In the AC framework, v = π/2L and the
limiting shape is (Mullins 56,
Saffman-Taylor 58)

y = −2L

π
ln

[
cos

(πx

2L

)]



Evolution of the finger (exact)

Generally evolution may be addressed in two 
frameworks:

1. Relying on known surface tension in 2D.
2. Mapping SEP onto kink dynamics

(Karma & Lobkovsky, 2005)

∂ρ

∂t
=

∂

∂x

[
(1 + ρ)−2 ∂ρ

∂x

]

y(x, t) =
∫ x

0
dx′ ρ(x′, t)Since



Evolution of the finger (exact)

yxt =
[

yxx

(1 + yx)2

]

x

v =
yxx

(1 + yx)2gives

Boundary conditions y(0) = 0 and y(L) =∞

y

L
= − ln

(
1− x

L

)
− x

L
, v =

1
L



Influence of magnetic field

The governing equation

∂ρ

∂t
= (1 + ρ)−2 ∂ρ

∂x
+ D

∂

∂x

[
(1 + ρ)−2 ∂ρ

∂x

]

1
1 + yx

+ D

(
1

1 + yx

)

x

= const

In the stationary regime

The limiting shape is

y = D
(
ex/D − 1− x

D

)



Evolution of the square

The square becomes circular under TDGL

When the dynamics is T=0 Glauber the 
square reaches a non-circular limiting shape

Hamilton et al (86), Grayson (87)

The cube evolves into a ball under TDGL

Huisken (84)



Evolution of a square droplet

2

R.Cerf and S.Louhichi (2005)



The limiting shape in 2D

∂ρ

∂t
=

∂

∂x

[
(1 + ρ)−2 ∂ρ

∂x

]

ρ(x, t) = ρ(ξ), ξ =
x

L

ρ(0) = 0 and L is the position where ρ(L, t) = 1

LL̇ = −B, B =
1
8

ρ′(1)

Bξρ′ =
[

ρ′

(1 + ρ)2

]′



V.Spirin, P. L. Krapivsky, and S.Redner
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T=0 Glauber Dynamics

Basic question:

Does the system reach a ground state?

Answer: Yes (one dimension)

 Sometimes (two dimensions)

 Never (three dimensions)



Expectations

Setup

• Start with Ti = ∞ (disordered phase)

• Quench to Tf ≤ Tc (ordered phase)

Central Dogma

• Two possible behaviors:

1. All Tf < Tc dynamics are isomorphic
to zero-temperature dynamics

2. Critical dynamics (T = Tc) is different

• Regions of ordered phase grow with
time, L(t) ∼ tz,

z = 1/2 (non-conserved dynamics)
z = 1/3 (conserved dynamics)

• Ground state is reached in time ∝ N2/d

for non-conserved (e.g. Glauber or
TDGL) dynamics



Exceptional Behaviors (Tf = 0)

• One dimension

1. Tc = 0 may cause an atypical
behavior

2. L(t) ∼ ln t (hence z = 0) for the TDGL
equation

3. z = 1/4 for the XY model with
Glauber dynamics

• Freezing for conserved dynamics

• Freezing for odd-coordinated lattices



Stripes (two dimensions)



Evolution (two dimensions)

May be slow if the diagonal stripe is formed
Ground states are reached with prob     2/3 ≈



Three dimensions
Ground state is never reached (in the 

thermodynamic limit). Blinkers. 



Challenges

• Prove that P+(m0) = sgn(m0) for m0 != 0
and d ≥ 2

• Prove that Pstripe > 0 in 2D. Prove (or
disprove) the asymptotic Pk ∝ e−k2

• Count the number of metastable states
for d ≥ 3

• Work out the d → ∞ limit

• Work out the case of small but positive
temperature

• Find the limiting shapes in 2D

• Find the limiting shapes (membranes)
in three dimensions

• The AC dynamics turns a droplet into
a shrinking disk, and an initially convex
3D droplet into a shrinking ball
(Hamilton, Huisken, Grayson). What
about Ising-Glauber?



Thank you !


