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A few SLE motivated goals

. Construct a “random geometry” in which the SLE curves and SLE
loops (the conformal loop ensembles) appear naturally as geo-
metric objects.

. Understand Duplantier duality — the relationship between SLE(x)
and SLE(16/x) — by realizing both objects within the same ge-
ometry.

. Understand what is special about the self-dual value k = 4 = 16/k.

. Understand the time reversal symmetry of SLE.



The standard Gaussian on n-dimensional
Hilbert space

has density function e~ (v:v)/2 (times an appropriate constant). We can
write a sample from this distribution as

mn
E ;U4
i—=1

where the v; are an orthonormal basis for R™ under the given inner
product, and the o; are mean zero, unit variance Gaussians.



The discrete Gaussian free field

Let f and g be real functions defined on the vertices of a planar graph
A. The Dirichlet inner product of f and g is given by

(f,9)v = (flx) = fW) (9(z) — g(y)).

r~y

The value H(f) = (f, f)v is called the Dirichlet energy of f.
Fix a function fy on boundary vertices of A. The set of functions f
that agree with fj is isomorphic to R", where n is the number of
interior vertices. The discrete Gaussian free field is a random
element of this space with probability density proportional to e~ (/)/2,



Discrete GFF on 20 x 20 grid, zero boundary
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Some DGFF properties:

Zero boundary conditions: The Dirichlet form (f, f)v is an inner
product on the space of functions with zero boundary, and the DGFF
is a standard Gaussian on this space.

Other boundary conditions: DGFF with boundary conditions f; is
the same as DGFF with zero boundary conditions plus a deterministic
function, which is the (discrete) harmonic interpolation of fy to A.

Markov property: Given the values of f on the boundary of a
subgraph A’ of A, the values of f on the remainder of A’ have the law
of a DGFF on A’, with boundary condition given by the observed
values of f on OA’.



The continuum (Gaussian free field

is a “standard Gaussian” on an infinite dimensional Hilbert space.
Given a planar domain D, let H(D) be the Hilbert space closure of the
set of smooth, compactly supported functions on D under the
conformally invariant Dirichlet inner product

(1, fa)w = / (V1) -V fo)dady,

D

The GFF is the formal sum h = ) «, f;, where the f; are an
orthonormal basis for H and the «; are i.i.d. Gaussians. The sum does
not converge point-wise, but h can be defined as a random
distribution—inner products (h, ¢) are well defined whenever ¢ is
sufficiently smooth.






Scaling limit of zero-height contour line

Theorem (Schramm, S): If initial boundary heights are A on one
boundary arc and —A on the complementary arc, where X is the
constant \/g , then the scaling limit of the zero-height interface (as the
mesh size tends to zero) is SLE,.

If the initial boundary heights are instead —(1 4+ a)A and (1 + b)\, then
as the mesh gets finer, the laws of the random paths described above
converge to the law of SLE, , 3.



DGFF with £\ boundary conditions







Expectations given values along interface







Expectations given interface, =3\ boundary
conditions







Sketch of proof

1. Observe that SLE, is the only random path ~ with the following
property: Given v([0,t]), the probability that v passes z on right equals
the probability that Brownian motion started at z first hits R U |0, ¢]

on the left side of v(¢).
2. Show that any scaling limit of discrete paths has to have the same
property.



Zero conour lines
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How do we get SLE, from the GFF when
Kk #~ 47

One obvious way to construct a random Riemannian geometry from a
continuous approximation h of the GFF: endow the disc with the
metric e?dL, where L represents Euclidean length. This geometry is
flat if and only if h is harmonic.



Geodesics lows of metric e*dL where h is .05 times the GFF.
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Geodesics lows of metric e*dL where h is .2 times the GFF.



~

Geodesics flows of metric e®dL where h is 1 times the GFF.



Vector Field e, with h(z,y) =y
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Altimeter compass geometry

A ray in the altimeter compass geometry is a flow line of 2™ (a+n/X) for
some «.
Now let’s modify our sense of direction. Call the direction e>7(*+h/x)

East if a = 0.
North if a = .25.
West if a = .5.
South if o = .75.

If h = 0, then the rays of the AC geometry are those of ordinary
Fuclidean geometry. More generally, if h is Lipschitz, then the flow line
of 2™ (a+h/X) starting at a given point exists and is uniquely defined.



AC geometry of the GFF

Question: Is there a natural way to define the set of “flow lines” of
e’"/X when y is a constant and h is the continuous Gaussian free field?

Answer: Yes. The flow lines are forms of SLE, where 0 < Kk < 4 and

o —-1/2_(,. 1/2 . . .
X = (/) 5 (=/4)"" " As in the case of contour lines, there is a

constant “height gap” between one side of the flow line and the other.

We may view this gap as an “angle gap.” In radians, the gap is -,

revolutions. This gap is called the critical angle.
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Critical ancle = 0. Kk = 0 .



Critical ancle = 7/100. kK = 4/101



Critical ancle = 7/10. kK = 4/11
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Critical ancle 7. K = 2



Critical anele 27. kK = 8/3



Critical ancle 37. Kk = 3
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Critical ancle 0. Kk = 0
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Critical anele 7/1000. k = 471001
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e e mritical ancle 1. kK = 2 N\ _



Critical ancle 0. Kk = 0




Critical anele 7/1000. x — 4/1001



Critical ancle 7'('/1(5. k=4/11
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Critical ancle 7/4. kK = M






Critical angles in statisical physics (proved
or conjectured)

m: k€ {2,8}. Loop erased random walk (2), uniform spanning tree
boundary (8).

2m: k € {8/3,6}. Brownian motion boundary (8/3), self-avoiding-walk
(8/3), critical percolation (6).

3m: k€ {3,16/3}. Critical Ising cluster boundaries (3), critical Ising
FK-cluster boundaries (16/3).

br: k€ {10/3,24/5}. Supercritical 3-state Potts cluster boundaries
(24/5).

6m: k€ {24/7,14/3}. Critical 3-state Potts cluster boundaries (24/7),
critical 3-state Potts FK (14/3).

ocom: k = 4. Harmonic explorer (4), GFF level lines (4), double dimer
model (4), critical 4-state Potts cluster boundaries (4).



