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A few SLE motivated goals

1. Construct a “random geometry” in which the SLE curves and SLE
loops (the conformal loop ensembles) appear naturally as geo-
metric objects.

2. Understand Duplantier duality — the relationship between SLE(κ)
and SLE(16/κ) — by realizing both objects within the same ge-
ometry.

3. Understand what is special about the self-dual value κ = 4 = 16/κ.

4. Understand the time reversal symmetry of SLE.



The standard Gaussian on n-dimensional
Hilbert space

has density function e−(v,v)/2 (times an appropriate constant). We can
write a sample from this distribution as

n
∑

i=1

αivi

where the vi are an orthonormal basis for R
n under the given inner

product, and the αi are mean zero, unit variance Gaussians.



The discrete Gaussian free field

Let f and g be real functions defined on the vertices of a planar graph
Λ. The Dirichlet inner product of f and g is given by

(f, g)∇ =
∑

x∼y

(f(x) − f(y)) (g(x) − g(y)) .

The value H(f) = (f, f)∇ is called the Dirichlet energy of f .

Fix a function f0 on boundary vertices of Λ. The set of functions f
that agree with f0 is isomorphic to R

n, where n is the number of
interior vertices. The discrete Gaussian free field is a random
element of this space with probability density proportional to e−H(f)/2.



Discrete GFF on 20× 20 grid, zero boundary
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Some DGFF properties:

Zero boundary conditions: The Dirichlet form (f, f)∇ is an inner
product on the space of functions with zero boundary, and the DGFF
is a standard Gaussian on this space.

Other boundary conditions: DGFF with boundary conditions f0 is
the same as DGFF with zero boundary conditions plus a deterministic
function, which is the (discrete) harmonic interpolation of f0 to Λ.

Markov property: Given the values of f on the boundary of a
subgraph Λ′ of Λ, the values of f on the remainder of Λ′ have the law
of a DGFF on Λ′, with boundary condition given by the observed
values of f on ∂Λ′.



The continuum Gaussian free field

is a “standard Gaussian” on an infinite dimensional Hilbert space.
Given a planar domain D, let H(D) be the Hilbert space closure of the
set of smooth, compactly supported functions on D under the
conformally invariant Dirichlet inner product

(f1, f2)∇ =

∫

D

(∇f1 · ∇f2)dxdy.

The GFF is the formal sum h =
∑

αifi, where the fi are an
orthonormal basis for H and the αi are i.i.d. Gaussians. The sum does
not converge point-wise, but h can be defined as a random
distribution—inner products (h, φ) are well defined whenever φ is
sufficiently smooth.





Scaling limit of zero-height contour line

Theorem (Schramm, S): If initial boundary heights are λ on one
boundary arc and −λ on the complementary arc, where λ is the
constant

√

π
8 , then the scaling limit of the zero-height interface (as the

mesh size tends to zero) is SLE4.

If the initial boundary heights are instead −(1 + a)λ and (1 + b)λ, then
as the mesh gets finer, the laws of the random paths described above
converge to the law of SLE4,a,b.



DGFF with ±λ boundary conditions
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Expectations given values along interface
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Expectations given interface, ±3λ boundary
conditions
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Sketch of proof

1. Observe that SLE4 is the only random path γ with the following
property: Given γ([0, t]), the probability that γ passes z on right equals
the probability that Brownian motion started at z first hits R ∪ γ[0, t]
on the left side of γ(t).

2. Show that any scaling limit of discrete paths has to have the same
property.



Zero contour lines

√

2
3λ.



How do we get SLEκ from the GFF when
κ 6= 4?

One obvious way to construct a random Riemannian geometry from a
continuous approximation h of the GFF: endow the disc with the
metric ehdL, where L represents Euclidean length. This geometry is
flat if and only if h is harmonic.



Geodesics flows of metric ehdL where h is .05 times the GFF.



Geodesics flows of metric ehdL where h is .2 times the GFF.



Geodesics flows of metric ehdL where h is 1 times the GFF.



Vector Field eih, with h(x, y) = y
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Vector Field eih where h(x, y) = x2 + y2
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Altimeter compass geometry

A ray in the altimeter compass geometry is a flow line of e2πi(α+h/χ) for
some α.
Now let’s modify our sense of direction. Call the direction e2πi(α+h/χ)

1. East if α = 0.

2. North if α = .25.

3. West if α = .5.

4. South if α = .75.

If h = 0, then the rays of the AC geometry are those of ordinary
Euclidean geometry. More generally, if h is Lipschitz, then the flow line
of e2πi(α+h/χ) starting at a given point exists and is uniquely defined.



AC geometry of the GFF

Question: Is there a natural way to define the set of “flow lines” of
eih/χ when χ is a constant and h is the continuous Gaussian free field?
Answer: Yes. The flow lines are forms of SLEκ where 0 < κ < 4 and

χ = (κ/4)−1/2
−(κ/4)1/2

2 . As in the case of contour lines, there is a
constant “height gap” between one side of the flow line and the other.
We may view this gap as an “angle gap.” In radians, the gap is κπ

4−κ ,
i.e., κ

2(4−κ) revolutions. This gap is called the critical angle.



Critical angle = 0, κ = 0



Critical angle = π/100, κ = 4/101



Critical angle = π/10, κ = 4/11



Critical angle π/10?



Critical angle π/4, κ = 4/5



Critical angle π, κ = 2



Critical angle 2π, κ = 8/3



Critical angle 3π, κ = 3



Critical angle 0, κ = 0



Critical angle π/1000, κ = 4/1001



Critical angle π/100, κ = 4/101



Critical angle π/10, κ = 4/11



Critical angle π, κ = 2



Critical angle 0, κ = 0



Critical angle π/1000, κ = 4/1001



Critical angle π/10, κ = 4/11



Critical angle π/4, κ = 4/5



Critical angle 3π, κ = 3



Critical angles in statisical physics (proved
or conjectured)

• π: κ ∈ {2, 8}. Loop erased random walk (2), uniform spanning tree
boundary (8).

• 2π: κ ∈ {8/3, 6}. Brownian motion boundary (8/3), self-avoiding-walk
(8/3), critical percolation (6).

• 3π: κ ∈ {3, 16/3}. Critical Ising cluster boundaries (3), critical Ising
FK-cluster boundaries (16/3).

• 5π: κ ∈ {10/3, 24/5}. Supercritical 3-state Potts cluster boundaries
(24/5).

• 6π: κ ∈ {24/7, 14/3}. Critical 3-state Potts cluster boundaries (24/7),
critical 3-state Potts FK (14/3).

• ∞π: κ = 4. Harmonic explorer (4), GFF level lines (4), double dimer
model (4), critical 4-state Potts cluster boundaries (4).


