Random Geometry, SLE, and the Gaussian Free Field Scott Sheffield

References (see arXiv.org):

- 1. Gaussian Free Fields for Mathematicians, S.
- 2. Harmonic Explorer and its convergence to SLE(4), S. and Schramm
- 3. Contour lines of the two-dimensional discrete Gaussian free field, S. and Schramm
- 4. Exploration trees and conformal loop ensembles, S.
- 5. Conformal radii for conformal loop ensembles, S., Schramm, and Wilson
- 6. More figures and talks: math.nyu.edu/faculty/sheff

A few SLE motivated goals

- 1. Construct a "random geometry" in which the SLE curves and SLE loops (the **conformal loop ensembles**) appear naturally as geometric objects.
- 2. Understand **Duplantier duality** the relationship between $SLE(\kappa)$ and $SLE(16/\kappa)$ by realizing both objects within the same geometry.
- 3. Understand what is special about the self-dual value $\kappa = 4 = 16/\kappa$.
- 4. Understand the time reversal symmetry of SLE.

The standard Gaussian on *n*-dimensional Hilbert space

has density function $e^{-(v,v)/2}$ (times an appropriate constant). We can write a sample from this distribution as

 $\sum_{i=1}^{n} \alpha_i v_i$

where the v_i are an orthonormal basis for \mathbb{R}^n under the given inner product, and the α_i are mean zero, unit variance Gaussians.

The discrete Gaussian free field

Let f and g be real functions defined on the vertices of a planar graph Λ . The **Dirichlet inner product** of f and g is given by

$$(f,g)_{\nabla} = \sum_{x \sim y} (f(x) - f(y)) (g(x) - g(y))$$

The value $H(f) = (f, f)_{\nabla}$ is called the **Dirichlet energy of** f. Fix a function f_0 on boundary vertices of Λ . The set of functions f that agree with f_0 is isomorphic to \mathbb{R}^n , where n is the number of interior vertices. The **discrete Gaussian free field** is a random element of this space with probability density proportional to $e^{-H(f)/2}$.

Discrete GFF on 20×20 grid, zero boundary -2

Some DGFF properties:

Zero boundary conditions: The Dirichlet form $(f, f)_{\nabla}$ is an inner product on the space of functions with zero boundary, and the DGFF is a standard Gaussian on this space.

Other boundary conditions: DGFF with boundary conditions f_0 is the same as DGFF with zero boundary conditions *plus* a deterministic function, which is the (discrete) harmonic interpolation of f_0 to Λ .

Markov property: Given the values of f on the boundary of a subgraph Λ' of Λ , the values of f on the remainder of Λ' have the law of a DGFF on Λ' , with boundary condition given by the observed values of f on $\partial \Lambda'$.

The continuum Gaussian free field

is a "standard Gaussian" on an *infinite* dimensional Hilbert space. Given a planar domain D, let H(D) be the Hilbert space closure of the set of smooth, compactly supported functions on D under the conformally invariant *Dirichlet inner product*

$$(f_1, f_2)_{\nabla} = \int_D (\nabla f_1 \cdot \nabla f_2) dx dy.$$

The GFF is the formal sum $h = \sum \alpha_i f_i$, where the f_i are an orthonormal basis for H and the α_i are i.i.d. Gaussians. The sum does not converge point-wise, but h can be defined as a *random* distribution—inner products (h, ϕ) are well defined whenever ϕ is sufficiently smooth.

Scaling limit of zero-height contour line

Theorem (Schramm, S): If initial boundary heights are λ on one boundary arc and $-\lambda$ on the complementary arc, where λ is the constant $\sqrt{\frac{\pi}{8}}$, then the scaling limit of the zero-height interface (as the mesh size tends to zero) is SLE₄.

If the initial boundary heights are instead $-(1+a)\lambda$ and $(1+b)\lambda$, then as the mesh gets finer, the laws of the random paths described above converge to the law of $\text{SLE}_{4,a,b}$.

Sketch of proof

- 1. Observe that SLE_4 is the only random path γ with the following property: Given $\gamma([0, t])$, the probability that γ passes z on right equals the probability that Brownian motion started at z first hits $\mathbb{R} \cup \gamma[0, t]$ on the left side of $\gamma(t)$.
- 2. Show that any scaling limit of discrete paths has to have the same property.

How do we get SLE_{κ} from the GFF when $\kappa \neq 4$?

One obvious way to construct a random Riemannian geometry from a continuous approximation h of the GFF: endow the disc with the metric $e^h dL$, where L represents Euclidean length. This geometry is flat if and only if h is harmonic.

Geodesics flows of metric $e^h dL$ where h is .05 times the GFF.

Geodesics flows of metric $e^h dL$ where h is .2 times the GFF.

Geodesics flows of metric $e^h dL$ where h is 1 times the GFF.

Vector Field e^{ih} , with h(x, y) = y

Vector Field e^{ih} where $h(x, y) = x^2 + y^2$

Altimeter compass geometry

A ray in the altimeter compass geometry is a flow line of $e^{2\pi i(\alpha+h/\chi)}$ for some α . Now let's modify our sense of direction. Call the direction $e^{2\pi i(\alpha+h/\chi)}$

- 1. East if $\alpha = 0$.
- 2. North if $\alpha = .25$.
- 3. West if $\alpha = .5$.
- 4. South if $\alpha = .75$.

If h = 0, then the rays of the AC geometry are those of ordinary Euclidean geometry. More generally, if h is Lipschitz, then the flow line of $e^{2\pi i(\alpha + h/\chi)}$ starting at a given point exists and is uniquely defined.

AC geometry of the GFF

Question: Is there a natural way to define the set of "flow lines" of $e^{ih/\chi}$ when χ is a constant and h is the continuous Gaussian free field? Answer: Yes. The flow lines are forms of SLE_{κ} where $0 < \kappa < 4$ and $\chi = \frac{(\kappa/4)^{-1/2} - (\kappa/4)^{1/2}}{2}$. As in the case of contour lines, there is a constant "height gap" between one side of the flow line and the other. We may view this gap as an "angle gap." In radians, the gap is $\frac{\kappa\pi}{4-\kappa}$, i.e., $\frac{\kappa}{2(4-\kappa)}$ revolutions. This gap is called the **critical angle**.

Critical angle = $\pi/100$, $\kappa = 4/101$

Critical angle 0, $\kappa = 0$ -

Critical angle $\pi/10$, $\kappa = 4/11$

Critical angles in statistical physics (proved or conjectured)

- π : $\kappa \in \{2, 8\}$. Loop erased random walk (2), uniform spanning tree boundary (8).
- $2\pi: \kappa \in \{8/3, 6\}$. Brownian motion boundary (8/3), self-avoiding-walk (8/3), critical percolation (6).
- $3\pi: \kappa \in \{3, 16/3\}$. Critical Ising cluster boundaries (3), critical Ising FK-cluster boundaries (16/3).
- $5\pi: \kappa \in \{10/3, 24/5\}$. Supercritical 3-state Potts cluster boundaries (24/5).
- $6\pi: \kappa \in \{24/7, 14/3\}$. Critical 3-state Potts cluster boundaries (24/7), critical 3-state Potts FK (14/3).
- $\infty \pi$: $\kappa = 4$. Harmonic explorer (4), GFF level lines (4), double dimer model (4), critical 4-state Potts cluster boundaries (4).