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Fleming-Viot model

N = population size (constant in time )
= ecological niche carrying capacity

Let N go to infinity.

Free space
Population distribution

converges to a fractal structure

Bounded domain
Population distribution converges to a density 

= heat equation solution
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Conjecture 2: The honeycomb pattern minimizes 

Conjecture 1: The stationary distribution minimizes

The stationary distribution
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Special thanks to Luis Caffarelli!



The stationary distribution (2)
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Conjecture 3: The critical ratio r for (*) and 
m populations satisfies
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B, Holyst, Ingerman and March “Configurational transition in a Fleming-Viot-type model 
and probabilistic interpretation of Laplacian eigenfunctions” J. Phys. A  29, 1996, 2633-2642



Rigorous results – one population
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Theorem (B, Holyst, March, 2000) Suppose that the 
individual trajectories are independent Brownian motions. 
Then
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Idea of the proof
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A parabolic function (harmonic in space-time):

A martingale plus a process with positive jumps:
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One population – convergence to 
the heat equation solution
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- population size
- individual particle mass
- empirical density at time 
- individual trajectories follow Brownian motions

Theorem (B, Holyst, March, 2000) If 

then
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where               is the first Dirichlet eigenfunction.)(xϕ

One population – convergence of 
stationary distributions
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- population size
- individual particle mass
- empirical density at time 
- individual trajectories follow Brownian motions

Theorem (B, Holyst, March, 2000) The process            has
a stationary distribution         . Moreover, 
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One population – convergence of 
stationary distributions – assumptions 

Assumption: The uniform internal ball condition



where               is the normalized heat equation solution with

Two populations – convergence to 
the heat equation solution
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- population size (same for population I and II)
- individual particle mass (population I)
- individual particle mass (population II)
- empirical density at time 
- individual trajectories follow random walks
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Theorem (B, Quastel, 2007) If 

then



Two populations – convergence to the 
heat equation solution – assumptions 

(i) Trajectories – simple random walks
(ii)Trajectories reflect at the domain boundary
(iii) The two populations have equal sizes 
(iv) The domain has an analytic boundary



Idea of the proof
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- n-th Neumann eigenfunction

Main technical challenge: bound the clock rate



Spectral representation and L1

Lemma. Suppose that D is a domain with        smooth
boundary,         is the n-th eigenfunction for the Laplacian
with Neumann boundary conditions and        is a signed 
measure with a finite total variation. 
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Diffusion in eigenfunction space

Open problem: What is the speed of diffusion?



Invariance principle for reflected 
random walks

Theorem. Reflected random walk converges 
to reflected Brownian motion.
(i) -domains, Stroock and Varadhan (1971)
(ii) Uniform domains, B and Chen (2007)
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Example: Von Koch snowflake is a uniform domain.

Counterexample (B and Chen, 2007): Reflected 
random walk does not converge to reflected Brownian 
motion in a planar fractal domain. 



- Brownian motion conditioned by

Theorem (B and Chen, 2007). When               ,
converge to reflected Brownian motion in D.

Myopic conditioning
dRD ⊂

{ }0, ≥tX n
t

{ }]/)1(,/[, nknktX n
t +∈

∞→n

- open, connected, bounded set
- Markov process
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dRD⊂
),( 0 rxB

tX - reflected Brownian motion in D

BT - hitting time of ),( 0 rxB
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Definition: We will call a bounded set      
a trap domain if
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Hyperbolic blocks
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Theorem (B, Chen and Marshall, 2006): A simply 
connected planar domain       is a trap domain if and only if
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Horn domain:
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Corollary:      is a trap domain iffD

Example: )exp()( αrrf −=

Trap domain 2≤⇔ α
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