A particle representation for the heat equation solution

Krzysztof Burdzy University of Washington

Selected references

- B, Holyst, Ingerman, March (1996)
- B, Holyst, March (2000)
- B, Quastel (2007)
- Grigorescu, Kang (2004, 2006, 2006)

Multiple populations

"Minimization of the Renyi entropy production in the space-partitioning process" **Cybulski, Babin, and Holyst**, Phys. Rev. E 71, 046130 (2005)

The stationary distribution

 λ_k - first Dirichlet eigenvalue in k-th region

Conjecture 1: The stationary distribution minimizes

$$\lambda_1 + \lambda_2 + \ldots + \lambda_n \stackrel{df}{=} \lambda^*$$

Bucur, Buttazzo and Henrot "Existence results for some optimal partition problems"
Adv. Math. Sci. Appl. 8 (1998) 571—579
Conti, Terracini and Verzini "On a class of optimal partition problems related to the Fucik spectrum and to the monotonicity formulae" Calc. Var. 22, 45–72 (2005)

Conjecture 2: The honeycomb pattern minimizes λ^*

Special thanks to Luis Caffarelli!

B, Holyst, Ingerman and March "Configurational transition in a Fleming-Viot-type model and probabilistic interpretation of Laplacian eigenfunctions" J. Phys. A 29, 1996, 2633-2642

$$a \begin{cases} \hline & \lambda_{j,k} = (\pi/a)^2 (j^2 + (k/r)^2), \quad r = b/a \\ \lambda_{2,3} = (\pi/a)^2 (2^2 + (3/r)^2) \\ b \end{cases}$$

Conjecture 3: The critical ratio r for (*) and m populations satisfies

$$\lambda_{1,m} = \lambda_{2,1}$$

Rigorous results – one population

Theorem (B, Holyst, March, 2000) Suppose that the individual trajectories are independent Brownian motions. Then

$$T_n \xrightarrow{n \to \infty} \infty, \quad a.s.$$

Idea of the proof

A parabolic function (harmonic in space-time):

$$h(t, x) = P(X_s \in D, s \in [t, 1] | X_t = x)$$

A martingale plus a process with positive jumps:

$$M_t = \sum_{k=1}^N h(t, X_t^k)$$

One population – convergence to the heat equation solution

- N- population size
- 1/N- individual particle mass
- $Q_N(t)$ empirical density at time t
 - individual trajectories follow Brownian motions

Theorem (B, Holyst, March, 2000) If

$$Q_N(0)(dx) \xrightarrow{N \to \infty} u_0(x) dx$$

then

$$Q_N(t)(dx) \xrightarrow{N \to \infty} u(t, x) dx, \quad t > 0$$

where u(t, x) is the normalized heat equation solution with $u(0, x) = u_0(x)$

One population – convergence of stationary distributions

- N- population size
- 1/N- individual particle mass
- $Q_N(t)$ empirical density at time t
 - individual trajectories follow Brownian motions

Theorem (B, Holyst, March, 2000) The process $Q_N(t)$ has a stationary distribution Λ_N . Moreover,

$$\Lambda_N(dx) \xrightarrow{N \to \infty} \varphi(x) \, dx$$

where $\varphi(x)$ is the first Dirichlet eigenfunction.

One population – convergence of stationary distributions – assumptions

Assumption: The uniform internal ball condition

Two populations – convergence to the heat equation solution

- N- population size (same for population I and II)
- 1/N individual particle mass (population I)
- -1/N individual particle mass (population II)
 - $Q_N(t)$ empirical density at time t
 - individual trajectories follow random walks

Theorem (B, Quastel, 2007) If

$$Q_N(0)(dx) \xrightarrow{N \to \infty} u_0(x) dx$$

then

$$Q_N(t)(dx) \xrightarrow{N \to \infty} u(t, x)dx, \quad t > 0$$

where u(t, x) is the normalized heat equation solution with $u(0, x) = u_0(x)$

Two populations – convergence to the heat equation solution – assumptions

(i) Trajectories – simple random walks
(ii) Trajectories reflect at the domain boundary
(iii) The two populations have equal sizes
(iv) The domain has an analytic boundary

Idea of the proof

 φ_n - n-th Neumann eigenfunction

$$\hat{u}_n(t) = \pm \frac{1}{N} \sum_{k=1}^N \varphi_n(X_t^k)$$

$$d\hat{u}_n(t) = \Delta\hat{u}_n(t)dt + M_t$$

Main technical challenge: bound the clock rate

Spectral representation and L¹

Lemma. Suppose that D is a domain with C^2 smooth boundary, φ_n is the n-th eigenfunction for the Laplacian with Neumann boundary conditions and μ is a signed measure with a finite total variation.

$$\forall n \quad \int \varphi_n(x) \,\mu(dx) = 0 \quad \Rightarrow \quad \mu \equiv 0$$

Diffusion in eigenfunction space

Open problem: What is the speed of diffusion?

Invariance principle for reflected random walks

Theorem. Reflected random walk converges to reflected Brownian motion. (i) C^2 -domains, Stroock and Varadhan (1971) (ii) Uniform domains, B and Chen (2007)

Example: Von Koch snowflake is a uniform domain.

Counterexample (B and Chen, 2007): Reflected random walk does not converge to reflected Brownian motion in a planar fractal domain.

Myopic conditioning

 $D \subset \mathbb{R}^d$ - open, connected, bounded set $\{X_t^n, t \ge 0\}$ - Markov process

 $\left\{ X_t^n, t \in [k/n, (k+1)/n] \right\}$ - Brownian motion conditioned by $\left\{ X_t^n \in D, t \in [k/n, (k+1)/n] \right\}$

Theorem (B and Chen, 2007). When $n \to \infty$, $\{X_t^n, t \ge 0\}$ converge to reflected Brownian motion in D.

 X_t - reflected Brownian motion in D

$$T_B$$
 - hitting time of $B(x_0, r)$

Problem:

$$\sup_{x\in D} E^x T_B < \infty ?$$

Definition: We will call a bounded set D a <u>trap</u> domain if

$$\sup_{x\in D} E^x T_B = \infty.$$

 $\varphi(\zeta)$

Hyperbolic blocks

Theorem (B, Chen and Marshall, 2006): A simply connected planar domain D is a trap domain if and only if

$$\sup_{\zeta} \sum_{n\geq 1} n \cdot Area(D_n) = \infty.$$

Corollary: *D* is a trap domain iff

$$\int_{1}^{\infty} \left(\int_{1}^{x} \frac{1}{f(z)} dz \right) f(x) dx = \infty.$$

Example: $f(r) = \exp(-r^{\alpha})$

Trap domain $\iff \alpha \le 2$