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Fleming-Viot model
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N = population size (constant in time )
= ecological niche carrying capacity

Free space
Population distribution
Let N go to infinity. converges to a fractal structure
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Bounded domain
Population distribution converges to a density
= heat equation solution
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The stationary distribution

A

A, - first Dirichlet eigenvalue in k-th region

Conjecture 1: The stationary distribution minimizes
df

A+t A=A

Bucur, Buttazzo and Henrot “Existence results for some optimal partition problems”

Adv. Math. Sci. Appl. 8 (1998) 571—579

Conti, Terracini and Verzini “On a class of optimal partition problems

related to the Fucik spectrum and to the monotonicity formulae” Calc. Var. 22, 45-72 (2005)
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Conjecture 2: The honeycomb pattern minimizes A
Special thanks to Luis Caffarelli!
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The stationary distribution (2)
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B, Holyst, Ingerman and March “Configurational transition in a Fleming-Viot-type model
and probabilistic interpretation of Laplacian eigenfunctions” J. Phys. A 29, 1996, 2633-2642

a{ A =(mla)’(j*+(k/r)?), r=bla
A, =(z1a)’(2% +(3/1)?)
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Conjecture 3: The critical ratio r for (*) and
m populations satisfies

ﬂ’l,m — 2‘2,1
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Rigorous results — one population
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Theorem (B, Holyst, March, 2000) Suppose that the
Individual trajectories are independent Brownian motions.
Then

T —® s00, a.s.
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|dea of the proof

A parabolic function (harmonic in space-time):

h(t,x) = P(X, €D, s e[t1]| X, = x)
A martingale plus a process with positive jumps:

N
M, = Zh(t1 th)
k=1
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One population — convergence to
the heat equation solution

N - population size
1/ N - individual particle mass
Q, (t) - empirical density at time t
- individual trajectories follow Brownian motions

Theorem (B, Holyst, March, 2000) If
Qy (0)(dx) ——="— Uy (x)dx

Q, ()(dx) —=2—u(t,x)dx, t>0

where U(t, X) is the normalized heat equation solution with
u(0, x) = u, (x)
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One population — convergence of
stationary distributions

N - population size
1/ N - individual particle mass
Q, (t) - empirical density at time t
- individual trajectories follow Brownian motions

Theorem (B, Holyst, March, 2000) The process Qu(t) has
a stationary distribution A . Moreover,

A, (dX) —=Z2— o(x) dX

where @(X) is the first Dirichlet eigenfunction.
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One population — convergence of
stationary distributions — assumptions

Assumption: The uniform internal ball condition
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Two populations — convergence to

the heat equation solution

N - population size (same for population | and 1)
1/ N - individual particle mass (population 1)
—1/ N - individual particle mass (population 1)
Q, (t)- empirical density at time {
- individual trajectories follow random walks

Theorem (B, Quastel, 2007) If
Qy (0)(dx) ——="— U, (x)dx

Q, (1)(dx) —=Z—u(t,x)dx, t>0

where U(t, X) is the normalized heat equation solution with
u(0, x) = uy(x)
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Two populations — convergence to the
heat equation solution — assumptions

() Trajectories — simple random walks

(i) Trajectories reflect at the domain boundary
() The two populations have equal sizes

(iv) The domain has an analytic boundary



|dea of the proof

@, - n-th Neumann eigenfunction
A 1 &
un(t) = i_ngn(xtk)
N =
dd_(t) = AG_(t)dt + M,

Main technical challenge: bound the clock rate
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Spectral representation and L+

Lemma. Suppose that D is a domain with C* smooth
boundary, @, Is the n-th eigenfunction for the Laplacian
with Neumann boundary conditions and [/ Is a signed
measure with a finite total variation.

vn Je,()ud)=0 = =0



Diffusion In eigenfunction space

Open problem: What is the speed of diffusion?
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Invariance principle for reflected
random walks

Theorem. Reflected random walk converges
to reflected Brownian motion.

(i) C*-domains, Stroock and Varadhan (1971)
(i) Uniform domains, B and Chen (2007)

Example: Von Koch snowflake is a uniform domain.

Counterexample (B and Chen, 2007): Reflected
random walk does not converge to reflected Brownian
motion in a planar fractal domain.
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Myopic conditioning

D = R? - open, connected, bounded set
{Xt”,t > O} - Markov process

{Xt“,t e[k /n,(k +1)/n]} - Brownian motion conditioned by
X" eD,te[k/n,(k+1)/n]|

Theorem (B and Chen, 2007). When N — o0 |
{Xt”,t > O} converge to reflected Brownian motion in D.
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X, -reflected Brownian motion in D

T, - hitting time of B(X,,I)

Problem: sup E XTB <07
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Definition: We will call a bounded set D
a trap domain if

sup E*T, = oo.
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Hyperbolic blocks






Theorem (B, Chen and Marshall, 2006): A simply
connected planar domain D is a trap domain if and only if

sup > n-Area(D,) = o.

¢ nx1



Horn domain:

o=
,

I

Corollary: D is a trap domain iff

o0

j Ufé)dzj f () dX = co.

1
Example:  f(r)=exp(-r®)

Trap domain < a <2
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