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Introduction

o Explosion of high-dimensional datasets:
web, biology, medicine, etc.
o New tools for data exploration and analysis address issues:

» signal of interest: complicated geometry
» data corrupted by noise,
» algorithm complexity
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Example 1: Neuroimaging

@ dogma: each brain region is responsible for a specific function

@ goal: delineation of functional anatomy in terms of spatial
and temporal organization

o method:

» very simple cognitive or sensory input stimulus
» measure the output signal x; at each voxel 7 inside the brain
» detect significant changes in the signal
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Example 1: fMRI of Natural Stimuli

challenge: study the response to complex stimuli (“real life”)
o example: subject watches a movie in the MRI scanner

o discover neuronal networks involved in complex tasks

(]

how is the analysis performed ?

size of the problem: 200,000 time series in R0%°
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Example 2: Prediction of seizure from EEG

o Electroencephalogram: electrical recordings on the scalp

o seizure — time-frequency changes in the signal

@ goal: predict the seizure before the onset

@ best existing method: brain = nonlinear dynamical system

@ neuronal synchrony: fewer independent variables needed to
describe the EEG recordings 7

@ Is the brain during a seizure a low dimensional dynamical system ?

e size of the problem: 100,000 brain states in R
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Assumptions about the data

o dataset: large number of internal microscopic variables
— many degrees of freedom

@ at a macroscopic scale: many variables are coupled
— set of all possible configurations for the signals is
low dimensional

@ signals varies smoothly as a function of “hidden” variables
— well defined low dimensional structure
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Our definition of the problem

Q@ T x N dataset X = [xolx1| - [xy_1]
@ goal: construction of a new parameterization
¢ :RT - RX with K < T,
X — ¢(x;),

© similar signals are mapped to the same region of the atlas:

> b (xi) — dlxs) | = [Ixi — x|
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© Constructing a new parametrization
@ A random walk on the dataset
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Construction of the graph

replace the dataset by a graph G,

vertex ¢ of the graph = x;
o edges: k nearest neighbors according to
e = x5l = (X (malt) — j(£))%)1/2
e weight w; ; on the edge {7, 7}: proximity between ¢ and 7,

for instance,

. 12 /52
e_HX1 —x4[|*/0 , 1f x; is connected to x;,
Wiy =

0 otherwise.
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From the dataset to the graph




From the dataset to the graph

OCT. 12, 2000 JUNE 2000 TO JUNE 2001 SEPT. 11, 2001
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A random walk on the graph

o weighted graph G, matrix W, W, ; = w; ;
o random walk on the graph with transition probability P,

Py = w;;/di,

e d, =) ; Wi, degree of the vertex 72, D diagonal matrix,
Dy =di=) Wy
J

o= Z ~—ld1, da,- -+, dy] stationary distribution
i,
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© Constructing a new parametrization

@ A new way to measure distances
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A good distance on the graph

o similarity measure between any two vertices ¢ and 7

o distinguish between strongly connected vertices and
weakly connected vertices

@ solution: average commute time, k(%,7) = H(j,1) + H(1,7)

o symmetric version of the average hitting time from : to 7,

E;: random walk is started at 1
@ K is a distance:
Q «(,7)=0 = 1=7,
Q «(2,7) < kl(1,k) +«(k,7),
Q «(z,7) =«(7,2).
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Commute time in
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How does k(%,7) compare to 6(z,7) ?

@ k(1,7) can be compared to the standard distance & on the graph

Theorem

If 1 and j are at a distance 6(%,7) on the graph, then

25(2,7) < x(1,7) < C8(3,7),

_ o1 g Wiy
where C = max, ; i = mag

e Markov chain is reversible, m; P; ; = m; P; ;

@ C can be large
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Your worst commute time in L.A.: Sepulveda Blvd or 405 7
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Maximum commute time: lost in the city...

o among all graphs with N vertices,
what is the graph with the largest «(z,7) ?
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Maximum commute time: lost in the city...

o among all graphs with N vertices,
what is the graph with the largest «(z,7) ?
@ lollipop graph: path with (N — 1)/3 vertices,
complete subgraph with (2N + 1)/3 vertices

e k(%4,7) = %N3 + O(N)
e 5(1,7) =2N, C =2N(2N +1)/18
e [Jonasson, 2000]
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The spectral connection

o Fundamental matrix Z = (I — (P —TI)) "' =1+ 2 k>1 P*—TI

with TTT = [my] - - - ;]

o Z is the Green function of the Laplacian, [ — L

Theorem
[Bremaud, 1999] Hitting time E;[T;] = (Z;; — Z; ;)/ ;.

° Ei[Tj] =1+ Zk;k;éj Pi,kEi[Tk]

o eigenfunctions ¢, -, by of
D:PD 3,

with eigenvalues —1 <Ay - < A2 <A =1.

Frangois Meyer (Princeton) March 14, 2007

24 / 41



The spectral connection

e commute time:

. Yo dr(2) ¢k(j)>2
g = - . 3
<(6,7) k_21_7\k<\/7Ti VTG ®)

o define an embedding

L dglr)
VI—A, VT’

@ Fuclidean distance on the image of the embedding
= commute time

i Ip(i) = =2,-,N (4)

k(1,5) = [I1(4) — I(5)]* = Zuk ) — Ii(j
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Outline

© The spectral connection

@ From commute time to spectral geometry
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The Laplacian connection

@ ¢y is also an eigenfunction of the Laplacian
L=I-D:PD 3,

with the eigenvalues fr = 1 — Ag.

@ ¢ minimizes the “distortion”
min Y i) Wig(B(3) — b (5))?
[l =1 > did?(4)

with ¢ orthogonal to {dg, b1, -, Pr_1}.
e Laplacian eigenmaps [Belkin and Niyogi, 2003]
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The diffusion distance connection

e [Lafon, 2004, Coifman and Lafon, 2006]

o diffusion distance,

D2 5) Zﬁt((b} (b\ﬁ))Q (5)

‘L

o commute time = sum of the diffusion distance at all scale ¢

i A N O O
ZDE/z(z,J)—];l_M<\/TTi - \/7(7> =«(1,7)

t=0
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The spectral geometry connection

o data sampled on a n-dimensional manifold M
@ M embedded by its heat kernel Ky((¢, z, y)

Theorem
[Bérard et al., 1994]
by M — P(R)

2o { V2T A e N 2 (2) |

Vt > 0, the map ; is an embedding of M into I1?(R).

(7)

@ scale parameter ¢: similar to diffusion distance
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The spectral geometry connection

P;: composition of

@ embedding of M by the heat kernel:
each point on M is mapped to a bump function.

M — L?(M) (8)
T — Kn(t/2,z,.) (9)

@ isometry given by the choice of basis, {®1, @y, - - -}, of L2(M),
each function of L?(M) is expanded into the basis of
eigenfunctions of the Laplace-Beltrami operator

L*(M) — *(R) (10)
f={<f, bk >}k>1 (11)
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Algorithm 1: Construction of the embedding

Input:
» x,(t),t=0,---,T—1,1=1,--- N,
» 0 ; n, number of nearest neighbors.
» K: number of eigenfunctions.
Algorithm:
© construct the graph defined by the n, nearest (according to
Ix; —x;||) neighbors of each x;
© compute P
© find the first K eigenfunctions, ¢y, of D:PD:
Output: For all x;

» new co-ordinates of x;: {1_1)\k ‘D\/I#) } , k=2,.-- N
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A toy example

003

002-]

001

The 4ih EigenVecior

002

003

The 3rd EigenVecior
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Classification of EEG recordings

o classification of EEG recordings into baseline and ictal states

o Hypothesis: we can find a lower dimensional representation for
classification

@ More details can be found in
[Ramirez-Vélez et al., 2006, Meyer and Shen, 2007]
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Human dataset

@ scalp electroencephalograms
@ b5 electrode channels, lowpass filtered at 256 Hz.

@ baseline, pre-ictal, ictal,
and post-ictal time segments

e each node of the graph is in R%®
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The graph of the brain dynamics
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Embedding

0.1+
baseline
0.05 pre-ictal
ictal
post-ictal
= 0
—0.05
702
-0.1
0.05 0o %
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Embedding (2)

o baseline
01 O pre-ictal
0.05 o ctal

post-ictal

0.2
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Classification

@ d = 10 dimensions

@ 10-fold cross validation

Table: Classification error (kernel ridge regression)

Baseline | Ictal | Total

Raw Data 93.20 70.40 | 81.80
PCA 81.60 78.80 | 82.20
Random walk 100 82.80 | 91.40
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Classification

o lctal
o Baseline
9 -0.1 -0.04

Estimated labels: red=ictal, blue=baseline
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Computational details

Curse of dimensionality:
o Fast nearest neighbors in high dimension

e Eigensolvers for large (N = 10° — 10°) sparse matrices
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Open questions

e much faster eigensolvers are needed...Matlab blows up for
N > 10,000

o real time update ¢, with new incoming data ?
@ ¢y sensitive to o and n,

e how many new co-ordinates (local dimension) ?
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