
SLE in 2d Turbulent Systems
with G. Boffetta, A. Celani, G. Falkovich

Strong fluctuations + infinite many strongly interacting degrees of freedom
→ scale invariance...if in addition... + locality→ conformal invariance

Here... out of equilibrium systems + (non?) locality→???????



Basics of 2D turbulence.

Fluid Mechanics: Governed by theNavier-Stokes equationwith (random)

forcing (+ dissipation + friction). Non linearity.

∂tu+u ·∇u−ν∇2u+u/τ = −∇P+ f , ∇.u = 0

Vorticity ω = ∇∧u transported by the fluid (without ...)

∂tω+u ·∇ω−ν∇2ω+ω/τ = F

All moments conserved (without...)→ 2 quadratic conserved quantities:

EnergyE = 1/2
Z

d2x u2 ; EnstrophyZ = 1/2
Z

d2x ω2

In a stationnary state, balance between injection (f .u) /dissipation (ν(∇u)2).



Basics... the double cascade.

Fully developed turbulence;Reynolds → ∞ ie. ν → 0.

Energy and enstrophy are injected at lengthL f .

Enstrophy dissipated at small scale but not energy→ double cascade

Direct cascade:enstrophy fluxζ
inertial rangeL f ≫ ℓ ≫ Ld .

scalinguℓ ∼ ζ1/3ℓ

possibly anomalous

Inverse cascade:ensergy fluxε
scalinguℓ ∼ ε1/3ℓ1/3

inertial rangeL,Lτ ≫ ℓ ≫ L f .

possibly not anomalous

Kraichnan’s double cascade.

E(k) ∼ k−3; E(k) ∼ k−5/3.



Basics... Numerical simulations.

Inverse cascade

Inertial range 10−2 < ℓ < 1

boxe size =1

Parameters:N spatial resolution, dx grid

spacing,ν viscosity,α friction, ℓ f forcing

scale,ℓd=enstrophy dissipative scale, ....

G. Boffetta, A. Celani

N dx ν α urms ℓ f ℓd εI εν

2048 4.9×10−4 2×10−5 0.015 0.26 0.01 2.4×10−3 3.9×10−3 1.8×10−3 2.1

4096 2.4×10−4 5×10−6 0.024 0.26 0.01 1.2×10−3 3.9×10−3 0.7×10−3 3.2

8192 1.2×10−4 2×10−6 0.025 0.27 0.01 7.8×10−4 3.9×10−3 0.3×10−3 3.6

16384 0.6×10−4 1×10−6 0.0 0.24 0.01 5.5×10−4 3.8×10−3 0.2×10−3 3.6



colored clusters of vorticity of given sign



2D (inverse) turbulence: vorticity clusters.

vorticity clusters:connected components of set of points with positive vorticity

cluster boundaries:macroscopic zero isovorticity lines (L f = UV cutoff)

A large macroscopic

filled vorticity cluster

dark violet = filled holes

Frontier of a vorticity cluster

Ext. perimeter of a vorticity cluster

exterior perimeter = closed fjords(L f )



Fractal dimensions of vorticity clusters.

Naive KK scaling:u3
ℓ ∼ εℓ

Macroscopic cluster sizeL

Γ ≡
R

d2xω ∼ ωLL2 ∝ L4/3

Γ =
H

u ·dℓ ∼ NL f uL f L f ∝ P

Perimeter P

P ∝ L4/3

Dim. of frontier = 7/4,(asSLE6);

Dim. of ext. perimeter = 4/3,(asSLE8/3);

Dim. of double points = 3/4.

Box counting fractal dimension



More tests of conformal invariance.

Distribution of clusters Fraction of clusters of size betweens

and 1.1s

Fraction of clusters with boundary

length betweenb and 1.1b

CFT prediction.



Reconstructing (discrete) SLE in 2D turbulence.
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(i) Extract contour samples from turbulent flows;

(ii) Code them into conformal maps;

(iii) Reconstruct the (discrete) Loewner driving source;

(iv) Analyse their statistics.

The curves are discretized (set of pointsw j) but coded into a discrete

Loewner equation via composition of maps (iteration of discrete slits):

G(n) = gn ◦G(n−1) wheregn =
√

(z−an)2 +bn +an

with b2
n = (Imwn)

2 = 4∆tn andan = Rewn = ξ(tn).

Then iterate...(the points move at each iteration)



Reconstructing (discrete) SLE in 2D turbulence → SLE(6).

Reconstructed driving sources.
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Distribution of the driving sources

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

0 0.005 0.01

t

< ξ(t)2 >

4

5

6

7

8

0 0.005 0.01

<ξ(t)2> / t
-3 -2 -1 0 321

ξ(t)/(κ t)1/2

(κ t)1/2 P(ξ(t))

Statistics ofξ(t) is close to that of a 1D Brownian motion→ SLE(6)

but need for more tests...



Test of SLE in 2D turbulence.
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– Cardy’s formula (blue): probability for a

cluster to cross a rectangle

– Watts-Dubedat formula (red): probability of

’four-legged’ cluster joining all sides of a rec-

tangle

– Schramm’s formula (insert): probability that

isovorticity line leaves the pointρeiθ to its right

→ ”some” conformal invariance in 2d turbulence....



Test of SLE in 2D turbulence.

Harris criteria......

Long range correlation of sign(ω)
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Non Gaussianity

Randomized phase....

ω̂ =
R

d2k ωkeiφk

Identical 2-point function

(but not pdf)

< ξ(t)2 > not linear int.

→ ”some” conformal invariance in 2d turbulence....



Surface Quasi-Geostrophic (SQG) turbulence

Transport by the fluid (without ...) (T asω):

∂tT +u ·∇T −ν∇2T +T/τ = F

Non linearity: velocityui = εi j∂ jΨ with Ψk = |k|−αTk... (NS isα = 2)

Two quadratic conserved quantities (without...):

E = 1/2
Z

d2x TΨ ; Z = 1/2
Z

d2x T 2

Two cascades:(small scale Z) and (large scale E)

Scaling in the inverse cascade:Tℓ ≃ ℓH with H = 2(1−α)/3

In the followingα = 1.



SQG inverse cascade

Numerical simulations... Log scaling:< T0Tr >∝ log(r/L f )

Non anomalous scaling.

Pdf(Tr,r) ≃ T−1
r f (Tr/ log(r/L f ))

→ look at the T clusters and their zero iso-lines(Trms ≫ T )...................



Test of conformal invariance of T-clusters in SQG

(a) Mass versus radius

(b) Length versus radius

Fractal dim = 3/2

(c) Number of clusters versus mass

(d) Number of loops versus length

(e) Number of loops versus radius

(f) Number of loops versus area

Stat. idem as inO(2) model

c=1 CFT.



SLE test of for T-clusters in SQG → SLE(4)
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Extract isoline traces

Check statistics....κ ≃ 4

Statistics of T-clusters in the same universality class asO(2) models

→ why conformal invariance? analytic confirmation? why inverse cascade?
for which class of outoff equilibrium systems??........



Comparing with direct 2D turbulence.

Iso-loops in direct cascade are not SLEs

different structure, differents spectrum of fractal dimensions


